Jump to content

NASA’s Innovative Rocket Nozzle Paves Way for Deep Space Missions


NASA

Recommended Posts

  • Publishers
4 Min Read

NASA’s Innovative Rocket Nozzle Paves Way for Deep Space Missions

A hot fire test of a 3D printed nozzle is shown with an orange fire being expelled at Marshall Space Flight Center in Huntsville, Alabama.
The RAMFIRE nozzle performs a hot fire test at Marshall’s East test area stand 115. The nozzle, made of the novel aluminum alloy 6061-RAM2, experiences huge temperature gradients. As hot gasses approach 6000 degrees Fahrenheit and undergo combustion, icicles are forming on the outside of the engine nozzle.
Credits: NASA

By Ray Osorio

NASA recently built and tested an additively-manufactured – or 3D printed – rocket engine nozzle made of aluminum, making it lighter than conventional nozzles and setting the course for deep space flights that can carry more payloads.

Under the agency’s Announcement of Collaborative Opportunity, engineers from NASA’s Marshall Space Flight Center in Huntsville, Alabama, partnered with Elementum 3D, in Erie, Colorado, to create a weldable type of aluminum that is heat resistant enough for use on rocket engines. Compared to other metals, aluminum is lower density and allows for high-strength, lightweight components.

However, due to its low tolerance to extreme heat and its tendency to crack during welding, aluminum is not typically used for additive manufacturing of rocket engine parts – until now. 

Meet NASA’s latest development under the Reactive Additive Manufacturing for the Fourth Industrial Revolution, or RAMFIRE, project. Funded under NASA’s Space Technology Mission Directorate (STMD), RAMFIRE focuses on advancing lightweight, additively manufactured aluminum rocket nozzles. The nozzles are designed with small internal channels that keep the nozzle cool enough to prevent melting.

A nozzle is being created by a 3D printer layer by layer. The photo has a golden hue from the light and laser.
At the RPM Innovation (RPMI) facility in Rapid City, South Dakota, manufacturing for a large-scale aerospike demonstration nozzle with integral channels is underway. The laser powder directed energy deposition (LP-DED) process creates a melt pool using a laser and blows powder into the melt pool to deposit material layer by layer. NASA engineers will use the nozzle as a proof of concept to inform future component designs.
RPM Innovation

With conventional manufacturing methods, a nozzle may require as many as thousand individually joined parts. The RAMFIRE nozzle is built as a single piece, requiring far fewer bonds and significantly reduced manufacturing time. 

NASA and Elementum 3D first developed the novel aluminum variant known as A6061-RAM2 to build the nozzle and modify the powder used with laser powder directed energy deposition (LP-DED) technology. Another commercial partner, RPM Innovations (RPMI) in Rapid City, South Dakota, used the newly invented aluminum and specialized powder to build the RAMFIRE nozzles using their LP-DED process.

“Industry partnerships with specialty manufacturing vendors aid in advancing the supply base and help make additive manufacturing more accessible for NASA missions and the broader commercial and aerospace industry,” Paul Gradl, RAMFIRE principal investigator at NASA Marshall, said.

We’ve reduced the steps involved in the manufacturing process, allowing us to make large-scale engine components as a single build in a matter of days.

Paul Gradl

Paul Gradl

RAMFIRE Principal Investigator

NASA’s Moon to Mars objectives require the capability to send more cargo to deep space destinations. The novel alloy could play an instrumental role in this by enabling the manufacturing of lightweight rocket components capable of withstanding high structural loads.

mic-4457-copy.jpg?w=2048
Seen here at the Marshall Space Flight Center in Huntsville, Alabama, and developed with the same 6061-RAM2 aluminum material used under the RAMFIRE project, is a vacuum jacket manufacturing demonstrator tank. The component, made for cryogenic fluid application, is designed with a series of integral cooling channels that have a wall thickness of about 0.06 inches.
NASA

“Mass is critical for NASA’s future deep space missions,” said John Vickers, principal technologist for STMD advanced manufacturing. “Projects like this mature additive manufacturing along with advanced materials, and will help evolve new propulsion systems, in-space manufacturing, and infrastructure needed for NASA’s ambitious missions to the Moon, Mars, and beyond.”

Earlier this summer at Marshall’s East Test Area, two RAMFIRE nozzles completed multiple hot-fire tests using liquid oxygen and liquid hydrogen, as well as liquid oxygen and liquid methane fuel configurations. With pressure chambers in excess of 825 pounds per square inch (psi) – more than anticipated testing pressures – the nozzles successfully accumulated 22 starts and 579 seconds, or nearly 10 minutes, of run time. This event demonstrates the nozzles can operate in the most demanding deep-space environments.

A female engineer with brown curly hair and a male engineer with short brown hair look at a nozzle on a table that has been through hot fire testing.
NASA Engineers, Tessa Fedotowsky and Ben Williams, from Marshall Space Flight Center in Huntsville, Alabama, inspect the RAMFIRE nozzle following successful hot-fire testing.

“This test series marks a significant milestone for the nozzle,” Gradl said. “After putting the nozzle through the paces of a demanding hot-fire test series, we’ve demonstrated the nozzle can survive the thermal, structural, and pressure loads for a lunar lander scale engine.”

In addition to successfully building and testing the rocket engine nozzles, the RAMFIRE project has used the RAMFIRE aluminum material and additive manufacturing process to construct other advanced large components for demonstration purposes. These include a 36-inch diameter aerospike nozzle with complex integral coolant channels and a vacuum-jacketed tank for cryogenic fluid applications.

NASA and industry partners are working to share the data and process with commercial stakeholders and academia. Various aerospace companies are evaluating the novel alloy and the LP-DED additive manufacturing process and looking for ways it can be used to make components for satellites and other applications.

Ramon J. Osorio

Marshall Space Flight Center, Huntsville, Alabama

256-544-0034

ramon.j.osorio@nasa.gov

About the Author

Beth Ridgeway

Beth Ridgeway

Share

Details

Last Updated
Oct 19, 2023
Keep Exploring

Discover More Topics From NASA

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      The new program is designed to provide 24/7, all-weather capabilities that will increase the ability to detect, track, identify and characterize objects in deep space.

      View the full article
    • By NASA
      Former NASA Acting Administrator Steve Jurczyk delivering remarks during NASA’s 60th anniversary.NASA/Joel Kowsky Former NASA Acting Administrator Steve Jurczyk passed away Nov. 23, at the age of 61, following a battle with pancreatic cancer.
      During his career, which spanned more than three decades with the agency, Jurczyk rose in ranks to associate administrator, the highest-ranking civil servant, a position he held from May 2018 until January 2021. He ultimately went on to serve as acting administrator between administration changes, serving in that position from January 2021 until his retirement in May 2021.
      “Steve dedicated his life to solving some of the most daring spaceflight challenges and propelling humanity’s reach throughout the solar system. The world lost Steve too soon, but his legacy of kindness and exceptional leadership lives on. My thoughts are with his family and loved ones during this difficult time,” said NASA Administrator Bill Nelson.
      Preceding his roles as acting administrator and associate administrator, Jurczyk served as the associate administrator for the Space Technology Mission Directorate at NASA Headquarters in Washington, a position he had held since June 2015. He was responsible for formulating and executing the agency’s space technology portfolio, focusing on the development and demonstration of new technologies supporting human and robotic exploration within the agency, public/private partnerships, and academia.
      Jurczyk joined the leadership team at headquarters after serving as director of NASA’s Langley Research Center in Hampton, Virginia. He was named to that position in May 2014. He previously served as deputy center director from August 2006 until his appointment as director.
      His NASA career began in 1988, serving as a design, integration, and test engineer in the Electronic Systems Branch at NASA Langley. There he worked on developing several space-based Earth remote sensing systems. He served in a variety of other roles at Langley including director of engineering, and director of research and technology.
      At the time of his retirement, Jurczyk shared the following:
      “It has been an honor to lead NASA and see the agency’s incredible growth and transformation throughout my time here. The NASA workforce is what makes this agency so special, and I’m incredibly grateful for their amazing work, especially throughout the coronavirus pandemic. At NASA, we turn dreams into reality, and make the seemingly impossible possible. I am so fortunate to have been a member of the NASA family.”
      Among his awards, Jurczyk received a Distinguished Service Medal, Presidential Rank Award for Distinguished Executive, Presidential Rank Award for Meritorious Executive, Silver Achievement Medal, Outstanding Leadership Medal, and numerous Group
      Achievement Awards. He also was a finalist for Sammie management excellence award for his leadership in response to the COVID-19 pandemic.
      Jurczyk is a graduate of the University of Virginia where he earned a Bachelor of Science and Master of Science degrees in electrical engineering in 1984 and 1986. He also was an associate fellow of the American Institute of Aeronautics and Astronautics.
      An obituary for Steve Jurczyk is online. For more information about his NASA career, visit:
      https://www.nasa.gov/people/steve-jurczyk/
      View the full article
    • By European Space Agency
      Image: The Copernicus Sentinel-2 mission shows us an amazing view of the tropical island of Tutuila, the largest in the American Samoa archipelago in the South Pacific Ocean. View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA completed a full duration, 650-second hot fire of the RS-25 certification engine Nov. 29, continuing a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. Danny Nowlin NASA completed a full duration, 650-second hot fire of the RS-25 certification engine Nov. 29, continuing a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. Danny Nowlin NASA completed a full duration, 650-second hot fire of the RS-25 certification engine Nov. 29, continuing a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. Danny Nowlin NASA conducted the third RS-25 engine hot fire in a critical 12-test certification series Nov. 29, demonstrating a key capability necessary for flight of the SLS (Space Launch System) rocket during Artemis missions to the Moon and beyond.
      NASA is conducting the series of tests to certify new manufacturing processes for producing RS-25 engines for future deep space missions, beginning with Artemis V. Aerojet Rocketdyne, an L3Harris Technologies Company and lead engines contractor for the SLS rocket, is incorporating new manufacturing techniques and processes, such as 3D printing, in production of new RS-25 engines.
      Crews gimbaled, or pivoted, the RS-25 engine around a central point during the almost 11-minute (650 seconds) hot fire on the Fred Haise Test Stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. The gimbaling technique is used to control and stabilize SLS as it reaches orbit.
      During the Nov. 29 test, operators also pushed the engine beyond any parameters it might experience during flight to provide a margin of operational safety. The 650-second test exceeded the 500 seconds RS-25 engines must operate to help power SLS to space. The RS-25 engine also was fired to 113% power level, exceeding the 111% level needed to lift SLS to orbit.
      The ongoing series will stretch into 2024 as NASA continues its mission to return humans to the lunar surface to establish a long-term presence for scientific discovery and to prepare for human missions to Mars.
      Four RS-25 engines fire simultaneously to generate a combined 1.6 million pounds of thrust at launch and 2 million pounds of thrust during ascent to help power each SLS flight. NASA and Aerojet Rocketdyne modified 16 holdover space shuttle main engines, all proven flightworthy at NASA Stennis, for Artemis missions I through IV.
      Every new RS-25 engine that will help power SLS also will be tested at NASA Stennis. RS-25 tests at the site are conducted by a combined team of NASA, Aerojet Rocketdyne, and Syncom Space Services operators. Syncom Space Services is the prime contractor for Stennis facilities and operations.
      Social Media
      Stay connected with the mission on social media, and let people know you’re following it on X, Facebook, and Instagram using the hashtags #Artemis, #NASAStennis, #SLS. Follow and tag these accounts:
      Facebook logo @NASAStennis @NASAStennis Instagram logo @NASAStennis Share
      Details
      Last Updated Nov 29, 2023 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      3 min read NASA to Highlight Inclusion During Bayou Classic Event 
      Article 1 week ago 9 min read Lagniappe
      Article 2 weeks ago 2 min read NASA Conducts 1st Hot Fire of New RS-25 Certification Test Series
      Article 1 month ago Keep Exploring Discover More Topics from NASA Stennis
      Doing Business with NASA Stennis
      About NASA Stennis
      Visit NASA Stennis
      NASA Stennis Media Resources
      View the full article
    • By NASA
      NASA/Charles Beason Artemis II NASA astronauts Victor Glover, Reid Wiseman, and Christina Koch of NASA, and CSA (Canadian Space Agency) astronaut Jeremy Hansen signed the Orion stage adapter for the SLS (Space Launch System) rocket at NASA’s Marshall Space Flight Center in Huntsville, Alabama, Nov. 27. The hardware is the topmost portion of the SLS rocket that they will launch atop during Artemis II when the four astronauts inside NASA’s Orion spacecraft will venture around the Moon.

      From left, Artemis II astronauts Jeremy Hansen, Christina Koch, Victor Glover, and Reid Wiseman sign the SLS Orion stage adapter for the Artemis II mission during their visit to NASA’s Marshall Space Flight Center in Huntsville, Alabama, Nov. 27.
      Image credits: NASA/Charles Beason
      The Orion stage adapter is a small ring structure that connects NASA’s Orion spacecraft to the SLS rocket’s interim cryogenic propulsion stage and fully manufactured at Marshall. At five feet tall and weighing 1,800 pounds, the adapter is the smallest major element of the SLS rocket. During Artemis II, the adapter’s diaphragm will serve as a barrier to prevent gases created during launch from entering the spacecraft.
      NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission. Through Artemis, NASA will explore more of the lunar surface than ever before and prepare for the next giant leap: sending astronauts to Mars.
      For more on NASA SLS visit:
      https://www.nasa.gov/sls
      News Media Contact
      Corinne Beckinger
      Marshall Space Flight Center, Huntsville, Ala.
      256.544.0034
      corinne.m.beckinger@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...