Jump to content

Station Science 101: Growing Plants in Space


NASA

Recommended Posts

  • Publishers
Arabadopsis thaliana plants growing in the International Space Stations Advanced Plant Habitat for the Plant Habitat-03 investigation, which looks at whether plants grown in space can pass adaptations to their next generation.
Thale cress plants from the Plant Habitat-03 investigation just before a harvest.
NASA

As NASA plans missions to the Moon and Mars, a key factor is figuring out how to feed crew members during their weeks, months, and even years in space.

Astronauts on the International Space Station primarily eat prepackaged food, which requires regular resupply and can degrade in quality and nutrition. Researchers are exploring the idea of crews growing some of their food during a mission, testing various crops and equipment to figure out how to do this without a lot of extra hardware or power.

Picking the right plants

The first step in this research is identifying which plants to test. NASA started a project in 2015 with the Fairchild Botanical Garden in Miami called “Growing Beyond Earth.” The program has recruited hundreds of middle and high school science classes across the U.S. to grow different seeds in a habitat similar to one on the space station. Seeds that grow well in the classrooms are then tested in a chamber at NASA’s Kennedy Space Center. Ones that do well there are sent to the station to test how they grow in microgravity.

Gardens in space

NASA also has tested facilities to host future microgravity gardens. One is the Vegetable Production System, or Veggie, a simple, low-power chamber that can hold six plants. Seeds are grown in small fabric “pillows” that crew members look after and water by hand, similar to caring for a window garden on Earth.

Another system, the Passive Orbital Nutrient Delivery System, or Veggie PONDS, works with the Veggie platform but replaces seed pillows with a holder that automatically feeds and waters the plants. The Advanced Plant Habitat is a fully automated device designed to study growing plants in ways that require only minimal crew attention.

iss066e147334-vande-hei-ponds-1.jpg?w=20
Mark Vande Hei harvests for the Veggie PONDS investigation.
NASA

The right light and food

A series of experiments aboard the space station known as Veg-04A, Veg-04B, and Veg-05 grew Mizuna mustard, a leafy green crop, under different light conditions and compared plant yield, nutritional composition, and microbial levels. The investigation also compared the space-grown plants to ones grown on Earth, and had crew members rate the flavor, texture, and other characteristics of the produce.

Plant Habitat-04 analyzed plant-microbe interactions and assessed the flavor and texture of chile peppers. The first crop, harvested on Oct. 29, 2021, was eaten by the crew and 12 peppers from the second harvest were returned to Earth for analysis. This experiment demonstrated that research about space crop production is on the right path and researchers plan to apply lessons learned to testing other plants.

image of astronaut posing with floating chili peppers in the meal area of the space station
NASA astronauts Mark Vande Hei and Shane Kimbrough, JAXA astronaut Akihiko Hoshide, and NASA astronaut Megan McArthur with chile peppers grown for Plant Habitat-04.
NASA

The influence of gravity

An early experiment, PESTO, found that microgravity alters leaf development, plant cells, and the chloroplasts used in photosynthesis, but did not harm the plants overall. In fact, wheat plants grew 10% taller compared to those on Earth.

The Seedling Growth investigations showed that seedlings can acclimate to microgravity by modulating expression of some genes related to the stressors of space, a discovery that adds to knowledge about how microgravity affects plant physiology [1].

One way that plants sense gravity is via changes to calcium within their cells. Plant Gravity Sensing, a JAXA (Japan Aerospace Exploration Agency) investigation, measured how microgravity affects calcium levels, which could help scientists design better ways to grow food in space.

ADVASC, an investigation that grew two generations of mustard plants using the Advanced Astroculture chamber, showed that seeds were smaller but germination rates near normal in microgravity [2].

image of a close-up view of plants grown in experiment
Close-up view of Apogee Wheat Plants grown as part of the PESTO experiment during Expedition 4.
NASA

Water delivery

One significant challenge for growing plants in microgravity is providing enough water to keep them healthy without drowning them in too much water. Plant Water Management demonstrated a hydroponic (water-based) method for providing water and air to plant roots. The XROOTS study tested using both hydroponic and aeroponic (air-based) techniques to grow plants rather than traditional soil. These techniques could enable large-scale crop production for future space exploration.

Jessica Watkins and Bob Hines work on a botany investigation on board the International Space Station
NASA astronauts Jessica Watkins and Bob Hines work on the XROOTS investigation.
NASA

Transplanting veggies

During a series of investigations called VEG-03, which cultivated Extra Dwarf Pak Choi, Amara Mustard, and Red Romaine Lettuce, NASA astronaut Mike Hopkins noticed some of the plants were struggling. Hopkins conducted the first plant transplant in space, moving extra sprouts from thriving plant pillows into two of the struggling pillows in Veggie. The transplants survived and grew, opening new possibilities for future plant growth.

Plant genetics

Plants exposed to spaceflight undergo changes that involve the addition of extra information to their DNA, affecting how genes turn on or off without changing the sequence of the DNA itself. This process is known as epigenetic change. Plant Habitat-03 assesses whether such adaptations in one generation of plants grown in space can transfer to the next generation.

The long-term goal is to understand how epigenetics contribute to adaptive strategies that plants use in space and, ultimately, develop plants better suited for providing food and other services on future missions. Results also could support the development of strategies for adapting crops and other economically important plants for growth in marginal and reclaimed habitats on Earth.

The human effect

Gardens need tending, of course. The Veg-04A, Veg-04B, and Veg-05 investigations also looked at how tending plants contributed to the well-being of astronauts. Many astronauts reported they found caring for plants an enjoyable and relaxing activity – another important contribution to future long-duration missions.

image of astronauts collecting leaf samples from experiment
NASA astronauts Shannon Walker and Michael Hopkins collect leaf samples from plants growing inside the European Columbus laboratory for the Veg-03 experiment during Expedition 64.
NASA

Citations:

1 Medina F, Manzano A, Herranz R, Kiss JZ. Red Light Enhances Plant Adaptation to Spaceflight and Mars g-Levels. Life. 2022, 12(10), 1484; https://doi.org/10.3390/life12101484

2 Link BM, Busse JS, Stankovic B. Seed-to-Seed-to-Seed Growth and Development of Arabidopsis in Microgravity. Astrobiology. 2014 October; 14(10): 866-875. DOI: 10.1089/ast.2014.1184.PMID: 25317938

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:03:08 Henk Hoekstra, professor of observational cosmology at Leiden University, the Netherlands, shares his professional trajectory linked to weak gravitational lensing, a technique used by ESA’s Euclid mission.
      Henk explains how Euclid will reveal the dark side of the Universe. He uses enlightening examples involving a swimming pool and other terrestrial objects. Listen to Henk Hoekstra to understand how Euclid can make the invisible visible.
      Space Team Europe is an ESA space community engagement initiative to gather European space actors under the same umbrella sharing values of leadership, autonomy, and responsibility.
      View the full article
    • By European Space Agency
      ESA’s first human spaceflight mission lifted off 40 years ago today. Accompanied by the first ESA astronaut, Ulf Merbold, the Spacelab module took flight inside the Space Shuttle’s cargo bay, turning NASA’s ‘space truck’ into a mini-space station for scientific research. Europe continues to be highly active in the crewed module business to this day.
      View the full article
    • By NASA
      3 min read
      NASA to Showcase Earth Science Data at COP28
      This illustration shows the international Surface Water and Ocean Topography (SWOT) satellite in orbit over Earth. SWOT’s main instrument, KaRIn, helps survey the water on more than 90% of Earth’s surface. Credit: NASA/JPL-Caltech. NASA/JPL-Caltech With 26 Earth-observing satellite missions, as well as instruments flying on planes and the space station, NASA has a global vantage point for studying our planet’s oceans, land, ice, and atmosphere and deciphering how changes in one drive change in others.
      The agency will share that knowledge and data at the 28th U.N. Climate Change Conference of the Parties (COP28), which brings international parties together to accelerate action toward the goals of the Paris Agreement and the U.N. Framework Convention on Climate Change. COP28 will be held at the Expo City in Dubai, United Arab Emirates from Thursday, Nov. 30 to Tuesday, Dec. 12.
      All U.S. events at COP28 are open to the local press and will be live-streamed on the U.S. Center at COP28 website and the U.S. Center YouTube channel.
      NASA takes a full-picture approach to understanding all areas of our home planet using our vast satellite fleet and the data collected from their observations. The agency’s data is open-source and available for the public and scientists to study. NASA is showcasing the data at COP28 to share the different ways it can be used globally. The agency’s complete collection of Earth data can be found here.
      The scientific research and understanding developed from NASA’s Earth observations are made into predictive models. Those models can be used to develop applications and actionable science to inform individuals including civic leaders and planners, resource managers, emergency managers, and communities looking to mitigate and adapt to climate change.
      These satellites and models are augmented by the observations made from the International Space Station. The inclined, low Earth orbit from the station provides variable views and lighting over more than 90 percent of the inhabited surface of the Earth, a useful complement to sensor systems on satellites in higher-altitude polar orbits.
      Closer to the surface, NASA’s aviation research is focused on advancing technologies for more efficient airplane flight, including hybrid-electric propulsion, advanced materials, artificial intelligence, and machine learning. Technological advances in these areas have the potential to reduce human impacts on climate and air quality.
      Hyperwall
      At the U.S. Center at COP28, in-person visitors can see the NASA Hyperwall where NASA scientists will provide live presentations showing how the agency’s work supports the Biden-Harris Administration’s agenda to encourage a governmentwide approach to climate change. During the hyperwall talks, NASA leaders, scientists and interagency partners will discuss the agency’s end-to-end research about our planet. This includes designing new instruments, satellites, and systems to collect and freely distribute the most complete and precise data possible about Earth’s land, ocean, and atmospheric system. A full schedule of NASA’s hyperwall talks is available.
      Katherine Rohloff
      Headquarters, Washington
      202-358-1600
      katherine.a.rohloff@nasa.gov
      Share








      Details
      Last Updated Nov 27, 2023 Editor Contact Related Terms
      Climate Change Earth Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Climate Change


      NASA is a global leader in studying Earth’s changing climate.


      Explore Earth Science



      Earth Science Data


      View the full article
    • By NASA
      Record-breaking NASA astronaut Frank Rubio provides the first Spanish-language video tour of humanity’s home in space – the International Space Station.
      Rubio welcomes the public aboard the microgravity science laboratory in a behind-the-scenes look at living and working in space recorded during his 371-day mission aboard the space station, the longest single spaceflight in history by an American.
      The station tour is available to watch on the agency’s NASA+ streaming platform, NASA app, NASA Television, YouTube, and the agency’s website.
      Continuously inhabited for more than 23 years, the space station is a scientific platform where crew members conduct experiments across multiple disciplines of research, including Earth and space science, biology, human physiology, physical sciences, and technology demonstrations that could not be performed on Earth.
      The crew living aboard the station are the hands of thousands of researchers on the ground conducting more than 3,300 experiments in microgravity. During his record-breaking mission, Rubio spent many hours contributing to scientific activities aboard the orbiting laboratory, conducting everything from human health studies to plant research.
      Rubio returned to Earth in September, having completed approximately 5,936 orbits of the Earth and a journey of more than 157 million miles during his first spaceflight, roughly the equivalent of 328 trips to the Moon and back.
      Get the latest NASA space station news, images and features on Instagram, Facebook, and X.
      Keep up with the International Space Station, its research, and crew at:
      https://www.nasa.gov/station
      -end-
      María José Viñas
      Headquarters, Washington
      240-458-0248
      maria-jose.vinasgarcia@nasa.gov
      Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      chelsey.n.ballarte@nasa.gov
      View the full article
    • By European Space Agency
      Video: 00:07:54 Focus on Euclid with Jean-Charles Cuillandre: “What we see in the first Euclid images is a promise of what will come in the future.”
      Jean-Charles Cuillandre, astronomer at CEA Paris-Saclay, explains that he was “blown away” when he saw the first full-colour images captured by ESA’s recently launched Euclid space telescope. 
      Being a specialist of wide-field imaging, Jean-Charles was not only involved in the programme committee that selected the celestial targets for the ESA Euclid’s ‘Early Release Observations’, but he was also in charge of processing the data both for their scientific and their outreach value.
      Jean-Charles expected the resulting images to look extremely crispy since they are taken by instruments outside of the Earth’s disturbing atmosphere, but even he was not prepared for the astonishing results. The combination of the field-of-view (the area of sky covered with a single shot of the telescope), and the resolution (the number of pixels in the instruments) are unique for Euclid.
      The first five released images therefore show the scientific potential of the Euclid space mission. The Euclid Consortium is responsible to fulfill this promise. More than 2000 scientists from 300 institutes in 13 European countries, the US, Canada and Japan, will try to decipher the dark Universe through the analysis of Euclid’s scientific data.
      In this interview, Jean-Charles Cuillandre shares with us his view of Euclid and the elusive dark matter and dark energy. He specifically describes the apparent astronomical objects and reveals the hidden information behind their beautiful appearance.
      Be ready to be “blown away”.
      Space Team Europe is an ESA space community engagement initiative to gather European space actors under the same umbrella sharing values of leadership, autonomy, and responsibility.
       
      ©ESA - European Space Agency
      Euclid images
      ©ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi, CC BY-SA 3.0 IGO
      View the full article
  • Check out these Videos

×
×
  • Create New...