Jump to content

NASA’s Voyager Team Focuses on Software Patch, Thrusters


NASA

Recommended Posts

  • Publishers
1-voyager-artists-concept-16.jpg?w=1600
NASA’s Voyager 1 spacecraft is depicted in this artist’s concept traveling through interstellar space, or the space between stars, which it entered in 2012. Traveling on a different trajectory, its twin, Voyager 2, entered interstellar space in 2018.
NASA/JPL-Caltech

The efforts should help extend the lifetimes of the agency’s interstellar explorers.

Engineers for NASA’s Voyager mission are taking steps to help make sure both spacecraft, launched in 1977, continue to explore interstellar space for years to come.

One effort addresses fuel residue that seems to be accumulating inside narrow tubes in some of the thrusters on the spacecraft. The thrusters are used to keep each spacecraft’s antenna pointed at Earth. This type of buildup has been observed in a handful of other spacecraft.

The team is also uploading a software patch to prevent the recurrence of a glitch that arose on Voyager 1 last year. Engineers resolved the glitch, and the patch is intended to prevent the issue from occurring again in Voyager 1 or arising in its twin, Voyager 2.

Thruster Buildup

The thrusters on Voyager 1 and Voyager 2 are primarily used to keep the spacecraft antennas pointed at Earth in order to communicate. Spacecraft can rotate in three directions – up and down, to the left and right, and around the central axis, like a wheel. As they do this, the thrusters automatically fire and reorient the spacecraft to keep their antennas pointed at Earth.

Propellant flows to the thrusters via fuel lines and then passes through smaller lines inside the thrusters called propellant inlet tubes that are 25 times narrower than the external fuel lines. Each thruster firing adds tiny amounts of propellant residue, leading to gradual buildup of material over decades. In some of the propellant inlet tubes, the buildup is becoming significant. To slow that buildup, the mission has begun letting the two spacecraft rotate slightly farther in each direction before firing the thrusters. This will reduce the frequency of thruster firings.

The adjustments to the thruster rotation range were made by commands sent in September and October, and they allow the spacecraft to move almost 1 degree farther in each direction than in the past. The mission is also performing fewer, longer firings, which will further reduce the total number of firings done on each spacecraft.

The adjustments have been carefully devised to ensure minimal impact on the mission. While more rotating by the spacecraft could mean bits of science data are occasionally lost – akin to being on a phone call where the person on the other end cuts out occasionally – the team concluded the plan will enable the Voyagers to return more data over time.

Engineers can’t know for sure when the thruster propellant inlet tubes will become completely clogged, but they expect that with these precautions, that won’t happen for at least five more years, possibly much longer. The team can take additional steps in the coming years to extend the lifetime of the thrusters even more.

“This far into the mission, the engineering team is being faced with a lot of challenges for which we just don’t have a playbook,” said Linda Spilker, project scientist for the mission as NASA’s Jet Propulsion Laboratory in Southern California. “But they continue to come up with creative solutions.”

Patching Things Up

In 2022, the onboard computer that orients the Voyager 1 spacecraft with Earth began to send back garbled status reports, despite otherwise continuing to operate normally. It took mission engineers months to pinpoint the issue. The attitude articulation and control system (AACS) was misdirecting commands, writing them into the computer memory instead of carrying them out. One of those missed commands wound up garbling the AACS status report before it could reach engineers on the ground.

The team determined the AACS had entered into an incorrect mode; however, they couldn’t determine the cause and thus aren’t sure if the issue could arise again. The software patch should prevent that.

“This patch is like an insurance policy that will protect us in the future and help us keep these probes going as long as possible,” said JPL’s Suzanne Dodd, Voyager project manager. “These are the only spacecraft to ever operate in interstellar space, so the data they’re sending back is uniquely valuable to our understanding of our local universe.”

Voyager 1 and Voyager 2 have traveled more than 15 billion and 12 billion miles from Earth, respectively. At those distances, the patch instructions will take over 18 hours to travel to the spacecraft. Because of the spacecraft’s age and the communication lag time, there’s some risk the patch could overwrite essential code or have other unintended effects on the spacecraft. To reduce those risks, the team has spent months writing, reviewing, and checking the code. As an added safety precaution, Voyager 2 will receive the patch first and serve as a testbed for its twin. Voyager 1 is farther from Earth than any other spacecraft, making its data more valuable.

The team will upload the patch and do a readout of the AACS memory to make sure it’s in the right place on Friday, Oct. 20. If no immediate issues arise, the team will issue a command on Saturday, Oct. 28, to see if the patch is operating as it should.

More About the Mission

The Voyager mission was originally scheduled to last only four years, sending both probes past Saturn and Jupiter. NASA extended the mission so that Voyager 2 could visit Uranus and Neptune; it is still the only spacecraft ever to have encountered the ice giants. In 1990, NASA extended the mission again, this time with the goal of sending the probes outside the heliosphere, a protective bubble of particles and magnetic fields created by the Sun. Voyager 1 reached the boundary in 2012, while Voyager 2 (traveling slower and in a different direction than its twin) reached it in 2018.

A division of Caltech in Pasadena, JPL built and operates the Voyager spacecraft. The Voyager missions are a part of the NASA Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate in Washington.

For more information about the Voyager spacecraft, visit:

https://www.nasa.gov/voyager

News Media Contact

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov

2023-148

Share

Details

Last Updated
Oct 20, 2023

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:08:29 Focus on Euclid with Laurent Brouard: “I’m going to show you what a telescope that we send into space looks like.”
      Laurent Brouard, Project Manager at Airbus Defence and Space, was responsible for building the Euclid payload module (PLM).
      In this interview, which took place in a clean room at the Airbus premises in Toulouse, he describes with words, gestures, and the Euclid PLM structural and thermal model how Euclid works.
      Did you know that Euclid sees the same part of the sky at the same time in both the infrared and visible wavelengths? Or that in space radiators keep the instruments cold? Have you ever wondered how light “travels” inside Euclid’s telescope?
      Listen to Laurent to know more about the technology behind the mission that will map the dark matter and the dark energy of the Universe.
      Space Team Europe is an ESA space community engagement initiative to gather European space actors under the same umbrella sharing values of leadership, autonomy, and responsibility.
      ©  ESA - European Space Agency
      Access the other Space Team Europe for Euclid videos
      View the full article
    • By European Space Agency
      Video: 00:03:39 Focus on Euclid with Guadalupe Cañas Herrera: “I’m exactly where I’ve always wanted to be.”
      Guadalupe Cañas Herrera, an ESA Internal Research Fellow currently working for ESA’s Euclid mission at ESTEC, the Netherlands, describes in this interview her personal and professional trajectory.
      Passionate about space since her early childhood, she has spent endless nights looking at the stars. Now, this theoretical physicist develops her activities within the Euclid Scientific Consortium to establish the quantity of dark matter and dark energy existing in the Universe.
      Listen to Guadalupe for a vivid account from a vocational scientist and an ardent defender of scientific collaboration.
      Space Team Europe is an ESA space community engagement initiative to gather European space actors under the same umbrella sharing values of leadership, autonomy, and responsibility.
      Access the other Space Team Europe for Euclid videos
      View the full article
    • By European Space Agency
      Video: 00:03:08 Henk Hoekstra, professor of observational cosmology at Leiden University, the Netherlands, shares his professional trajectory linked to weak gravitational lensing, a technique used by ESA’s Euclid mission.
      Henk explains how Euclid will reveal the dark side of the Universe. He uses enlightening examples involving a swimming pool and other terrestrial objects. Listen to Henk Hoekstra to understand how Euclid can make the invisible visible.
      Space Team Europe is an ESA space community engagement initiative to gather European space actors under the same umbrella sharing values of leadership, autonomy, and responsibility.
      View the full article
    • By European Space Agency
      Video: 00:07:54 Focus on Euclid with Jean-Charles Cuillandre: “What we see in the first Euclid images is a promise of what will come in the future.”
      Jean-Charles Cuillandre, astronomer at CEA Paris-Saclay, explains that he was “blown away” when he saw the first full-colour images captured by ESA’s recently launched Euclid space telescope. 
      Being a specialist of wide-field imaging, Jean-Charles was not only involved in the programme committee that selected the celestial targets for the ESA Euclid’s ‘Early Release Observations’, but he was also in charge of processing the data both for their scientific and their outreach value.
      Jean-Charles expected the resulting images to look extremely crispy since they are taken by instruments outside of the Earth’s disturbing atmosphere, but even he was not prepared for the astonishing results. The combination of the field-of-view (the area of sky covered with a single shot of the telescope), and the resolution (the number of pixels in the instruments) are unique for Euclid.
      The first five released images therefore show the scientific potential of the Euclid space mission. The Euclid Consortium is responsible to fulfill this promise. More than 2000 scientists from 300 institutes in 13 European countries, the US, Canada and Japan, will try to decipher the dark Universe through the analysis of Euclid’s scientific data.
      In this interview, Jean-Charles Cuillandre shares with us his view of Euclid and the elusive dark matter and dark energy. He specifically describes the apparent astronomical objects and reveals the hidden information behind their beautiful appearance.
      Be ready to be “blown away”.
      Space Team Europe is an ESA space community engagement initiative to gather European space actors under the same umbrella sharing values of leadership, autonomy, and responsibility.
       
      ©ESA - European Space Agency
      Euclid images
      ©ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi, CC BY-SA 3.0 IGO
      View the full article
    • By NASA
      3 min read
      DART Team Earns Smithsonian Michael Collins Trophy for Successful Planetary Defense Test Mission
      Eric Long, Smithsonian’s National Air and Space Museum NASA’s Double Asteroid Redirection Test (DART) will be honored with the 2024 Michael Collins Trophy for Current Achievement. For its work developing and managing the first-ever planetary defense test mission, the team comprised by NASA’s Planetary Defense Coordination Office (PDCO) and the Johns Hopkins Applied Physics Laboratory (APL) is being lauded for outstanding achievements in the fields of aerospace science and technology.
      Designed, built and operated by APL for NASA’s PDCO, which oversees the agency’s ongoing efforts in planetary defense, DART was humanity’s first mission to intentionally move a celestial object, impacting the asteroid Dimorphos on Sept. 26, 2022. DART’s collision with Dimorphos changed the asteroid’s orbit period around its companion asteroid, Didymos, by 33 minutes.
      “Our planetary defense objective is to find any potential asteroid impact many years to decades before it could happen so that, if ever necessary, the object could be deflected with technology tested by DART,” said Lindley Johnson, planetary defense officer at NASA Headquarters. “The DART team was an international collaboration of planetary defenders who turned the kinetic impact concept of asteroid deflection into reality. Their efforts have taken a giant leap forward for humanity’s ability to address the asteroid impact hazard.”
      The Smithsonian’s National Air and Space Museum awards its Michael Collins Trophy yearly for both Current and Lifetime Achievements. The DART mission has earned the former, joining astronaut Peggy Whitson, who will collect the 2024 Lifetime Achievement Award for her distinguished space career.  

      Since 1985, the organization has been recognizing extraordinary accomplishments in aeronautics and spaceflight, and it selected DART for its “extraordinary technological advancements and new scientific breakthroughs in space science.”  
      Launched in November 2021 from Vandenberg Space Force Base in California atop a SpaceX Falcon 9 rocket, DART embarked on a 10-month journey to Dimorphos. This historic mission showcased the world’s first planetary defense technology demonstration in action as it was live streamed by NASA online when the DART spacecraft intentionally collided with its target asteroid.
      Scientists worldwide monitored the aftermath through telescopes and radar facilities to assess the impact on Dimorphos’ orbit around Didymos. Pre-impact projections estimated a range of possible deflections, and the postimpact observations revealed a significant deflection of the target asteroid at the high-end of the pre-impact models, a promising result for applying the technique in the future if needed. 
      Images captured by DART’s onboard Didymos Reconnaissance and Asteroid Camera for Optical navigation(DRACO) and the Italian Space Agency’s ride-along Light Italian CubeSat for Imaging of Asteroids(LICIACube), complemented by observations from ground-based telescopes as well as NASA’s James Webb Space Telescope, Hubble Space Telescope and the Lucy spacecraft, provided critical data. These observations allowed scientists to analyze Dimorphos’ surface composition, the material ejection velocity and quantity due to the collision, and the distribution of particle sizes within the ensuing dust cloud. Scientists on the mission confirmed in four subsequent papers published in Nature the effectiveness of the kinetic impactor technique in altering asteroid trajectories, making it a groundbreaking milestone for planetary defense.  Look back at all of DART’s milestones and science successes in the year since impact.  
      More information about the Michael Collins Trophy and a complete list of past winners is available.  The DART team will accept the award on March 21, 2024, at the museum’s Steven F. Udvar-Hazy Center in Chantilly, Virginia.
      Facebook logo @NASA @NASA@AstroidWatch Instagram logo @NASA Linkedin logo @NASA Explore More
      4 min read Mira cómo la NASA construye su primer vehículo lunar robótico
      Article 4 days ago 3 min read Watch NASA Build Its First Robotic Moon Rover
      Article 4 days ago 4 min read Data From NASA’s WISE Used to Preview Lucy Mission’s Asteroid Dinkinesh
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Asteroids
      Overview Asteroids, sometimes called minor planets, are rocky, airless remnants left over from the early formation of our solar system…
      Didymos & Dimorphos
      Overview Asteroid Didymos and its small moonlet Dimorphos make up what’s called a binary asteroid system – meaning the small…
      Our Solar System
      Overview Our planetary system is located in an outer spiral arm of the Milky Way galaxy. We call it the…
      Planetary Science
      For decades, NASA’s planetary science program has advanced scientific understanding of our solar system in extraordinary ways, pushing the limits…
      View the full article
  • Check out these Videos

×
×
  • Create New...