Members Can Post Anonymously On This Site
Double Asteroid Redirection Test Post-Impact Image Gallery
-
Similar Topics
-
By European Space Agency
Video: 00:08:32 On 23 November 2023, in preparation for its first flight, Ariane 6 went through its biggest test to date: a full-scale rehearsal that meant complex fuelling, a launch countdown and ignition of the core stage Vulcain 2.1 engine, followed by over seven minutes of engine burn that covered the entire core stage flight phase, just as would happen during a real launch into space.
The engine roared into action after a slight anomaly meant there was a suspenseful pause to the automated sequence, before the countdown was reset and began to tick again. The live feed continued until just after core stage operations were complete and the engine had burnt through all of its propellant.
For this rehearsal the boosters were not ignited, so the Ariane 6 test model stayed firmly on the launch pad at Europe’s Spaceport in French Guiana. This was the longest ‘full-stack’ run performed to date for the rocket’s liquid propulsion module with a Vulcain 2.1 engine.
The Vulcain 2.1 engine burnt through almost 150 tonnes of propellant supplied from the Ariane 6 core stage tanks – liquid oxygen and liquid hydrogen – supercooled to temperatures below -250°C.
With thousands of monitors situated around the launchpad, the data from this rehearsal will be analysed meticulously and used for Ariane 6’s next and first real flight.
View the full article
-
By NASA
6 min read
NASA Uses Two Worlds to Test Future Mars Helicopter Designs
This video combines two perspectives of the 59th flight of NASA’s Ingenuity Mars Helicopter. Video on the left was captured by the Mastcam-Z on NASA’s Perseverance Mars rover; the black-and-white video on the right was taken by Ingenuity’s downward-pointing Navcam. The flight occurred Sept 16. NASA/JPL-Caltech/ASU/MSSS Engineers will go beyond the ends of the Earth to find more performance for future Mars helicopters.
For the first time in history, two planets have been home to testing future aircraft designs. On this world, a new rotor that could be used with next-generation Mars helicopters was recently tested at NASA’s Jet Propulsion Laboratory in Southern California, spinning at near-supersonic speeds (0.95 Mach). Meanwhile, the agency’s Ingenuity Mars Helicopter has achieved new altitude and airspeed records on the Red Planet in the name of experimental flight testing.
“Our next-generation Mars helicopter testing has literally had the best of both worlds,” said Teddy Tzanetos, Ingenuity’s project manager and manager for the Mars Sample Recovery Helicopters. “Here on Earth, you have all the instrumentation and hands-on immediacy you could hope for while testing new aircraft components. On Mars, you have the real off-world conditions you could never truly re-create here on Earth.” That includes a whisper-thin atmosphere and significantly less gravity than on Earth.
The next-generation carbon fiber rotor blades being tested on Earth are almost 4 inches (more than 10 centimeters) longer than Ingenuity’s, with greater strength and a different design. NASA thinks these blades could enable bigger, more capable Mars helicopters. The challenge is, as the blade tips approach supersonic speeds, vibration-causing turbulence can quickly get out of hand.
To find a space big enough to create a Martian atmosphere on Earth, engineers looked to JPL’s 25-foot wide, 85-foot-tall (8-meter-by-26-meter) space simulator – a place where Surveyor, Voyager, and Cassini got their first taste of space-like environments. For three weeks in September, a team monitored sensors, meters, and cameras as the blades endured run after run at ever-higher speeds and greater pitch angles.
A dual rotor system for the next generation of Mars helicopters is tested in the 25-Foot Space Simulator at NASA’s Jet Propulsion Laboratory on Sept.15. Longer and stronger than those used on the Ingenuity Mars Helicopter, the carbon-fiber blades reached near-supersonic speeds during testing. NASA/JPL-Caltech “We spun our blades up to 3,500 rpm, which is 750 revolutions per minute faster than the Ingenuity blades have gone,” said Tyler Del Sesto, Sample Recovery Helicopter deputy test conductor at JPL. “These more efficient blades are now more than a hypothetical exercise. They are ready to fly.”
At around the same time, and about 100 million miles (161 million kilometers) away, Ingenuity was being commanded to try things the Mars Helicopter team never imagined they would get to do.
Fourth Rock Flight Testing
Ingenuity was originally slated to fly no more than five times. With its first flight entering the mission logbook more than two-and-a-half years ago, the helicopter has exceeded its planned 30-day mission by 32 times and has flown 66 times. Every time Ingenuity goes airborne, it covers new ground, offering a perspective no previous planetary mission could achieve. But lately, Team Ingenuity has been taking their solar-powered rotorcraft out for a spin like never before.
“Over the past nine months, we have doubled our max airspeed and altitude, increased our rate of vertical and horizontal acceleration, and even learned to land slower,” said Travis Brown, Ingenuity’s chief engineer at JPL. “The envelope expansion provides invaluable data that can be used by mission designers for future Mars helicopters.”
Limited by available energy and motor-temperature considerations, Ingenuity flights usually last around two to three minutes. Although the helicopter can cover more ground in a single flight by flying faster, flying too fast can confuse the onboard navigation system. The system uses a camera that recognizes rocks and other surface features as they move through its field of view. If those features whiz by too fast, the system can lose its way.
So, to achieve a higher maximum ground speed, the team sends commands for Ingenuity to fly at higher altitudes (instructions are sent to the helicopter before each flight), which keeps features in view longer. Flight 61 established a new altitude record of 78.7 feet (24 meters) as it checked out Martian wind patterns. With Flight 62 Ingenuity set a speed record of 22.3 mph (10 meters per second) – and scouted a location for the Perseverance rover’s science team.
The team has also been experimenting with Ingenuity’s landing speed. The helicopter was designed to contact the surface at a relatively brisk 2.2 mph (1 mps) so its onboard sensors could easily confirm touchdown and shut down the rotors before it could bounce back into the air. A helicopter that lands more slowly could be designed with lighter landing gear. So, on Flights 57, 58, and 59 they gave it a whirl, demonstrating Ingenuity could land at speeds 25% slower than the helicopter was originally designed to land at.
All this Martian Chuck Yeager-ing is not over. In December, after solar conjunction, Ingenuity is expected to perform two high-speed flights during which it will execute a special set of pitch-and-roll angles designed to measure its performance.
“The data will be extremely useful in fine-tuning our aero-mechanical models of how rotorcraft behave on Mars,” said Brown. “On Earth, such testing is usually performed in the first few flights. But that’s not where we’re flying. You have to be a little more careful when you’re operating that far away from the nearest repair shop, because you don’t get any do-overs.”
More About Ingenuity
Ingenuity began its life at Mars as a technology demonstration. It first flew on April 19, 2021, hovering 10 feet (3 meters) for 30 seconds. Four more flights in as many weeks added 499 seconds and saw the helicopter flying horizontally over the surface for 1,171 feet (357 meters). After proving flight was possible on Mars, Ingenuity entered an operations demonstration phase in May 2021 to show how aerial scouting could benefit future exploration of Mars and other worlds.
The Ingenuity Mars Helicopter was built by JPL, which also manages the project for NASA Headquarters. It is supported by NASA’s Science Mission Directorate. NASA’s Ames Research Center in California’s Silicon Valley and NASA’s Langley Research Center in Hampton, Virginia, provided significant flight performance analysis and technical assistance during Ingenuity’s development. AeroVironment Inc., Qualcomm, and SolAero also provided design assistance and major vehicle components. Lockheed Space designed and manufactured the Mars Helicopter Delivery System.
At NASA Headquarters, Dave Lavery is the program executive for the Ingenuity Mars Helicopter.
News Media Contacts
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Alana Johnson/ Karen Fox
NASA Headquarters, Washington
202-358-1501 / 301-286-6284
alana.r.johnson@nasa.gov / karen.c.fox@nasa.gov
2023-173
Share
Details
Last Updated Nov 22, 2023 Related Terms
Ingenuity (Helicopter) Mars 2020 Mars Sample Return (MSR) Explore More
2 min read NASA’s Mars Fleet Will Still Conduct Science While Lying Low
Article 2 weeks ago 3 min read NASA’s Perseverance Captures Dust-Filled Martian Whirlwind
Article 2 months ago 4 min read Historic Wind Tunnel Facility Testing NASA’s Mars Ascent Vehicle Rocket
Article 2 months ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
7 Min Read Deformable Mirrors in Space: Key Technology toDirectly Image Earth Twins
PROJECT:
Deformable Mirror Technology development
SNAPSHOT
Deformable mirrors enable direct imaging of exoplanets by correcting imperfections or shape changes in a space telescope down to subatomic scales.
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
d
Finding and studying Earth-like planets orbiting nearby stars is critical to understand whether we are alone in the universe. To study such planets and assess if they can sustain life, it is necessary to directly image them. However, these planets are difficult to observe, since light from the host star hides them with its glare. A coronagraph instrument can be used to remove the glare light from the host star, enabling reflected light from the planet to be collected. A deformable mirror is an essential component of a coronagraph, as it can correct the tiniest of imperfections in the telescope and remove any remaining starlight contamination.
Detecting an Earth-like planet poses significant challenges as the planet is approximately 10 billion times fainter than its parent star. The main challenge is to block nearly all of the star’s light so that the faint light reflected from the planet can be collected. A coronagraph can block the starlight, however, any instability in the telescope’s optics—such as misalignment between mirrors or a change in the mirror’s shape—can result in starlight leakage, causing glare that hides the planet. Therefore, detecting an Earth-like planet using a coronagraph requires precise control of both the telescope and the instrument’s optical quality, or wavefront, to an extraordinary level of 10s of picometers (pm), which is approximately on the order of the size of a hydrogen atom.
Deformable mirrors will enable future space coronagraphs to achieve this level of control. These devices will be demonstrated in space on a coronagraph technology demonstration instrument on NASA’s Roman Space Telescope, which will launch by May 2027. This technology will also be critical to enable a future flagship mission after Roman recommended by the 2020 Decadal Survey in Astronomy and Astrophysics, provisionally called the “Habitable Worlds Observatory” (HWO).
What is a deformable mirror and how do they work?
Deformable Mirrors (DM) are devices that can adjust the optical path of incoming light by changing the shape of a reflective mirror using precisely controlled piston-like actuators. By adjusting the shape of the mirror, it is possible to correct the wavefront that is perturbated by optical aberrations upstream and downstream of the DM. These aberrations can be caused by external perturbations, like atmospheric turbulence, or by optical misalignments or defects internal to the telescope.
DM technology originated to enable adaptive optics (AO) in ground-based telescopes, where the primary goal is to correct the aberrations caused by atmospheric turbulence. The main characteristics of a DM are: 1) the number of actuators, which is proportional to the correctable field of view; 2) the actuators’ maximum stroke – i.e., how far they can move; 3) the DM speed, or time required to modify the DM surface; 4) the surface height resolution that defines the smallest wavefront control step, and (5) the stability of the DM surface.
Ground-based deformable mirrors have set the state-of-the-art in performance, but to lay the groundwork to eventually achieve ambitious goals like the Habitable Worlds Observatory, further development of DMs for use in space is underway.
For a space telescope, DMs do not need to correct for the atmosphere, but instead must correct the very small optical perturbations that slowly occur as the space telescope and instrument heat up and cool down in orbit. Contrast goals (the brightness difference between the planet and the star) for DMs in space are on the order of 10-10 which is 1000 times deeper than the contrast goals of ground-based counterparts. For space applications total stroke requirements are usually less than a micrometer; however, DM surface height resolution of ~10 pm and DM surface stability of ~10 pm/hour are the key and driving requirements.
Another key aspect is the increased number of actuators needed for both space- and ground-based applications. Each actuator requires a high voltage connection (on the order of 100V) and fabricating a large number of connections creates an additional challenge.
Deformable Mirror State-of-the-Art
Two main DM actuator technologies are currently being considered for space missions. The first is electrostrictive technology, in which an actuator is mechanically connected to the DM’s reflective surface. When a voltage is applied to the actuator, it contracts and modifies the mirror surface. The second technology is the electrostatically-forced Micro Electro-Mechanical System (MEMS) DM. In this case, the mirror surface is deformed by an electrostatic force between an electrode and the mirror.
Several NASA-sponsored contractor teams are working on advancing the DM performance required to meet the requirements of future NASA missions, which are much more stringent than most commercial applications, and thus, have a limited market application. Some examples of those efforts include improving the mirror’s surface quality or developing more advanced DM electronics.
MEMS DMs manufactured by Boston Micromachines Corporation (BMC) have been tested in vacuum conditions and have undergone launch vibration testing. The largest space-qualified BMC device is the 2k DM (shown in Fig. 2), which has 50 actuators across its diameter (2040 actuators in total). Each actuator is only 400 microns across. The largest MEMS DM produced by BMC is the 4k DM, which has 64 actuators across its diameter (4096 actuators in total) and is used in the coronagraph instrument for the Gemini ground-based observatory. However, the 4k DM has not been qualified for space flight.
Fig. 2: The Boston Micromachines Corporation 2k DM that has 2040 actuators with 400 um pitch. Credit: Dr. Eduardo Bendek Electrostrictive DMs manufactured by AOA Xinetics (AOX) have also been validated in vacuum and qualified for space flight. The AOX 2k DM has a 48 x 48 actuator grid (2304 actuators) with a 1 mm pitch. Two of these AOX 2k DMs will be used in the Roman Space Telescope Coronagraph (Fig. 3) to demonstrate the DM technology for high-contrast imaging in space. AOX has also manufactured larger devices, including a 64 x 64 actuator unit tested at JPL.
Fig. 3: The Roman Space Telescope Coronagraph during assembly of the static optics at NASA’s Jet Propulsion Laboratory Credit: NASA Preparing the technology for the Habitable Worlds Observatory
Deformable Mirror technology has advanced rapidly, and a version of this technology will be demonstrated in space on the Roman Space Telescope. However, it is anticipated that for wavefront control for missions like the HWO, even larger DMs with up to ~10,000 actuators would be required, such as 96 x 96 arrays. Providing a high-voltage connection to each of the actuators is a challenge that will require a new design.
The HWO would also involve unprecedented wavefront control requirements, such as a resolution step size down to single-digit picometers, and a stability of ~10 pm/hr. These requirements will not only drive the DM design, but also the electronics that control the DMs, since the resolution and stability are largely defined by the command signals sent by the controller, which require the implementation of filters to remove any noise the electronics could introduce.
NASA’s Astrophysics Division investments in DM technologies have advanced DMs for space flight onboard the Roman Space Telescope Coronagraph, and the Division is preparing a Technology Roadmap to further advance the DM performance to enable the HWO.
Author: Eduardo Bendek, Ph.D. Jet Propulsion Laboratory, California Institute of Technology.
The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).
ACTIVITY LEADS
Dr. Eduardo Bendek (JPL) and Dr. Tyler Groff (GSFC), Co-chairs of DM Technology Roadmap working group; Paul Bierden (BMC); Kevin King (AOX).
SPONSORING ORGANIZATION
Astrophysics Division Strategic Astrophysics Technology (SAT) Program, and the NASA Small Business Innovation Research (SBIR) Program
Share
Details
Last Updated Nov 20, 2023 Related Terms
Astrophysics Science-enabling Technology View the full article
-
By NASA
5 Min Read The Heat is On! NASA’s “Flawless” Heat Shield Demo Passes the Test
The Low-Earth Orbit Flight Test of an Inflatable Decelerator, or LOFTID, spacecraft is pictured after its atmospheric re-entry test in November 2022. Credits: NASA / Greg Swanson A little more than a year ago, a NASA flight test article came screaming back from space at more than 18,000 mph, reaching temperatures of nearly 2,700 degrees Fahrenheit before gently splashing down in the Pacific Ocean. At that moment, it became the largest blunt body — a type of reentry vehicle that creates a heat-deflecting shockwave — ever to reenter Earth’s atmosphere.
The Low-Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) launched on Nov. 10, 2022, aboard a United Launch Alliance (ULA) Atlas V rocket and successfully demonstrated an inflatable heat shield. Also known as a Hypersonic Inflatable Aerodynamic Decelerator (HIAD) aeroshell, this technology could allow larger spacecraft to safely descend through the atmospheres of celestial bodies like Mars, Venus, and even Saturn’s moon, Titan.
“Large-diameter aeroshells allow us to deliver critical support hardware, and potentially even crew, to the surface of planets with atmospheres. This capability is crucial for the nation’s ambition of expanding human and robotic exploration across our solar system,” said Trudy Kortes, director of the Technology Demonstrations Missions (TDM) program within the agency’s Space Technology Mission Directorate (STMD) at NASA Headquarters in Washington.
NASA has been developing HIAD technologies for over a decade, including two smaller scale suborbital flight tests before LOFTID. In addition to this successful tech demo, NASA is investigating future applications, including partnering with commercial companies to develop technologies for small satellite reentry, aerocapture, and cislunar payloads.
“This was a keystone event for us, and the short answer is: It was highly successful,” said LOFTID Project Manager Joe Del Corso. “Our assessment of LOFTID concluded with the promise of what this technology may do to empower the exploration of deep space.”
Due to the success of the LOFTID tech demo, NASA announced under its Tipping Point program that it would partner with ULA to develop and deliver the “next size up,” a larger 12-meter HIAD aeroshell for recovering the company’s Vulcan engines from low Earth orbit for reuse.
A Successful Test in the Books, A Video Recap
The LOFTID team recently held a post-flight analysis assessment of the flight test at NASA’s Langley Research Center in Hampton, Virginia. Their verdict?
Upon recovery, the team discovered LOFTID appeared pristine, with minimal damage, meaning its performance was, as Del Corso puts it, “Just flawless.”
Here are some interesting visual highlights from LOFTID’s flight test.
NASA To get to atmospheric reentry, LOFTID had to go through an intricate sequence of events. Del Corso compared it to a Rube Goldberg device, a complex machine designed to carry out simple tasks through a series of chain reactions.
Video captured the moment LOFTID deployed the HIAD (on the left), compared to a preflight animation developed by NASA Langley’s Advanced Concepts Lab (on the right). Inflation happens at the bottom of the video as LOFTID flies over the African continent.
NASA As it flew over the Mediterranean Sea, LOFTID separated from the ULA Centaur upper stage. On the left, LOFTID is seen from Centaur’s forward-facing camera. The composite image on the right is from cameras around LOFTID’s center body, looking forward and outboard at the orange inflatable HIAD structure. In the center, looking back at Centaur, LOFTID is seen from an aft-facing camera.
NASA As LOFTID reentered Earth’s atmosphere and reached nearly 2,700 degrees Fahrenheit, the extreme heat caused gases around it to ionize and form plasma. On the right, the images from the center body cameras became extremely bright in the visible spectrum, while the Earth is visible on infrared cameras as the vehicle rotated.
The camera captured footage of the plasma quickly changing colors from orange to purple. Why the color change? “We’re still investigating exactly what causes that,” said John DiNonno, LOFTID chief engineer. The animation on the left shows an artist’s concept of what the front side may have looked like.
NASA This video, captured by NASA Langley’s Scientifically Calibrated In-Flight Imagery team, shows LOFTID during peak deceleration as the plasma recedes. On the left, LOFTID streaks through the night sky over the Pacific Ocean. On the right, the purple coloration flares up on the back side of LOFTID.
In the second part of the video, the left shifts to one of the cameras looking at the back of the aeroshell, with the receding plasma streaking at its edge.
NASA After slowing down from more than 18,000 mph to less than 80 mph, LOFTID deployed its parachutes.
From an infrared camera aboard the recovery ship, this video shows the parachute deployment and splashdown just over the horizon. The preflight animation is provided on the right for comparison.
NASA LOFTID splashed down in the Pacific Ocean several hundred miles off the east coast of Hawaii and only about eight miles from the recovery ship’s bow — almost exactly as modeled. A crew got on a small boat and retrieved and hoisted LOFTID onto the recovery ship. Here is an image from the first contact with LOFTID after it splashed down.
“The LOFTID mission was important because it proved the cutting-edge HIAD design functioned successfully at an appropriate scale and in a relevant environment,” said Tawnya Laughinghouse, manager of the TDM program office at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
The LOFTID demonstration was a public private-partnership with ULA funded by STMD and managed by the Technology Demonstration Mission Program, executed by NASA Langley with contributions from across NASA centers. Multiple U.S. small businesses contributed to the hardware. NASA’s Launch Services Program was responsible for NASA’s oversight of launch operations.
For more information on LOFTID, click here.
Share
Details
Last Updated Nov 17, 2023 Related Terms
Langley Research Center LOFTID (Low-Earth Orbit Flight Test of an Inflatable Decelerator) Technology Demonstration Explore More
4 min read NASA Technologies Receive Multiple Nods in TIME Inventions of 2023
Article 3 weeks ago 4 min read Aviones de movilidad aérea avanzada: un viaje suave en el futuro
Article 3 weeks ago 5 min read NASA’s First Two-way End-to-End Laser Communications Relay System
Article 3 weeks ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.