Members Can Post Anonymously On This Site
Portrait of NASA astronaut Jasmin Moghbeli
-
Similar Topics
-
By NASA
On Jan. 17, 1990, NASA announced the selection of its 13th group of astronaut candidates. The diverse group comprised 23 candidates – seven pilots and 16 mission specialists. The group included one African American, one Asian American, and five women including the first female pilot and the first Hispanic woman. Following one year of astronaut candidate training, all 23 became eligible for technical assignments within the astronaut office and for assignment to space shuttle crews. All members of the group completed at least one spaceflight, making significant contributions to the space shuttle program, the Shuttle Mir program, important science missions, and assembly and maintenance of the International Space Station. Several went on to serve in key NASA management positions.
The Group 13 NASA astronaut candidates pose for a group photo – front row kneeling, Charles Precourt, left, Janice Voss, Ellen Ochoa, David Wolf, Eileen Collins, and Daniel Bursch; standing, William Gregory, left, Jeffrey Wisoff, Carl Walz, Richard Searfoss, Donald Thomas, James Halsell, Thomas Jones, James Newman, Kenneth Cockrell, Bernard Harris, Leroy Chiao, Ronald Sega, Susan Helms, William McArthur, Nancy Sherlock, Richard Clifford, and Terrance Wilcutt. The newest class of NASA astronaut candidates included pilot candidates Kenneth Cockrell, Eileen Collins, William Gregory, James Halsell, Charles Precourt, Richard Searfoss, and Terrence Wilcutt and mission specialist candidates Daniel Bursch, Leroy Chiao, Rich Clifford, Bernard Harris, Susan Helms, Thomas Jones, William Mc Arthur, James Newman, Ellen Ochoa, Ronald Sega, Nancy Sherlock, Donald Thomas, Janice Voss, Carl Walz, Jeffrey Wisoff, and David Wolf. From the 1,945 qualified applicants, NASA invited 103 candidates for interviews and medical exams at NASA’s Johnson Space Center (JSC) in Houston between September and November 1989.
Group 13 astronaut candidates Bernard Harris, left, Susan Helms, and William McArthur during wilderness survival training. Group 13 astronaut candidates William Gregory, left, and Susan Helms during water survival training. Group 13 astronaut candidate Eileen Collins listens to a lecture on parachute ejection. The 23 astronaut candidates reported to work at JSC on July 16, 1990, to begin their one-year training period. During the yearlong training, the candidates attended classes in applied sciences, space shuttle systems, space medicine, Earth and planetary sciences, and materials sciences. They visited each of the NASA centers to learn about their functions and received instruction in flying the T-38 Talon training aircraft, high-altitude and ground egress systems, survival skills, parasail flight, and scuba. They experienced short-duration weightlessness aboard NASA’s KC-135 aircraft dubbed the Vomit Comet. After completing the astronaut candidate training, they qualified for various technical assignments within the astronaut office leading to assignments to space shuttle crews.
The Group 13 patch. Group 13 NASA astronaut Daniel Bursch Group 13 NASA astronaut Leroy Chiao Group 13 NASA astronaut Rich Clifford. Per tradition, most astronaut classes have a nickname, often humorously given to them by the previous class of astronauts. In the case of the class of 1990, they chose their own nickname, The Hairballs. The origin stems from the class adopting a black cat as their mascot, in recognition of their class number 13. The nickname came about as hairballs are often associated with cats.
Daniel Bursch
Born in Pennsylvania, Bursch grew up in New York state and graduated from the U.S. Naval Academy. He served as a pilot in the U.S. Navy prior to his selection as an astronaut. He received his first flight assignment as a mission specialist on STS-51, flying with fellow Hairballs Newman and Walz on the 10-day flight aboard Discovery in 1993. On his second mission, the 10-day STS-68 flight aboard Endeavour in 1994, Bursch, accompanied by fellow classmates Jones, Wilcutt, and Wisoff, served as a mission specialist on the Space Radar Laboratory-2 (SRL-2) Earth observation mission. For his third trip into space, Bursch flew as a mission specialist aboard Endeavour for the 10-day STS-77 mission in 1996. For his fourth and final spaceflight, Bursch, along with fellow Hairball Walz, spent 196 days in space as an Expedition 4 flight engineer aboard the space station in 2001 and 2002, conducting two spacewalks totaling 11 hours 46 minutes. He launched on STS-108 and returned on STS-111. Across his four missions, Bursch accumulated 227 days in space.
Leroy Chiao
California native Chiao earned a doctorate in chemical engineering from the University of California, Santa Barbara, before NASA selected him as an astronaut. For his first flight, he flew as a mission specialist on STS-65, the International Microgravity Lab-2 (IML-2) mission aboard Columbia in 1994. Fellow Hairballs Halsell, Walz, and Thomas accompanied Chiao on the nearly 15-day flight, the longest shuttle mission up to that time. During his second spaceflight, the nine-day STS-72 flight of Endeavour in 1996, Chiao participated in two spacewalks totaling 13 hours 3 minutes to demonstrate future techniques. In 2000, Chiao, accompanied by fellow classmates McArthur and Wisoff, flew the 13-day STS-92 3A space station assembly mission aboard Discovery. He participated in two spacewalks with classmate McArthur totaling 13 hours 16 minutes. For his fourth and final mission, Chiao served as commander of Expedition 10 in 2004 and 2005, spending 193 days in space. During the mission, he conducted two spacewalks totaling 9 hours 58 minutes. During his four flights, Chiao logged 229 days in space and spent more than 36 hours outside on his six spacewalks.
Rich Clifford
Clifford, born in California, grew up in Ogden, Utah. He holds the distinction as one of the first three astronauts of his class assigned to a spaceflight, the seven-day STS-53 mission aboard Discovery in 1992 to deploy a large satellite for the Department of Defense. His second flight, the SRL-1 mission aboard Endeavour took place in 1994. Fellow Hairball Jones accompanied him on the STS-59 11-day Earth observation mission. For his third and final spaceflight, Clifford flew as a mission specialist on the STS-76 third Shuttle Mir docking mission. During the nine-day mission in 1996, accompanied by fellow classmate Sega, Clifford participated in a six-hour one-minute spacewalk. During his three spaceflights, he accumulated nearly 28 days in space.
Group 13 NASA astronaut Kenneth Cockrell. Group 13 NASA astronaut Eileen Collins Group 13 NASA astronaut William Gregory. Group 13 NASA astronaut James Halsell. Kenneth Cockrell
Cockrell, a native Texan, served as naval aviator prior to his selection as an astronaut. On his first mission, STS-56, he served as a mission specialist for the nine-day ATLAS-2 Earth observation mission in 1993. Fellow classmate Ochoa accompanied him on the flight aboard Discovery. Cockrell served as pilot on his second mission, the 11-day STS-69 Endeavour flight in 1995 to deploy and retrieve the Wake Shield Facility. Classmate Voss accompanied him on this mission. Cockrell commanded his third spaceflight, STS-80 in 1996 aboard Columbia, accompanied by fellow Hairball Jones. At 17 days 15 hours 53 minutes days, it holds the distinction as the longest shuttle flight. He once again served as commander on his fourth mission, the STS-98 5A space station assembly flight in 2001. Accompanied by classmate Jones, the crew delivered the U.S. Laboratory Module Destiny during the 13-day mission. On his fifth and final spaceflight, Cockrell commanded the STS-111 space station UF-2 utilization mission in 2002. During the 14-day flight, the crew brought the Expedition 5 crew to the station and returned the Expedition 4 crew, including Hairballs Bursch and Walz. During his five missions, Cockrell accumulated 64.5 days in space. He served as Chief of the Astronaut Office from October 1997 to October 1998.
Eileen Collins
Hailing from New York state, Collins has the distinction as the first female selected by NASA as a shuttle pilot. She received her first flight assignment as pilot of STS-63, the eight-day Shuttle-Mir rendezvous mission in 1995. Fellow classmates Harris and Voss accompanied her aboard Discovery. Collins once again served as pilot on STS-84, the sixth Shuttle-Mir docking mission commanded by fellow Hairball Precourt. The nine-day flight aboard Atlantis took place in 1997. On her third flight, Collins served as the first female commander of a space mission, the five-day STS-93 flight of Columbia in 1999 to deploy the Chandra X-ray Observatory. She commanded her fourth and final mission, the STS-114 return to flight mission following the Columbia accident. The 14-day flight aboard Discovery took place in 2005. During her four missions, Collins logged 36 days in space.
William Gregory
New York native Gregory served as a U.S. Air Force pilot when NASA selected him as an astronaut. He flew his single mission as pilot of STS-67, the 17-day Astro-2 mission aboard Endeavour in 1995. The mission set a record for the longest shuttle flight up to that time.
James Halsell
Halsell, a native of Louisiana, served as a U.S. Air Force pilot when NASA selected him as an astronaut. On his first spaceflight, he served as pilot on STS-65, the IML-2 mission aboard Columbia in 1994. Fellow Hairballs Chiao, Walz, and Thomas accompanied Halsell on the nearly 15-day flight, the longest shuttle mission up to that time. Halsell once again served as pilot on his second flight, STS-74, the second Shuttle-Mir docking mission that delivered the Docking Module to Mir. Classmate McArthur joined Halsell on the eight-day Atlantis flight in 1995. He commanded his third spaceflight, STS-83 aboard Columbia, the Microgravity Sciences Lab in 1997. Because managers cut the flight short after four days due to a fuel cell failure, NASA decided to refly the mission, with the same crew, later in the year as STS-94, and it stayed in space for nearly 16 days. Classmates Voss and Thomas accompanied Halsell on both missions. Halsell also commanded his fifth and final spaceflight, the STS-101 2A.2a space station logistics mission in 2000. Classmate Helms accompanied Halsell on the 10-day mission aboard Atlantis. During his five missions, Halsell accumulated more than 52 days of spaceflight time.
Group 13 NASA astronauts Bernard Harris Group 13 NASA astronaut Susan Helms. Group 13 NASA astronaut Thomas Jones. Group 13 NASA astronaut William McArthur. Bernard Harris
Texas native Harris served as a NASA flight surgeon when the agency selected him as an astronaut. He holds the distinction as one of the first three astronauts of his class assigned to a spaceflight. He served as a mission specialist on the STS-55 joint U.S.-German Spacelab D2 mission in 1993. Fellow Hairball Precourt accompanied him on the 10-day flight aboard Columbia. Harris flew as payload commander on his second and final spaceflight, the STS-63 Mir rendezvous mission in 1995, accompanied by classmates Collins and Voss. During the flight, Harris conducted a 4-hour 49-minute spacewalk, earning the distinction as the first African American to do so. Across his two missions, Harris logged 18 days in space.
Susan Helms
Helms, a native of Portland, Oregon, graduated from the U.S. Air Force Academy in the first class that included women. Shortly after her selection as an astronaut, NASA assigned her to her first spaceflight, and she holds the distinction as one of the first three astronauts of her class assigned to a mission. She flew as a mission specialist on STS-54, a six-day flight aboard Endeavour in 1993 that deployed the sixth Tracking and Data Relay Satellite. On her second mission, Helms flew aboard STS-64, an 11-day flight aboard Discovery in 1994. She served as the payload commander on STS-78, the Life and Microgravity Sciences Spacelab mission aboard Columbia in 1996. The flight set a then-record of 16 days 22 hours for the longest space shuttle mission. On her fourth mission, she served as a mission specialist on STS-101, the 2A.2a space station logistics mission in 2000 commanded by classmate Halsell. The Atlantis mission lasted 10 days. For her fifth and final spaceflight, she served as a flight engineer during Expedition 2, the first woman to fly a long-duration mission on the International Space Station. She conducted one spacewalk lasting 8 hours 56 minutes, a record not broken until 2024. During her five spaceflights she logged 211 days in space.
Thomas Jones
Jones, a native of Baltimore, graduated from the U.S. Air Force Academy and served as a B-52 pilot when NASA selected him as an astronaut. For his first spaceflight, he served as a mission specialist on STS-59, the 11-day SRL-1 Earth observation mission on Endeavour in 1994, along with classmate Clifford. Later that same year, with just 163 days between the two missions – the second shortest turnaround time in history – Jones served as payload commander on STS-68, the 11-day SRL-2 mission also on Endeavour. Fellow Hairballs Wilcutt, Wisoff, and Bursch accompanied him on the mission. In 1996, Jones flew as a mission specialist on STS-80, commanded by classmate Cockrell. During the nearly 18-day flight – the longest shuttle flight in history – Jones had planned to participate in two spacewalks, but a stuck bolt prevented the opening of Columbia’s airlock hatch, forcing the cancelation of the excursions. Jones flew his fourth and final mission in 2001, the STS-98 5A space station assembly flight, commanded by classmate Cockrell. During the 13-day mission of Atlantis, the crew installed the U.S. Laboratory Module Destiny and Jones participated in three spacewalks totaling nearly 20 hours. During his four spaceflights, Jones logged 53 days in space.
William McArthur
Hailing from North Carolina, West Point graduate McArthur worked as a space shuttle vehicle integration test engineer at JSC when NASA selected him as an astronaut. He received his first spaceflight assignment as a mission specialist on the STS-58 Spacelab Life Sciences-2 (SLS-2) mission in 1993. Classmates Searfoss and Wolf accompanied him on the 14-day Columbia mission, at the time the longest space shuttle flight. In 1995, he flew as a mission specialist on STS-74, the second Shuttle Mir docking mission that brought the Docking Module to Mir. Classmate Halsell served as pilot on the eight-day flight of Atlantis. McArthur next flew on STS-92, the 3A space station assembly mission in 2000, accompanied by classmates Chiao and Wisoff. McArthur completed two spacewalks with Chiao totaling 13 hours 16 minutes during the 13-day Atlantis mission. For his fourth and final spaceflight, McArthur served as commander of the 190-day Expedition 12 in 2005-2006, conducting two spacewalks totaling 11 hours 5 minutes. During his four missions, McArthur logged 225 days in space and spent more than 24 hours on four spacewalks. He served as the director of the JSC Safety and Mission Assurance Directorate from 2011 to 2017.
Group 13 NASA astronaut James Newman. Group 13 NASA astronaut Ellen Ochoa. Group 13 NASA astronaut Charles Precourt. Group 13 NASA astronaut Richard Searfoss. James Newman
Born in Micronesia, Newman grew up in San Diego and earned a doctorate in physics from Rice University. He worked at JSC as a crew and flight controller trainer when NASA selected him as an astronaut. For his first spaceflight assignment, Newman flew as a mission specialist on STS-51 in 1993 with fellow Hairballs Bursch and Walz. During the 10-day mission aboard Discovery, Newman conducted a 7-hour 5-minute spacewalk with Walz to demonstrate future spacewalking techniques. His second flight took place in 1995, the 11-day STS-69 mission of Endeavour, with classmate Halsell serving as pilot. On his third mission, Newman flew as a mission specialist on STS-88, the first space station assembly flight in 1998. Classmate Sherlock, now using her married name Currie, accompanied him on the 12-day Atlantis mission. Newman participated in three spacewalks totaling 21 hours 22 minutes. For his fourth and final spaceflight in 2002, Newman flew on STS-109, the fourth servicing mission to the Hubble Space Telescope, accompanied once again by classmate Currie. During the 11-day Columbia mission, Newman conducted two spacewalks totaling 14 hours 46 minutes. During his career four spaceflights, Newman logged more than 43 days in space and spent nearly 50 hours on six spacewalks.
Ellen Ochoa
Born in Los Angeles, Ochoa received her doctorate in electrical engineering from Stanford University and worked at NASA’s Ames Research Center in California’s Silicon Valley when NASA selected her as an astronaut. Her first flight assignment came in 1993 when she flew as a mission specialist on STS-56, the nine-day ATLAS-2 Earth observation mission. Classmate Cockrell accompanied her on the Discovery mission. On her second spaceflight, she served as payload commander on the STS-66 ATLAS-3 mission, an 11-day flight of Atlantis in 1994. For her third flight, she flew on Discovery’s STS-96, the 10-day 2A.1 space station assembly and logistics mission in 1999. In 2002, on her fourth and final mission, STS-110, she served as a mission specialist on the 8A space station assembly flight that brought the S0 truss to the facility. The flight on Atlantis lasted nearly 11 days. Over her four missions, Ochoa accumulated nearly 41 days in space. Following her spaceflights, Ochoa served in management positions with increasing scope and responsibilities, as director of the Flight Crew Operations Directorate, JSC deputy director, and JSC director.
Charles Precourt
Massachusetts native Precourt graduated from the U.S. Air Force Academy and served as a U.S. Air Force pilot when NASA selected him as an astronaut. On his first spaceflight in 1993, he served as a mission specialist on STS-55, the joint U.S.-German Spacelab D2 mission. Fellow Hairball Harris accompanied him on the 10-day Columbia mission. On his next spaceflight, Precourt served as pilot on STS-71, the first Shuttle-Mir docking mission in 1995. The 10-day Atlantis mission included the first shuttle-based crew rotation. Precourt commanded his third spaceflight, STS-84 in 1987, the sixth Shuttle-Mir docking mission. Classmate Collins served as pilot on the nine-day Atlantis mission. He commanded his fourth and final space mission, STS-91, the ninth and final Shuttle-Mir docking flight, earning him the honor as the only American astronaut to visit Mir three times. The 10-day mission aboard Discovery took place in 1998. Across his four spaceflights, Precourt logged nearly 39 days in space. He served as chief of the Astronaut Office from October 1998 to November 2002.
Richard Searfoss
Born in Michigan, Searfoss graduated from the U.S. Air Force Academy and served as an instructor at the U.S. Air Force Test Pilot School when NASA selected him as an astronaut. On his first spaceflight, Searfoss served as pilot on STS-58, the SLS-2 mission in 1993. Classmates McArthur and Wolf joined him on the flight aboard Columbia, at 14 days then the longest space shuttle mission. In 1996, he once again served as pilot on STS-76, the third Shuttle-Mir docking mission. Classmates Clifford and Sega joined him on the nine-day flight aboard Atlantis. Searfoss commanded his third and final spaceflight, the 16-day STS-90 Neurolab mission aboard Columbia in 1998. Across his three missions, Searfoss logged 39 days in space.
Group 13 NASA astronaut Ronald Sega. Group 13 NASA astronaut Nancy Sherlock. Group 13 NASA astronaut Donald Thomas. Group 13 NASA astronaut Janice Voss. Ronald Sega
Ohio native Sega graduated from the U.S. Air Force Academy and worked as a research associate professor of physics at the University of Houston when NASA selected him as an astronaut. On his first spaceflight, he served as a mission specialist aboard STS-60, the first Shuttle-Mir mission. The eight-day mission aboard Discovery took place in 1994. For his second and final spaceflight in 1996, Sega served as a mission specialist on STS-76, the third Shuttle-Mir docking mission. Fellow Hairballs Searfoss and Clifford also flew on the nine-day Atlantis mission. Across his two spaceflights, Sega logged 17.5 days in space.
Nancy Sherlock Currie
Born in Delaware, Sherlock grew up in Ohio and worked as a flight simulation engineer at JSC when NASA selected her as an astronaut. On her debut spaceflight, Sherlock flew as a mission specialist on STS-57, the first flight of the Spacehab module in 1993. Fellow classmates Voss and Wisoff joined her on the 10-day mission aboard Endeavour. On her subsequent missions, she flew under her married name of Currie. Her second trip into space took place in 1995, the nine-day STS-70 mission aboard Discovery. Classmate Thomas joined her on this mission to deploy the seventh TDRS satellite. On her third mission, Currie flew as a mission specialist on STS-88, the first space station assembly mission in 1998. Classmate Newman accompanied her on the 12-day Atlantis mission. For her fourth and final spaceflight in 2002, Currie flew on STS-109, the fourth Hubble Space Telescope servicing mission. Classmate Newman once again accompanied her on the 11-day Columbia mission. Across her four spaceflights, Currie logged nearly 42 days in space.
Donald Thomas
Ohio native Thomas earned a doctorate in materials science from Cornell University and worked as a materials science engineer at JSC when NASA selected him as an astronaut. For his first flight, he flew as a mission specialist on STS-65, the IML-2 mission aboard Columbia in 1994. Fellow Hairballs Halsell, Chiao, and Walz accompanied Thomas on the nearly 15-day flight, the longest shuttle mission up to that time. His second trip into space took place in 1995, the nine-day STS-70 mission aboard Discovery. Classmate Currie joined him on this mission to deploy the seventh TDRS satellite. Thomas flew his third spaceflight on STS-83 aboard Columbia, the MSL mission in 1997. Because managers cut the flight short after four days due to a fuel cell failure, NASA decided to fly the mission again, with the same crew, later in the year as STS-94, for the full 16-day mission duration. Classmates Halsell and Voss accompanied Thomas on both missions. Across his four missions, Thomas logged 43 days in space.
Janice Voss
Ohio native Voss earned a doctorate in aeronautics and astronautics from the Massachusetts Institute of Technology and worked as an integration manager at Orbital Science Corporation in Houston when NASA selected her as an astronaut. On her first spaceflight, Voss flew as a mission specialist on STS-57, the first flight of the Spacehab module in 1993. Fellow classmates Sherlock and Wisoff joined her on the 10-day mission aboard Endeavour. Voss flew as a mission specialist on her second spaceflight, the STS-63 Mir rendezvous mission in 1995, accompanied by classmates Collins and Harris. Voss flew as payload commander on her third spaceflight on STS-83 aboard Columbia, the MSL mission in 1997. Because managers cut the flight short after four days due to a fuel cell failure, NASA decided to refly the mission, with the same crew, later in the year as STS-94, for the full 16-day mission duration. Classmates Halsell and Thomas accompanied Voss on both missions. On her fifth and final spaceflight, Voss once again served as payload commander on STS-99, the Shuttle Radar Topography Mission. The 11-day mission aboard Endeavour took place in 2000. Over her five missions, Voss accumulated 49 days of spaceflight time.
Group 13 NASA astronaut Carl Walz. Group 13 NASA astronaut Terrance Wilcutt. Group 13 NASA astronaut Jeff Wisoff. Group 13 NASA astronaut David Wolf. Carl Walz
A native of Ohio, Walz worked as a flight test manager at the U.S. Air Force Flight Test Center in Nevada when NASA selected him as an astronaut. He received his first flight assignment as a mission specialist on STS-51, flying with fellow Hairballs Bursch and Newman on the 10-day flight aboard Discovery in 1993. Walz conducted a 7-hour 5-minute spacewalk with Newman to demonstrate future spacewalking techniques. For his second flight, he flew as a mission specialist on STS-65, the IML-2 mission aboard Columbia in 1994. Fellow Hairballs Halsell, Chiao, and Thomas accompanied Walz on the nearly 15-day flight, the longest shuttle mission up to that time. On his third trip into space, he served as a mission specialist on STS-79, the fourth Shuttle-Mir docking mission in 1996. Classmate Wilcutt served as pilot on the 10-day Atlantis mission. For his fourth and final spaceflight, Walz, along with fellow Hairball Bursch, spent 196 days in space as an Expedition 4 flight engineer aboard the space station in 2001 and 2002, conducting two spacewalks totaling 11 hours 50 minutes. He launched on STS-108 and returned on STS-111. Across his four missions, Walz logged more than 230 days in space and spent nearly 19 hours on three spacewalks.
Terrance Wilcutt
A native of Kentucky, Wilcutt served in the U.S. Marine Corps and worked as a test pilot at Naval Air Station Patuxent River when NASA selected him as an astronaut. Wilcutt served as pilot on his first spaceflight, STS-68, the 10-day SRL-2 Earth observation mission aboard Endeavour in 1994. Classmates Bursch, Jones, and Wisoff accompanied Wilcutt on the flight. He served as pilot on his second spaceflight, the STS-79 fourth Shuttle-Mir docking mission in 1996. Fellow Hairball Walz accompanied him on the 10-day Atlantis mission. Wilcutt commanded his third mission, STS-89, the eighth Shuttle-Mir docking mission. The nine-day flight aboard Endeavour took place in 1998. He commanded his fourth and final spaceflight in 2000, the STS-106 2A.2b space station assembly and logistics mission. The 12-day mission flew on Atlantis. Across his four missions, Wilcutt logged 42 days in space. He served as the NASA chief of Safety and Mission Assurance from 2011 to 2020.
Jeff Wisoff
Virginia native Wisoff earned a doctorate in applied physics from Stanford University and worked as an assistant professor at Rice University when NASA selected him as an astronaut. On his first spaceflight, Wisoff flew as a mission specialist on STS-57, the first flight of the Spacehab module in 1993. Fellow classmates Sherlock and Voss joined him on the 10-day mission aboard Endeavour. He participated in a 5-hour 50-minute spacewalk to demonstrate future spacewalking techniques. Wisoff served as a mission specialist on his second spaceflight, STS-68, the 10-day SRL-2 Earth observation mission aboard Endeavour in 1994. Classmates Bursch, Jones, and Wilcutt accompanied him on the flight. He served as a mission specialist on his third flight, STS-81, the fifth Shuttle-Mir docking mission in 1997. The 10-day flight took place aboard Atlantis. He flew his fourth and final mission on STS-92, the 3A space station assembly mission in 2000 that brought the Z1 truss to the facility. Wisoff participated in two spacewalks totaling 14 hours 3 minutes during the 13-day Discovery mission. Across his four spaceflights, Wisoff logged 44 days in space and spent nearly 20 hours on three spacewalks.
David Wolf
A native of Indiana, Wolf earned a medical degree from Indiana University and worked as an aerospace medical officer at JSC when NASA selected him as an astronaut. He received his first spaceflight assignment as a mission specialist on the STS-58 SLS-2 mission in 1993. Classmates Searfoss and McArthur accompanied him on the 14-day Columbia mission, at the time the longest space shuttle flight. For his second trip into space, he completed the 128-day NASA-6 long-duration mission as part of the Shuttle-Mir program in 1997 and 1998, launching aboard STS-86 and returning aboard STS-89. He participated in a 3-hour 52-minute spacewalk. He flew his third spaceflight as a mission specialist on the STS-112 9A space station assembly mission in 2002 that delivered the S1 truss to the orbiting lab. During the 11-day Atlantis mission, Wolf participated in three spacewalks totaling 19 hours 41 minutes. He completed his fourth mission on STS-127 in 2009, earning him the distinction as the last Hairball to make a spaceflight. During the 16-day Endeavour mission that delivered the Japanese module’s exposed pallet to the space station, Wolf participated in three spacewalks totaling 18 hours 24 minutes. Across his four spaceflights, Wolf logged more than 168 days in space and spent 42 hours on seven spacewalks.
Summary
The NASA Group 13 astronauts made significant contributions to spaceflight. As a group, they completed 85 flights spending 1,960 days, or more than five years, in space, including one long-duration flight aboard Mir and five aboard the International Space Station. One Hairball made a single trip into space, three made two trips, one made three, 15 made four, and three went five times. Twenty-one members of the group contributed their talents on Spacelab or other research missions and three performed work with the great observatories Hubble and Chandra. Thirteen participated in the Shuttle Mir program, with 11 visiting the orbiting facility, one of them twice, another three times, and one completing a long-duration mission. Fifteen visited the International Space Station, five twice, participating in its assembly, research, maintenance, and logistics, with five completing long-duration missions aboard the facility. Eleven of the 23 performed 37 spacewalks spending 242 hours, or more than 10 days, outside their spacecraft.
View the full article
-
By NASA
The Space Shuttle Columbia and Space Shuttle Challenger Memorials are seen after a wreath laying ceremony that was part of NASA’s Day of Remembrance, Thursday, Jan. 26, 2023, at Arlington National Cemetery in Arlington, Virginia. (Credit: NASA) NASA will observe its annual Day of Remembrance on Thursday, Jan. 23, honoring the members of the NASA family who lost their lives in the pursuit of exploration and discovery for benefit of humanity. The event, traditionally held every year on the fourth Thursday of January, remembers the crews of Apollo 1 and the space shuttles Challenger and Columbia.
“On NASA’s Day of Remembrance, we pause to reflect on the bravery, dedication, and selflessness of the extraordinary individuals who pushed the boundaries of exploration and discovery,” said NASA Associate Administrator Jim Free. “Their legacies remind us of the profound responsibility we have to carry their dreams forward while ensuring safety remains our guiding principle.”
Free will lead an observance at 1 p.m. EST at Arlington National Cemetery in Virginia, which will begin with a wreath-laying ceremony at the Tomb of the Unknown Soldier, followed by observances for the Apollo 1, Challenger, and Columbia crews.
Several agency centers also will hold observances for NASA Day of Remembrance:
Johnson Space Center in Houston
NASA Johnson will hold a commemoration at 10 a.m. CST at the Astronaut Memorial Grove with remarks by Center Director Vanessa Wyche. The event will have a moment of silence, a NASA T-38 flyover, taps performed by the Texas A&M Squadron 17, and a procession placing flowers at Apollo I, Challenger, and Columbia memorial trees.
Kennedy Space Center in Florida
NASA Kennedy and the Astronauts Memorial Foundation will host a ceremony at the Space Mirror Memorial at Kennedy’s Visitor Complex at 10 a.m. EST. The event will include remarks from Tal Ramon, son of Israeli astronaut Ilan Ramon, space shuttle Columbia.
Kelvin Manning, deputy director at NASA Kennedy, also will provide remarks during the ceremony, which will livestream on the center’s Facebook page.
Ames Research Center in California’s Silicon Valley
NASA Ames will hold a remembrance ceremony at 1 p.m. PST that includes remarks from Center Director Eugene Tu, a moment of silence, and bell ringing commemoration.
Glenn Research Center in Cleveland
NASA Glenn will observe Day of Remembrance with remarks at 1 p.m. EST from Center Director Jimmy Kenyon followed by wreath placement, moment of silence, and taps at Lewis Field.
Langley Research Center in Hampton, Virginia
NASA Langley will hold a remembrance ceremony with Acting Center Director Dawn Schaible followed by placing flags at the Langley Workers Memorial.
Marshall Space Flight Center in Huntsville, Alabama
NASA Marshall will hold a candle-lighting ceremony and wreath placement at 9:30 a.m. CST. The ceremony will include remarks from Larry Leopard, associate director, and Bill Hill, director of Marshall’s Office of Safety and Mission Assurance.
Stennis Space Flight Center in Bay St. Louis, Mississippi
NASA Stennis and the NASA Shared Services Center will hold a wreath-laying ceremony at 9 a.m. CST with remarks from Center Director John Bailey and Anita Harrell, NASA Shared Services Center executive director.
The agency also is paying tribute to its fallen astronauts with special online content, updated on NASA’s Day of Remembrance, at:
https://www.nasa.gov/dor
-end-
Abbey Donaldson
Headquarters, Washington
202-358-1600
Abbey.a.donaldson@nasa.gov
Share
Details
Last Updated Jan 16, 2025 LocationNASA Headquarters View the full article
-
By NASA
Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More 35th Anniversary 6 Min Read NASA’s Hubble Traces Hidden History of Andromeda Galaxy
This photomosaic of the Andromeda galaxy is the largest ever assembled from Hubble observations. Credits:
NASA, ESA, Benjamin F. Williams (UWashington), Zhuo Chen (UWashington), L. Clifton Johnson (Northwestern); Image Processing: Joseph DePasquale (STScI) In the years following the launch of NASA’s Hubble Space Telescope, astronomers have tallied over 1 trillion galaxies in the universe. But only one galaxy stands out as the most important nearby stellar island to our Milky Way — the magnificent Andromeda galaxy (Messier 31). It can be seen with the naked eye on a very clear autumn night as a faint cigar-shaped object roughly the apparent angular diameter of our Moon.
A century ago, Edwin Hubble first established that this so-called “spiral nebula” was actually very far outside our own Milky Way galaxy — at a distance of approximately 2.5 million light-years or roughly 25 Milky Way diameters. Prior to that, astronomers had long thought that the Milky way encompassed the entire universe. Overnight, Hubble’s discovery turned cosmology upside down by unveiling an infinitely grander universe.
Now, a century later, the space telescope named for Hubble has accomplished the most comprehensive survey of this enticing empire of stars. The Hubble telescope is yielding new clues to the evolutionary history of Andromeda, and it looks markedly different from the Milky Way’s history.
This is largest photomosaic ever assembled from Hubble Space Telescope observations. It is a panoramic view of the neighboring Andromeda galaxy, located 2.5 million light-years away. It took over 10 years to make this vast and colorful portrait of the galaxy, requiring over 600 Hubble overlapping snapshots that were challenging to stitch together. The galaxy is so close to us, that in angular size it is six times the apparent diameter of the full Moon, and can be seen with the unaided eye. For Hubble’s pinpoint view, that’s a lot of celestial real estate to cover. This stunning, colorful mosaic captures the glow of 200 million stars. That’s still a fraction of Andromeda’s population. And the stars are spread across about 2.5 billion pixels. The detailed look at the resolved stars will help astronomers piece together the galaxy’s past history that includes mergers with smaller satellite galaxies. NASA, ESA, Benjamin F. Williams (UWashington), Zhuo Chen (UWashington), L. Clifton Johnson (Northwestern); Image Processing: Joseph DePasquale (STScI)
Download this image (10,552 x 2,468)(9 MB)
Download this image (42,208 x 9,870)(203 MB)
Without Andromeda as a proxy for spiral galaxies in the universe at large, astronomers would know much less about the structure and evolution of our own Milky Way. That’s because we are embedded inside the Milky Way. This is like trying to understand the layout of New York City by standing in the middle of Central Park.
“With Hubble we can get into enormous detail about what’s happening on a holistic scale across the entire disk of the galaxy. You can’t do that with any other large galaxy,” said principal investigator Ben Williams of the University of Washington. Hubble’s sharp imaging capabilities can resolve more than 200 million stars in the Andromeda galaxy, detecting only stars brighter than our Sun. They look like grains of sand across the beach. But that’s just the tip of the iceberg. Andromeda’s total population is estimated to be 1 trillion stars, with many less massive stars falling below Hubble’s sensitivity limit.
Photographing Andromeda was a herculean task because the galaxy is a much bigger target on the sky than the galaxies Hubble routinely observes, which are often billions of light-years away. The full mosaic was carried out under two Hubble programs. In total, it required over 1,000 Hubble orbits, spanning more than a decade.
This panorama started with the Panchromatic Hubble Andromeda Treasury (PHAT) program about a decade ago. Images were obtained at near-ultraviolet, visible, and near-infrared wavelengths using the Advanced Camera for Surveys and the Wide Field Camera 3 aboard Hubble to photograph the northern half of Andromeda.
This is the largest photomosaic ever made by the Hubble Space Telescope. The target is the vast Andromeda galaxy that is only 2.5 million light-years from Earth, making it the nearest galaxy to our own Milky Way. Andromeda is seen almost edge-on, tilted by 77 degrees relative to Earth’s view. The galaxy is so large that the mosaic is assembled from approximately 600 separate overlapping fields of view taken over 10 years of Hubble observing — a challenge to stitch together over such a large area. The mosaic image is made up of at least 2.5 billion pixels. Hubble resolves an estimated 200 million stars that are hotter than our Sun, but still a fraction of the galaxy’s total estimated stellar population. Interesting regions include: (a) Clusters of bright blue stars embedded within the galaxy, background galaxies seen much farther away, and photo-bombing by a couple bright foreground stars that are actually inside our Milky Way; (b) NGC 206 the most conspicuous star cloud in Andromeda; (c) A young cluster of blue newborn stars; (d) The satellite galaxy M32, that may be the residual core of a galaxy that once collided with Andromeda; (e) Dark dust lanes across myriad stars.
NASA, ESA, Benjamin F. Williams (UWashington), Zhuo Chen (UWashington), L. Clifton Johnson (Northwestern); Image Processing: Joseph DePasquale (STScI)
Download this image (2,000 x 1,125)(1.5 MB)
Download this image (7,680 x 4,320)(16 MB)
This program was followed up by the Panchromatic Hubble Andromeda Southern Treasury (PHAST), recently published in The Astrophysical Journal and led by Zhuo Chen at the University of Washington, which added images of approximately 100 million stars in the southern half of Andromeda. This region is structurally unique and more sensitive to the galaxy’s merger history than the northern disk mapped by the PHAT survey.
The combined programs collectively cover the entire disk of Andromeda, which is seen almost edge-on — tilted by 77 degrees relative to Earth’s view. The galaxy is so large that the mosaic is assembled from approximately 600 separate fields of view. The mosaic image is made up of at least 2.5 billion pixels.
The complementary Hubble survey programs provide information about the age, heavy-element abundance, and stellar masses inside Andromeda. This will allow astronomers to distinguish between competing scenarios where Andromeda merged with one or more galaxies. Hubble’s detailed measurements constrain models of Andromeda’s merger history and disk evolution.
A Galactic ‘Train Wreck’
Though the Milky Way and Andromeda formed presumably around the same time many billions of years ago, observational evidence shows that they have very different evolutionary histories, despite growing up in the same cosmological neighborhood. Andromeda seems to be more highly populated with younger stars and unusual features like coherent streams of stars, say researchers. This implies it has a more active recent star-formation and interaction history than the Milky Way.
“Andromeda’s a train wreck. It looks like it has been through some kind of event that caused it to form a lot of stars and then just shut down,” said Daniel Weisz at the University of California, Berkeley. “This was probably due to a collision with another galaxy in the neighborhood.”
A possible culprit is the compact satellite galaxy Messier 32, which resembles the stripped-down core of a once-spiral galaxy that may have interacted with Andromeda in the past. Computer simulations suggest that when a close encounter with another galaxy uses up all the available interstellar gas, star formation subsides.
The Andromeda Galaxy, our closest galactic neighbor, holds over 1 trillion stars and has been a key to unlocking the secrets of the universe. Thanks to NASA’s Hubble Space Telescope, we’re now seeing Andromeda in stunning new detail, revealing its dynamic history and unique structure.
Credit: NASA’s Goddard Space Flight Center; Lead Producer: Paul Morris
Download this video
“Andromeda looks like a transitional type of galaxy that’s between a star-forming spiral and a sort of elliptical galaxy dominated by aging red stars,” said Weisz. “We can tell it’s got this big central bulge of older stars and a star-forming disk that’s not as active as you might expect given the galaxy’s mass.”
“This detailed look at the resolved stars will help us to piece together the galaxy’s past merger and interaction history,” added Williams.
Hubble’s new findings will support future observations by NASA’s James Webb Space Telescope and the upcoming Nancy Grace Roman Space Telescope. Essentially a wide-angle version of Hubble (with the same sized mirror), Roman will capture the equivalent of at least 100 high-resolution Hubble images in a single exposure. These observations will complement and extend Hubble’s huge dataset.
The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
Explore More
Explore the Night Sky: Messier 31
Hubble’s High-Definition Panoramic View of the Andromeda Galaxy
NASA’s Hubble Finds Giant Halo Around the Andromeda Galaxy
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Ray Villard
Space Telescope Science Institute, Baltimore, MD
Share
Details
Last Updated Jan 16, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Andromeda Galaxy Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble Science
Hubble’s Night Sky Challenge
Hubble Images
View the full article
-
By NASA
Webb Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA’s Webb Reveals Intricate Layers of Interstellar Dust, Gas
This shimmering cosmic curtain shows interstellar gas and dust that has been heated by the flashbulb explosion of a long-ago supernova. The gas then glows infrared light in what is known as a thermal light echo. As the supernova illumination travels through space at the speed of light, the echo appears to expand. NASA’s James Webb Space Telescope observed this light echo in the vicinity of the supernova remnant Cassiopeia A. Credits:
NASA, ESA, CSA, STScI, J. Jencson (Caltech/IPAC) Once upon a time, the core of a massive star collapsed, creating a shockwave that blasted outward, ripping the star apart as it went. When the shockwave reached the star’s surface, it punched through, generating a brief, intense pulse of X-rays and ultraviolet light that traveled outward into the surrounding space. About 350 years later, that pulse of light has reached interstellar material, illuminating it, warming it, and causing it to glow in infrared light.
NASA’s James Webb Space Telescope has observed that infrared glow, revealing fine details resembling the knots and whorls of wood grain. These observations are allowing astronomers to map the true 3D structure of this interstellar dust and gas (known as the interstellar medium) for the first time.
“We were pretty shocked to see this level of detail,” said Jacob Jencson of Caltech/IPAC in Pasadena, principal investigator of the science program.
“We see layers like an onion,” added Josh Peek of the Space Telescope Science Institute in Baltimore, a member of the science team. “We think every dense, dusty region that we see, and most of the ones we don’t see, look like this on the inside. We just have never been able to look inside them before.”
The team is presenting their findings in a press conference at the 245th meeting of the American Astronomical Society in Washington.
“Even as a star dies, its light endures—echoing across the cosmos. It’s been an extraordinary three years since we launched NASA’s James Webb Space Telescope. Every image, every discovery, shows a portrait not only of the majesty of the universe but the power of the NASA team and the promise of international partnerships. This groundbreaking mission, NASA’s largest international space science collaboration, is a true testament to NASA’s ingenuity, teamwork, and pursuit of excellence,” said NASA Administrator Bill Nelson. “What a privilege it has been to oversee this monumental effort, shaped by the tireless dedication of thousands of scientists and engineers around the globe. This latest image beautifully captures the lasting legacy of Webb—a keyhole into the past and a mission that will inspire generations to come.”
Image A: Light Echoes Near Cassiopeia A (NIRCam)
These shimmering cosmic curtains show interstellar gas and dust that has been heated by the flashbulb explosion of a long-ago supernova. The gas then glows infrared light in what is known as a thermal light echo. As the supernova illumination travels through space at the speed of light, the echo appears to expand. NASA’s James Webb Space Telescope observed this light echo in the vicinity of the supernova remnant Cassiopeia A three separate times, in essence creating a 3D scan of the interstellar material. Note that the field of view in the top row is rotated slightly clockwise relative to the middle and bottom rows, due to the roll angle of the Webb telescope when the observations were taken. NASA, ESA, CSA, STScI, J. Jencson (Caltech/IPAC) Video A: Light Echoes Near Cassiopeia A (NIRCam)
This time-lapse video using data from NASA’s James Webb Space Telescope highlights the evolution of one light echo in the vicinity of the supernova remnant Cassiopeia A. A light echo is created when a star explodes or erupts, flashing light into surrounding clumps of interstellar dust and causing them to shine in an ever-expanding pattern. Webb’s exquisite resolution not only shows incredible detail within these light echoes, but also shows their expansion over the course of just a few weeks – a remarkably short timescale considering that most cosmic targets remain unchanged over a human lifetime.
Credit: NASA, ESA, CSA, STScI, J. Jencson (Caltech/IPAC) Taking a CT Scan
The images from Webb’s NIRCam (Near-Infrared Camera) highlight a phenomenon known as a light echo. A light echo is created when a star explodes or erupts, flashing light into surrounding clumps of dust and causing them to shine in an ever-expanding pattern. Light echoes at visible wavelengths (such as those seen around the star V838 Monocerotis) are due to light reflecting off of interstellar material. In contrast, light echoes at infrared wavelengths are caused when the dust is warmed by energetic radiation and then glows.
The researchers targeted a light echo that had previously been observed by NASA’s retired Spitzer Space Telescope. It is one of dozens of light echoes seen near the Cassiopeia A supernova remnant – the remains of the star that exploded. The light echo is coming from unrelated material that is behind Cassiopeia A, not material that was ejected when the star exploded.
The most obvious features in the Webb images are tightly packed sheets. These filaments show structures on remarkably small scales of about 400 astronomical units, or less than one-hundredth of a light-year. (An astronomical unit, or AU, is the average Earth-Sun distance. Neptune’s orbit is 60 AU in diameter.)
“We did not know that the interstellar medium had structures on that small of a scale, let alone that it was sheet-like,” said Peek.
These sheet-like structures may be influenced by interstellar magnetic fields. The images also show dense, tightly wound regions that resemble knots in wood grain. These may represent magnetic “islands” embedded within the more streamlined magnetic fields that suffuse the interstellar medium.
“This is the astronomical equivalent of a medical CT scan,” explained Armin Rest of the Space Telescope Science Institute, a member of the science team. “We have three slices taken at three different times, which will allow us to study the true 3D structure. It will completely change the way we study the interstellar medium.”
Image B: Cassiopeia A (Spitzer with Webb Insets)
This background image of the region around supernova remnant Cassiopeia A was released by NASA’s Spitzer Space Telescope in 2008. By taking multiple images of this region over three years with Spitzer, researchers were able to examine a number of light echoes. Now, NASA’s James Webb Space Telescope has imaged some of these light echoes in much greater detail. Insets at lower right show one epoch of Webb observations, while the inset at left shows a Webb image of the central supernova remnant released in 2023. Spitzer Image: NASA/JPL-Caltech/Y. Kim (Univ. of Arizona/Univ. of Chicago). Cassiopeia A Inset: NASA, ESA, CSA, STScI, Danny Milisavljevic (Purdue University), Ilse De Looze (UGent), Tea Temim (Princeton University). Light Echoes Inset: NASA, ESA, CSA, STScI, J. Jencson (Caltech/IPAC). Future Work
The team’s science program also includes spectroscopic observations using Webb’s MIRI (Mid-Infrared Instrument). They plan to target the light echo multiple times, weeks or months apart, to observe how it evolves as the light echo passes by.
“We can observe the same patch of dust before, during, and after it’s illuminated by the echo and try to look for any changes in the compositions or states of the molecules, including whether some molecules or even the smallest dust grains are destroyed,” said Jencson.
Infrared light echoes are also extremely rare, since they require a specific type of supernova explosion with a short pulse of energetic radiation. NASA’s upcoming Nancy Grace Roman Space Telescope will conduct a survey of the galactic plane that may find evidence of additional infrared light echoes for Webb to study in detail.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
Downloads
Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Science – Jacob Jencson (Caltech/IPAC)
Related Information
Articles: Past Webb news releases on Cassiopeia A
Interactive: Explore light echoes in V838 Monocerotis
Videos: Learn more about supernovas.
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is a supernova?
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Stars Stories
Universe
Spitzer Space Telescope
Spitzer uses an ultra-sensitive infrared telescope to study asteroids, comets, planets and distant galaxies.
Share
Details
Last Updated Jan 14, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
Astrophysics Goddard Space Flight Center James Webb Space Telescope (JWST) Nebulae Science & Research Supernova Remnants Supernovae The Universe View the full article
-
By NASA
NASA Deputy Administrator Pam Melroy gives keynote remarks during the 37th Space Symposium, Tuesday, April 5, 2022, in Colorado Springs, Colorado. Photo Credit: (NASA/Bill Ingalls) The Rotary National Award for Space Achievement Foundation has selected NASA Deputy Administrator Pam Melroy, a retired United States Air Force colonel and former NASA astronaut, to receive the 2025 National Space Trophy on April 25 in Houston.
“This honor is not just a reflection of my journey but a testament to the incredible teams and visionaries I’ve been privileged to work alongside,” said Melroy. “Exploring space is the ultimate act of human aspiration, proving time and again that when we dream together, we achieve the impossible. Being selected for the National Space Trophy is a humbling reminder of how far we’ve come — and how much further we can go.”
Vanessa Wyche, director of NASA’s Johnson Space Center in Houston, who nominated Melroy alongside former NASA Johnson director Michael Coats, said, “Pam has brilliantly paved the way for future generations pursuing careers in STEM fields through her exemplary leadership, dedication to mission excellence, and integral contributions to the advancement of space exploration. I am thrilled and immensely proud that Pam is receiving this well-deserved recognition.”
Sworn in as NASA’s deputy administrator on June 21, 2021, Melroy assists NASA Administrator Bill Nelson on key agency decisions, defines the agency’s strategic vision, and represents NASA to key government and international partners.
Melroy first joined NASA as an astronaut in 1994 and holds the distinction of being only one of two women to command a space shuttle. She spent more than 38 days in space across three space shuttle missions, all contributing to the assembly of the International Space Station. She served as pilot for STS-92 in 2000 and STS-112 in 2002, and she commanded STS-120 in 2007.
After serving more than two decades in the U.S. Air Force and as a NASA astronaut, Melroy transitioned to leadership roles at Lockheed Martin, the Federal Aviation Administration, the Defense Advanced Research Projects Agency, and Nova Systems Pty, Australia. Additionally, she was as an advisor to the Australian Space Agency and a member of the National Space Council’s Users Advisory Group.
The Rotary National Award for Space Achievement Foundation invites members of the public and the aerospace community to attend the Space Awards gala where Melroy will be recognized with the National Space Trophy. For more information on Melroy, visit:
https://www.nasa.gov/people/nasa-deputy-administrator-pam-melroy/
-end-
Amber Jacobson
Headquarters, Washington
202-358-1600
amber.c.jacobson@nasa.gov
Share
Details
Last Updated Jan 14, 2025 LocationNASA Headquarters Related Terms
Pamela A. Melroy Astronauts View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.