Members Can Post Anonymously On This Site
Public Invited to International Observe the Moon Night Oct. 21
-
Similar Topics
-
By NASA
3 min read
December’s Night Sky Notes: A Flame in the Sky – the Orion Nebula
Orion constellation Stellarium Web by Kat Troche of the Astronomical Society of the Pacific
It’s that time of year again: Winter! Here in the Northern Hemisphere, the clear, crisp sky offers spectacular views of various objects, the most famous of all being Orion the Hunter.
As we’ve previously mentioned, Orion is a great way to test your sky darkness. With the naked eye, you can easily spot this hourglass-shaped constellation. Known as an epic hunter in Greco-Roman antiqity, Orion and all its parts have many names and meanings across many cultures. In Egyptian mythology, this constellation represented the god Sah. The Babylonians referred to it as The Heavenly Shepard. In most cultures, it is Orion’s Belt that has many stories: Shen in Chinese folklore, or Tayamnicankhu in Lakota storytelling. But the Maya of Mesoamerica believed that part of Orion contained The Cosmic Hearth – the fire of creation.
1,500 light years away from Earth sits the star-forming region, and crown jewel of Orion – Messier 42 (M42), the Orion Nebula. Part of the “sword” of Orion, this 24 light year wide cloud of dust and gas sits below the first star in Orion’s Belt, Alnitak, and can easily be spotted with the naked eye under moderate dark skies. You can also use binoculars or a telescope to resolve more details, such as the Trapezium: four stars in the shape of a keystone (or baseball diamond). These young stars make up the core of this magnificent object.
Of course, it’s not just for looking at! M42 is easily one of the most photographed nebulae around, imaged by amateur astrophotographers, professional observatories and space telescopes alike. It has long been a place of interest for the Hubble, Spitzer, and Chandra X-ray Space Telescopes, with James Webb Space Telescope now joining the list in February 2023. Earlier this year, NASA and the European Space Agency released a new photo of the Orion Nebula taken from JWST’s NIRCam (Near-Infrared Camera), which allowed scientists to image this early star forming region in both short and long wavelengths.
These Webb images show a part of the Orion Nebula known as the Orion Bar. It is a region where energetic ultraviolet light from the Trapezium Cluster — located off the upper-left corner — interacts with dense molecular clouds. The energy of the stellar radiation is slowly eroding the Orion Bar, and this has a profound effect on the molecules and chemistry in the protoplanetary disks that have formed around newborn stars here. The largest image, on the left, is from Webb’s NIRCam (Near-Infrared Camera) instrument. At upper right, the telescope is focused on a smaller area using Webb’s MIRI (Mid-Infrared Instrument). A total of eighteen filters across both the MIRI and NIRCam instruments were used in these images, covering a range of wavelengths from 1.4 microns in the near-infrared to 25.5 microns in the mid-infrared.
At the very center of the MIRI area is a young star system with a planet-forming disk named d203-506. The pullout at the bottom right displays a combined NIRCam and MIRI image of this young system. Its extended shape is due to pressure from the harsh ultraviolet radiation striking it. An international team of astronomers detected a new carbon molecule known as methyl cation for the first time in d203-506.
ESA/Webb, NASA, CSA, M. Zamani (ESA/Webb), PDRs4ALL ERS Team But stars aren’t the only items visible here. In June 2023, JWST’s NIRCam and MIRI (mid-infrared instrument) imaged a developing star system with a protoplanetary disk forming around it. That’s right – a solar system happening in real time – located within the edges of a section called the Orion Bar. Scientists have named this planet-forming disk d203-506, and you can learn more about the chemistry found here. By capturing these objects in multiple wavelengths of light, astronomers now have even greater insight into what other objects might be hiding within these hazy hydrogen regions of our night sky. This technique is called Multi-spectral Imaging, made possible by numerous new space based telescopes.
In addition to the Night Sky Network Dark Sky Wheel, a fun activity you can share with your astronomy club would be Universe Discovery Guide: Orion Nebula, Nursery of Newborn Stars. This will allow you to explain to audiences how infrared astronomy, like JWST, helps to reveal the secrets of nebulae. Or you can use public projects like the NASA-funded MicroObservatory to capture M42 and other objects.
Stay tuned to learn more about what to spy in the Winter sky with our upcoming mid-month article!
3 min read
December’s Night Sky Notes: A Flame in the Sky – the Orion Nebula
View the full article
-
By NASA
Architecture Concept Review attendees listen to welcome remarks from NASA leadership on Nov. 14, 2023, at NASA’s Kennedy Space Center in Florida. Attendees included representatives from all of NASA’s centers, leaders from all of NASA’s mission directorates, various technical authorities, and other stakeholders across the agency. NASA/Kim Shifflett NASA hosted its second annual Architecture Concept Review in mid-November, bringing together leaders from across the agency to discuss progress on and updates to NASA’s Moon to Mars architecture since NASA released outcomes from its first such review in April.
As NASA builds a blueprint for human exploration throughout the solar system for the benefit of humanity, the agency has established the internal Architecture Concept Review process to help align NASA’s Moon to Mars exploration strategy and codify the supporting architecture through robust analysis. Through this evolutionary process, NASA continuously updates its roadmap for crewed exploration, setting humanity on a path to the Moon, Mars, and beyond.
NASA leadership gives opening remarks at the review. From left to right: Casey Swails, deputy associate administrator; Catherine Koerner, deputy associate administrator for the Exploration Systems Development Mission Directorate; Jim Free, associate administrator for the Exploration Systems Development Mission Directorate; and Pam Melroy, deputy administrator. NASA/Kim Shifflett “Our yearly strategic analysis cycle informs architecture decisions by identifying technology gaps, performing trade studies, and soliciting feedback from industry, academia, and the international community,” said Catherine Koerner, deputy associate administrator for NASA’s Exploration Systems Development Mission Directorate. “This year’s review focused on identifying the foundational decisions needed for a crewed mission to Mars and adding more detail to how we break down our objectives for long-term lunar exploration into specific architectural elements.”
During the review, NASA also began to define potentially viable and affordable opportunities for new programs and projects that close capability gaps.
NASA will share the results of this year’s Architecture Concept Review cycle early next year. This will include an update to the agency’s Architecture Definition Document and associated white papers, which provide additional detail on results from this year’s strategic analysis cycle.
Both the updated Architecture Definition Document and white papers will be made available on NASA’s Moon to Mars architecture webpages.
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA completed a full duration, 650-second hot fire of the RS-25 certification engine Nov. 29, continuing a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. Danny Nowlin NASA completed a full duration, 650-second hot fire of the RS-25 certification engine Nov. 29, continuing a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. Danny Nowlin NASA completed a full duration, 650-second hot fire of the RS-25 certification engine Nov. 29, continuing a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. Danny Nowlin NASA conducted the third RS-25 engine hot fire in a critical 12-test certification series Nov. 29, demonstrating a key capability necessary for flight of the SLS (Space Launch System) rocket during Artemis missions to the Moon and beyond.
NASA is conducting the series of tests to certify new manufacturing processes for producing RS-25 engines for future deep space missions, beginning with Artemis V. Aerojet Rocketdyne, an L3Harris Technologies Company and lead engines contractor for the SLS rocket, is incorporating new manufacturing techniques and processes, such as 3D printing, in production of new RS-25 engines.
Crews gimbaled, or pivoted, the RS-25 engine around a central point during the almost 11-minute (650 seconds) hot fire on the Fred Haise Test Stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. The gimbaling technique is used to control and stabilize SLS as it reaches orbit.
During the Nov. 29 test, operators also pushed the engine beyond any parameters it might experience during flight to provide a margin of operational safety. The 650-second test exceeded the 500 seconds RS-25 engines must operate to help power SLS to space. The RS-25 engine also was fired to 113% power level, exceeding the 111% level needed to lift SLS to orbit.
The ongoing series will stretch into 2024 as NASA continues its mission to return humans to the lunar surface to establish a long-term presence for scientific discovery and to prepare for human missions to Mars.
Four RS-25 engines fire simultaneously to generate a combined 1.6 million pounds of thrust at launch and 2 million pounds of thrust during ascent to help power each SLS flight. NASA and Aerojet Rocketdyne modified 16 holdover space shuttle main engines, all proven flightworthy at NASA Stennis, for Artemis missions I through IV.
Every new RS-25 engine that will help power SLS also will be tested at NASA Stennis. RS-25 tests at the site are conducted by a combined team of NASA, Aerojet Rocketdyne, and Syncom Space Services operators. Syncom Space Services is the prime contractor for Stennis facilities and operations.
Social Media
Stay connected with the mission on social media, and let people know you’re following it on X, Facebook, and Instagram using the hashtags #Artemis, #NASAStennis, #SLS. Follow and tag these accounts:
Facebook logo @NASAStennis @NASAStennis Instagram logo @NASAStennis Share
Details
Last Updated Nov 29, 2023 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center Explore More
3 min read NASA to Highlight Inclusion During Bayou Classic Event
Article 1 week ago 9 min read Lagniappe
Article 2 weeks ago 2 min read NASA Conducts 1st Hot Fire of New RS-25 Certification Test Series
Article 1 month ago Keep Exploring Discover More Topics from NASA Stennis
Doing Business with NASA Stennis
About NASA Stennis
Visit NASA Stennis
NASA Stennis Media Resources
View the full article
-
By NASA
NASA/Charles Beason Artemis II NASA astronauts Victor Glover, Reid Wiseman, and Christina Koch of NASA, and CSA (Canadian Space Agency) astronaut Jeremy Hansen signed the Orion stage adapter for the SLS (Space Launch System) rocket at NASA’s Marshall Space Flight Center in Huntsville, Alabama, Nov. 27. The hardware is the topmost portion of the SLS rocket that they will launch atop during Artemis II when the four astronauts inside NASA’s Orion spacecraft will venture around the Moon.
From left, Artemis II astronauts Jeremy Hansen, Christina Koch, Victor Glover, and Reid Wiseman sign the SLS Orion stage adapter for the Artemis II mission during their visit to NASA’s Marshall Space Flight Center in Huntsville, Alabama, Nov. 27.
Image credits: NASA/Charles Beason
The Orion stage adapter is a small ring structure that connects NASA’s Orion spacecraft to the SLS rocket’s interim cryogenic propulsion stage and fully manufactured at Marshall. At five feet tall and weighing 1,800 pounds, the adapter is the smallest major element of the SLS rocket. During Artemis II, the adapter’s diaphragm will serve as a barrier to prevent gases created during launch from entering the spacecraft.
NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission. Through Artemis, NASA will explore more of the lunar surface than ever before and prepare for the next giant leap: sending astronauts to Mars.
For more on NASA SLS visit:
https://www.nasa.gov/sls
News Media Contact
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov
View the full article
-
By NASA
9 Min Read Spacelab 1: A Model for International Cooperation
Astronaut John W. Young (left), STS-9 crew commander; and Ulf Merbold, payload specialist, enjoy a meal in the middeck of the Earth-orbiting Space Shuttle Columbia. Merbold is a physicist from the Federal Republic of Germany, representing the European Space Agency (ESA) on this 10-day flight. Credits: NASA Forty years ago, in 1983, the Space Shuttle Columbia flew its first international spaceflight, STS-9. The mission included—for the first time—the European Space Agency’s Spacelab pressurized module and featured more than 70 experiments from American, Canadian, European, and Japanese scientists. Europeans were particularly proud of this “remarkable step” because “NASA, the most famous space agency on the globe,” included the laboratory on an early Shuttle mission. NASA was equally thrilled with the Spacelab and called the effort “history’s largest and most comprehensive multinational space project.” The Spacelab became a unifying force for all the participating nations, scientists, and astronauts. As explained by one of the mission’s payload specialists, Ulf Merbold, while the principal investigators for the onboard experiments might be British or French, “there is no French science, and no British science [on this flight]. Science in itself is international.” Scientists flying on the mission, and those who had experiments on board, were working cooperatively for the benefit of humanity. As then Vice-President George H. W. Bush explained, “The knowledge Spacelab will bring back from its many missions will belong to all mankind.”1
The knowledge Spacelab will bring back from its many missions will belong to all mankind.
George H. W. Bush
U.S. Vice President (1981–1989)
Training for the flight required international cooperation on an entirely new scale for the American space program. Today it is not unusual to hear about an astronaut training for spaceflight at many different locations and facilities across the globe. NASA’s astronauts have grown accustomed to training outside of the United States for months at a time before flying onboard the International Space Station, but that was not the experience for most of NASA’s flight crews in the agency’s early spaceflight programs. Mission training mainly took place in Houston at the Manned Spacecraft Center (now Johnson Space Center) and in Florida at the Cape. The Apollo-era featured only one international flight, the Apollo-Soyuz Test Project (ASTP), with astronauts training in the two participating nations: the USSR and the United States.
Pictured from the left are astronaut Owen K. Garriott, Vice President George Bush, and Ulf Merbold of West Germany, inside Spacelab in the Operations and Checkout Building at Kennedy Space Center. This European-built orbital laboratory was formally dedicated on February 5, 1982. Merbold was one of the payload specialists on the first Spacelab flight STS-9, that launched November 28, 1983. Spacelab was a reusable laboratory that allowed scientists to perform various experiments in microgravity while orbiting Earth. Designed by the European Space Agency (ESA) and mounted in NASA’s Space Shuttle cargo bay, Spacelab flew on missions from 1983 to 1997.NASA It also rarely makes news these days when someone who is not a professional astronaut or cosmonaut flies in space. In the past, flying in space was a professional occupation. This all changed with the development of the Space Shuttle and Spacelab, which birthed a new space traveler: the payload specialist. The individuals selected for these positions were not career astronauts. The payload specialists were experts on a specific payload or an experiment, and during the early years of the Space Shuttle program came from a wide variety of backgrounds: the Air Force, Congress, industry, and even the field of education. The principal investigators for this science-based mission selected the payload specialists who flew in space and operated their experiments. Spacelab 1 was unique in providing the first opportunity for a non-American, a European, to fly onboard a NASA spacecraft.
In the summer of 1978, NASA chose scientist-astronauts Owen K. Garriott and Robert A. R. Parker as mission specialists for the Spacelab 1 crew. Garriott, who had been selected as an astronaut in 1965, had flown on America’s first space station as a member of the Skylab 3 crew, a team that exceeded all expectations of flight planners and principal investigators. Parker had also applied to be a scientist-astronaut and was selected in 1967. His class jokingly called themselves the “XS-11” [pronounced excess-eleven], because they had been told there was no room for them in the corps and they would not fly in space, not immediately anyway. Parker worked on Skylab as the program scientist, but once the program ended, he accepted a new title: chief of the Astronaut Office Science and Applications Directorate, where he spent the next few years working on Spacelab matters. It was perfect timing for the astronaut to turn his attention to this international program. Once Skylab ended in 1974, representatives of Europe’s Space Research Organization (ESRO) and members of ERNO, the Spacelab contractor, started traveling to Houston and Huntsville to give the two NASA centers updates on the development of the Spacelab and to hold discussions on the module. In a 1974 press conference, ESRO’s Heinz Stoewer emphasized the “very intense cooperation,” he witnessed “with our friends here in the United States in making this program come true.”2
Around the same time, as Spacelab was being built, the European Space Agency (ESA) began considering who might fly on that first flight. Three days before Christmas in 1977, ESA released the names of their four payload specialist candidates: Wubbo Ockels, Ulf Merbold, Franco Malerba, and Claude Nicollier. Two Americans, Byron K. Lichtenberg and Michael L. Lampton, were selected in the summer of 1978 as potential payload specialists.3
The Spacelab 1 payload crew, which operated the module and the mission’s experiments in the payload bay of the Orbiter, included two mission specialists, Garriott and Parker, and two payload specialists, one from the United States and another from the European Space Agency. The payload crew and their backups began training many years before the Space Shuttle Columbia launched into space on STS-9. (The original launch date of December 1980 kept slipping so the crew ended up training for five years.)4 Training in Europe began in earnest in 1978, while training in the United States and Canada began in 1979.5 Merbold was eventually selected to fly on the mission along with Lichtenberg. The entire payload crew spent so much of their time travelling to Europe that John W. Young, who was then chief of the Astronaut Office, called their flight assignment and European training, which involved travel to exotic locations like Rome, Italy, “a magnificent boondoggle. In my next life,” he declared, “I’ll be an MS [mission specialist] on S Lab [Spacelab].”6
Spacelab-1 prime and back-up science crew members: Mission Specialists Robert Parker and Owen Garriott, with Payload Specialist-1 Ulf Merbold, backup Payload Specialist-2 Michael Lampton, backup Payload Specialist-1 Wubbo Ockels and Payload Specialist-2 Byron Lichtenberg. NASA Lichtenberg recalled the science crew, the prime and backup payload specialists and mission specialists, traveled the globe “like itinerant graduate students … to study at the laboratories of the principal investigators and their colleagues.” In these laboratories, universities, and at research centers across Europe, Canada, and Japan, they learned about the equipment and experiments, including how to repair the hardware if something broke or failed in flight. Lichtenberg felt like he was earning multiple advanced degrees in the fields of astronomy and solar physics, space plasma physics, atmospheric physics, Earth observations, life sciences, and materials science. The benefits of training were numerous, but perhaps the most important were the personal and professional relationships that were built with the investigators from across the world and with his crewmates.7
For the payload specialists, building relationships within the astronaut corps proved to be more complicated. Merbold recalled traveling to the Marshall Space Flight Center in Alabama and receiving a warm welcome. “But in Houston you could feel that not everyone was happy that Europe was involved. Some also resented the new concept of the payload specialist ‘astronaut scientist,’ who was not under their control like the pilots. We were perceived to be intruders in an area that was reserved for ‘real’ astronauts.” As an example, the European astronauts could not use the astronaut gym or take part in T-38 flight training. Over time, attitudes changed, and Garriott credited STS-9 Mission Commander John Young with the shift, and so did Merbold. As the crew was preparing to fly, the former moonwalker took Merbold on a T-38 ride, and when the payload specialist asked if he could fly the plane, Young willingly offered him the opportunity. After that flight, Merbold recalled that he “enjoyed John Young’s unqualified support.”8
Friendships blossomed on the six man-crew. Parker called Pilot Brewster H. Shaw and Commander Young “two of [his] best friends to this day.”9 For Merbold, the flight cemented a significant bond between the STS-9 astronauts. He had “no brothers, no sisters,” he was an only child, but the Columbia crew became his family. “My brothers are those guys with whom I trained and flew,” he said.10 Young and Merbold had an especially close bond. Garriott saw that relationship up close on the Shuttle, and later told an oral historian, “Young had no better friend on board our flight than Ulf Merbold.” The two remained close until Young’s death.11
Four of the STS-9 crewmembers enjoying a rare moment of collective fun inside the Spacelab module onboard the Columbia. Left to right are Byron K. Lichtenberg, Ulf Merbold, Robert A. R. Parker, and Owen K. Garriott. The “card table” here is the scientific airlock hatch, and the “cards” are the targets used in the Awareness of Position experiment. NASA Following landing, Flight Crew Operations Directorate Chief George W.S. Abbey told the crew that the science community was “very pleased.”12 The first international spaceflight since ASTP brought scientists, astronauts, and space agencies from across the globe together, laying the foundation for bringing Europe into human spaceflight operations and kicking off a different approach to training and performing science in space. As Spacelab 1 Mission Manager Henry G. Craft and Richard A. Marmann explained, the program “exemplified what can be accomplished when scientists and engineers from all over the world join forces, communicating and cooperating to further advance scientific intelligence.”13 Eventually, the international cooperation Craft and Marmann witnessed led to today’s highly successful International Space Station Program.
Notes
Walter Froehlich, Spacelab: An International Short-Stay Orbiting Laboratory (Washington, DC: NASA, 1983); St. Louis Post-Dispatch, November 28, 1983. JSC News Release, “Mission Specialists for Spacelab 1 Named at JSC,” 78-34, August 1, 1978; Robert A.R. Parker, interview by author, October 23, 2002, transcript, JSC Oral History Project; “Europeans To Fly Aboard Shuttle,” Roundup, March 29, 1974, 1. “Four European Candidates Chosen for First Spacelab Flight,” ESA Bulletin (February 1978), no. 12: 62; “Two US scientists selected Spacelab payload specialists,” Roundup, June 9, 1978, 4. In the crew report, Parker counted his time monitoring the Spacelab, so he concluded that the mission specialists trained even longer, from 5 to 9 years. “Spacelab Scientists Tour USA,” Space News Roundup, January 12, 1979, 1. Harry G. Craft, Jr. to George W.S. Abbey, February 25, 1982, Spacelab 1 Payload Crew Experiment Training Requirements, Robert A.R. Parker Papers II, Box 28, JSC History Collection, University of Houston-Clear Lake. Byron Lichtenberg, “A New Breed of Space Traveller [sic],” New Scientist, August 1984, 9. ESA, “Ulf Merbold: STS-9 Payload Specialist,” November 26, 2013; ESA, “Ulf Merbold: remembering John Young [1930-2018],” August 22, 2018. Parker interview. ESA Explores, “Time and Space: ESA’s first astronaut,” podcast, November 25, 2020. Owen K. Garriott, interview by Kevin M. Rusnak, November 6, 2000, transcript, JSC Oral History Project; ESA, “Ulf Merbold: remembering John Young.” Garriott interview. Henry G. Craft, Jr., and Richard A. Marmann, “Spacelab Program’s Scientific Benefits to Mankind,” Acta Astronautica 34 (1994): 304. Explore More
7 min read Marshall-Managed Spacelab Paved Critical Path to Space Station
Article 10 years ago 4 min read 35 Years Ago, STS-9: The First Spacelab Science Mission
Article 5 years ago 8 min read Teresa Vanhooser: Spacelab Taught Us How to Do Science in an Orbital Lab
Article 10 years ago About the Author
Jennifer Ross-Nazzal
NASA Human Spaceflight HistorianJennifer Ross-Nazzal is the NASA Human Spaceflight Historian. She is the author of Winning the West for Women: The Life of Suffragist Emma Smith DeVoe and Making Space for Women: Stories from Trailblazing Women of NASA's Johnson Space Center.
Share
Details
Last Updated Nov 27, 2023 Related Terms
NASA History Brewster H. Shaw Jr. Byron K. Lichtenberg John W. Young Owen K. Garriott Robert A. R. Parker STS-9 View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.