Jump to content

Larry Young Receives AIAA Wright Brothers Lectureship Award


NASA

Recommended Posts

  • Publishers

In June 2023, the American Institute of Aeronautics and Astronautics (AIAA) awarded the 2023 AIAA Wright Brothers Lectureship in Aeronautics to Larry Young, a researcher in the Aeromechanics Office at NASA Ames Research Center.  As part of this award, Mr. Young delivered a lecture titled “NASA Aeronautics Contributions to the Ingenuity Mars Helicopter” at the 2023 AIAA AVIATION Forum in San Diego, CA.  More information is at https://www.aiaa.org/news/news/2023/05/15/2023-aiaa-wright-brothers-lectureship-in-aeronautics-awarded-to-larry-a.-young-nasa-ames-research-center.

YouTube video of the lecture can be found at https://www.youtube.com/watch?v=7vnxDNdyMD0.

lyoung-photo.jpg?w=774
Larry A. Young, Aerospace Engineer, NASA Ames Research Center
NASA

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 min read
      NASA’s Deep Space Optical Comm Demo Sends, Receives First Data
      NASA’s Psyche spacecraft is shown in a clean room at the Astrotech Space Operations facility near the agency’s Kennedy Space Center in Florida on Dec. 8, 2022. DSOC’s gold-capped flight laser transceiver can be seen, near center, attached to the spacecraft.NASA/Ben Smegelsky DSOC, an experiment that could transform how spacecraft communicate, has achieved ‘first light,’ sending data via laser to and from far beyond the Moon for the first time.
      NASA’s Deep Space Optical Communications (DSOC) experiment has beamed a near-infrared laser encoded with test data fromnearly 10 million miles (16 million kilometers) away – about 40 times farther than the Moon is from Earth – to the Hale Telescope at Caltech’s Palomar Observatory in San Diego County, California. This is the farthest-ever demonstration of optical communications.
      Riding aboard the recently launched Psyche spacecraft, DSOC is configured to send high-bandwidth test data to Earth during its two-year technology demonstration as Psyche travels to the main asteroid belt between Mars and Jupiter. NASA’s Jet Propulsion Laboratory in Southern California manages both DSOC and Psyche.
      The tech demo achieved “first light” in the early hours of Nov. 14 after its flight laser transceiver – a cutting-edge instrument aboard Psyche capable of sending and receiving near-infrared signals – locked onto a powerful uplink laser beacon transmitted from the Optical Communications Telescope Laboratory at JPL’s Table Mountain Facility near Wrightwood, California. The uplink beacon helped the transceiver aim its downlink laser back to Palomar (which is 100 miles, or 130 kilometers, south of Table Mountain) while automated systems on the transceiver and ground stations fine-tuned its pointing.
      Learn more about how DSOC will be used to test high-bandwidth data transmission beyond the Moon for the first time – and how it could transform deep space exploration. Credit: NASA/JPL-Caltech/ASU “Achieving first light is one of many critical DSOC milestones in the coming months, paving the way toward higher-data-rate communications capable of sending scientific information, high-definition imagery, and streaming video in support of humanity’s next giant leap: sending humans to Mars,” said Trudy Kortes, director of Technology Demonstrations at NASA Headquarters in Washington.
      Test data also was sent simultaneously via the uplink and downlink lasers, a procedure known as “closing the link” that is a primary objective for the experiment. While the technology demonstration isn’t transmitting Psyche mission data, it works closely with the Psyche mission-support team to ensure DSOC operations don’t interfere with those of the spacecraft.
      “Tuesday morning’stest was the first to fully incorporate the ground assets and flight transceiver, requiring the DSOC and Psyche operations teams to work in tandem,” said Meera Srinivasan, operations lead for DSOC at JPL. “It was a formidable challenge, and we have a lot more work to do, but for a short time, we were able to transmit, receive, and decode some data.”
      Before this achievement, the project needed to check the boxes on several other milestones, from removing the protective cover for the flight laser transceiver to powering up the instrument. Meanwhile, the Psyche spacecraft is carrying out its own checkouts, including powering up its propulsion systems and testing instruments that will be used to study the asteroid Psyche when it arrives there in 2028.
      First Light and First Bits
      With successful first light, the DSOC team will now work on refining the systems that control the pointing of the downlink laser aboard the transceiver. Once achieved, the project can begin its demonstration of maintaining high-bandwidth data transmission from the transceiver to Palomar at various distances from Earth. This data takes the form of bits (the smallest units of data a computer can process) encoded in the laser’s photons – quantum particles of light. After a special superconducting high-efficiency detector array detects the photons, new signal-processing techniques are used to extract the data from the single photons that arrive at the Hale Telescope.
      The DSOC experiment aims to demonstrate data transmission rates 10 to 100 times greater than the state-of-the-art radio frequency systems used by spacecraft today. Both radio and near-infrared laser communications utilize electromagnetic waves to transmit data, but near-infrared light packs the data into significantly tighter waves, enabling ground stations to receive more data. This will help future human and robotic exploration missions and support higher-resolution science instruments.
      The flight laser transceiver operations team for NASA’s Deep Space Optical Communications (DSOC) technology demonstration works in the Psyche mission support area at JPL in the early hours of Nov. 14, when the project achieved “first light.” NASA/JPL-Caltech DSOC ground laser transmitter operators pose for a photo at the Optical Communications Telescope Laboratory at JPL’s Table Mountain Facility near Wrightwood, California, shortly after the technology demonstration achieved “first light” on Nov. 14.NASA/JPL-Caltech “Optical communication is a boon for scientists and researchers who always want more from their space missions, and will enable human exploration of deep space,” said Dr. Jason Mitchell, director of the Advanced Communications and Navigation Technologies Division within NASA’s Space Communications and Navigation (SCaN) program. “More data means more discoveries.”
      While optical communication has been demonstrated in low Earth orbit and out to the Moon, DSOC is the first test in deep space. Like using a laser pointer to track a moving dime from a mile away, aiming a laser beam over millions of miles requires extremely precise “pointing.”
      The demonstration also needs to compensate for the time it takes for light to travel from the spacecraft to Earth over vast distances: At Psyche’s farthest distance from our planet, DSOC’s near-infrared photons will take about 20 minutes to travel back (they took about 50 seconds to travel from Psyche to Earth during the Nov. 14 test). In that time, both spacecraft and planet will have moved, so the uplink and downlink lasers need to adjust for the change in location. “Achieving first light is a tremendous achievement. The ground systems successfully detected the deep space laser photons from DSOC’s flight transceiver aboard Psyche,” said Abi Biswas, project technologist for DSOC at JPL. “And we were also able to send some data, meaning we were able to exchange ‘bits of light’ from and to deep space.”
      More About the Mission
      DSOC is the latest in a series of optical communication demonstrations funded by NASA’s Space Technology Mission Directorate and the Space Communications and Navigation (SCaN) program within the agency’s Space Operations Mission Directorate.
      The Psyche mission is led by Arizona State University. JPL is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Psyche is the 14th mission selected as part of NASA’s Discovery Program under the Science Mission Directorate, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center, managed the launch service. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis.
      For more information about DSOC, visit:
      https://www.jpl.nasa.gov/missions/dsoc
      News Media Contact
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      2023-171
      Share
      Details
      Last Updated Nov 16, 2023 Related Terms
      Psyche Mission Space Communications & Navigation Program Space Operations Mission Directorate Space Technology Mission Directorate Tech Demo Missions Explore More
      5 min read Cube Quest Concludes: Wins, Lessons Learned from Centennial Challenge
      Article 3 hours ago 2 min read Pale Blue Dot: Visualization Challenge
      Article 1 day ago 4 min read Volunteers Worldwide Successfully Tracked NASA’s Artemis I Mission
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      For the 13th consecutive year, NASA received an unmodified, or “clean,” opinion from an external auditor on its fiscal year 2023 financial statements.
      NASA’s financial statements and budgetary reporting have received the highest possible audit opinion, certifying that it adheres to Generally Accepted Accounting Principles for federal agencies. These financial statements provide a comprehensive overview of the agency’s financial activities and disclosures for fiscal years 2023 and 2022. The audit opinion reaffirms NASA’s responsible stewardship of American tax dollars.
      “For the 13th consecutive year, NASA continues to deliver an accurate and transparent report of our fiscal operations as we explore the unknown in air and space,” said NASA Administrator Bill Nelson. “Under the leadership of NASA’s Chief Financial Officer Margaret Vo Schaus, NASA will continue to uphold the American public’s trust in our goals and missions and ensure best financial reporting practices, which are critical to the agency’s success.”
      In addition to the independent auditor’s opinion, the Agency Financial Report includes crucial supplementary information and preliminary top-level performance results, among other essential details.
      “NASA continues to uphold the highest standards for prudent financial management, data integrity, and reliable financial reporting,” said NASA Chief Financial Officer Margaret Vo Schaus. “Our Agency Financial Report provides valuable insights into NASA’s financial performance as we further U.S. leadership in space and aeronautics; address the climate crisis; foster greater diversity, equity, inclusion, and accessibility; and drive economic growth.”
      The 2023 Agency Financial Report accounts for the agency’s mission and performance goals per its strategic plan and highlights the benefits it brings to all. The report details NASA’s advancements in achieving its long-term priorities, such as the utilization of NASA’s James Webb Space Telescope; advancing climate change research; securing America’s position in space technology; and accomplishing the historic feat of landing the first woman and person of color on the Moon through the Artemis program, as a step towards human exploration of Mars.
      For more information on NASA’s budget, visit:
      https://www.nasa.gov/budget
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      abbey.a.donaldson@nasa.gov
      Share
      Details
      Last Updated Nov 15, 2023 Location NASA Headquarters Related Terms
      Office of the Chief Financial Officer (OCFO) View the full article
    • By NASA
      Goddard’s Office of the Chief Technologist named engineer Steven Denis as the FY23 Internal Research and Development (IRAD) Innovator of the Year, an honor the office bestows annually on individuals who demonstrate the best in innovation.
      Kevin DenisCredit: NASA / Christopher Gunn Denis demonstrated persistence and innovation in developing hair-thin photon sieves to focus extreme ultraviolet light – a difficult wavelength to capture. Thin membranes matter for solar science, he said, because these sieves transmit up to seven times more light than thicker materials. Denis’s work will open new ways to study the Sun in better detail and understand its influence on Earth and the solar system.
      Working closely with solar scientists over many years through Goddard ’s IRAD, or Internal Research and Development program, Denis developed new ways to create wider and thinner membranes of silicon and niobium. These photon sieves, created in Goddard’s Detector Development Laboratory, are so thin they must be supported by a honeycomb lattice of thicker silicon to prevent tearing. Etched with microscopic holes in a circular pattern, they refract light similar to Fresnel lenses used in lighthouses. Extreme ultraviolet light passing through this sieve is bent gradually inward to a distant receiver.
      Photon sieves like this are cut from a single wafer of silicon or niobium to focus extreme ultraviolet light – a difficult wavelength to capture.NASA / Christopher Gunn “It’s a sheer physical challenge to construct sieves with such precision,” said Goddard heliophysicist Dr. Doug Rabin. “Their smallest features are a few microns across. Kevin has really responded to that challenge with very creative solutions.”
      Denis’s photon sieves should eventually be able to resolve features near the surface of the Sun 10 to 50 times smaller than can be seen today with the Solar Dynamics Observatory’s EUV imager, Rabin said.
      Denis takes inspiration from working closely with scientists to overcome barriers to advancing their field, he said. “With this project in particular, scientists Rabin and Adrian Daw have done a great job using the sieves in near-term science applications while we push the technology for larger and more capable missions.”
      Denis’s work was highlighted in Physics Today, a publication of the American Institute for Physics, for its importance in advancing pivotal technology that can address outstanding questions of how coronal heating and acceleration happens in the Sun’s lower atmosphere.
      With two patents already awarded based on this project, Denis is submitting a new application for his latest fabrication process.
      While he continues to push the limits of engineering, Denis said he is looking forward to seeing them used in missions of increasing complexity and capability. “It’s a great motivation to see they are going to be used for new science.”
      By Karl B. Hille
      NASA’s Goddard Space Flight Center in Greenbelt, Md.
      Share
      Details
      Last Updated Nov 15, 2023 Related Terms
      General Goddard Space Flight Center Office of Technology, Policy and Strategy (OTPS) People of Goddard People of NASA Science-enabling Technology Technology Explore More
      4 min read NASA Telescope Data Becomes Music You Can Play
      Article 27 mins ago 2 min read Modeling Turbofan Engines to Understand Aircraft Noise
      Article 47 mins ago 5 min read Webb Follows Neon Signs Toward New Thinking on Planet Formation
      Article 5 hours ago View the full article
    • By NASA
      4 min read
      Worm Designer Receives NASA’s Exceptional Public Achievement Medal
      NASA Associate Administrator Bob Cabana, right, shakes hands with Richard Danne after awarding him the Exceptional Public Achievement Medal for his outstanding achievement in creating the NASA worm logotype, Monday, Nov. 6, 2023, at the Mary W. Jackson NASA Headquarters building in Washington.NASA/Keegan Barber NASA Associate Administrator Bob Cabana presented an award to Richard Danne Monday for his outstanding achievement in creating the NASA worm logotype and inspiring the world through the medium of design for the benefit of humanity.
      The Exceptional Public Achievement Medal was presented to Danne following a panel discussion at NASA Headquarters in Washington featuring the designer, as well as NASA and industry design experts, discussing the iconic logotype and its cultural influence. The award is given to non-government employees for specific achievement or substantial improvement in contribution to the mission of NASA.
      “Making the impossible possible through innovation, inspiring through discoveries that transform our knowledge of the universe and our place in it, and providing benefits to all of humanity are what we do at NASA, and what people think of when they see this simple yet striking logo,” said NASA Associate Administrator Bob Cabana. “Thank you for giving the agency an image that fit the time and also that continues to endure alongside the iconic NASA meatball as one of the most recognizable and popular symbols of what we can achieve when we work together.”
      A simple, red unique type style of the word NASA, the worm replaced the agency’s logo for several decades beginning in the 1970s before it was retired. It has since been brought back for limited use to complement the agency’s official insignia, known as the meatball.
      “This event, a culmination of a 50-year trek, is extremely rewarding. Creating the worm for NASA has been a singular achievement in my own career and in the history of design. It has not always been easy but it was a glorious experience and I feel fortunate to be part of the NASA family and to have helped the agency achieve its missions and goals,” said Danne.
      NASA was strategically chosen to implement the first new brand identity as part of the Federal Design Improvement Program. The agency hired the New York firm, Danne & Blackburn, who delivered their visionary worm design accompanied by a detailed manual that made it accessible across all centers. At the time, the worm won some of industries biggest design awards, including the first Presidential Design Award in 1985.
      In 1992, the worm was retired. However, in 2017 NASA began permitting the worm once again on souvenir merchandise and in 2020, almost 30 years later, the agency used the worm logo once again to mark the return of human spaceflight on American rockets from American soil. In November 2022, NASA also used the worm logo on its first rocket around the Moon in more than 50 years as part of its Artemis program.
      Since its launch, the worm logotype has resurfaced on signage, spacecraft, and spacesuits for the agency. Most recently, NASA opened its Earth Information Center at its headquarters, featuring a giant NASA worm sculpture directly outside its front doors. As part of his visit to Washington, Danne saw the sculpture for the first time.
      The original NASA insignia, designed by James Modarelli in 1958, remains a powerful global symbol, and is the official logo as the agency innovates, inspires, and explores for the benefit of all. NASA’s merchandise team receives hundreds of requests every month for permission to use its graphics.
      “Thanks to the worm and the meatball, NASA’s brand is one of the most recognizable in the world. These symbols have inspired countless students in the past, and now inspire the future generation of engineers, scientists, and innovators – the Artemis Generation,” said Marc Etkind, associate administrator, Office of Communications at NASA Headquarters.
      To rewatch the panel discussion, visit NASA’s YouTube channel at:
      www.youtube.com/NASA
      -end-
      News Media Contacts:
      Claire O’Shea / Stephanie Schierholz
      Headquarters, Washington
      202-358-1600
      claire.a.oshea@nasa.gov / stephanie.schierholz@nasa.gov
      Read More Share
      Details
      Last Updated Nov 06, 2023 Editor Claire A. O'Shea Location NASA Headquarters Related Terms
      NASA History Explore More
      7 min read 65 Years Ago: NASA Formally Establishes The Space Task Group
      Article 8 hours ago 3 min read Halloween on the International Space Station
      Article 6 days ago 8 min read 25 Years Ago: STS-95, John Glenn Returns to Space
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      NASA’s Sandra Irish Wins 2023 Society of Women Engineers Award
      Sandra Irish, mechanical systems lead structures engineer for NASA’s James Webb Space Telescope, has been selected to receive the Society of Women Engineers (SWE) Resnik Challenger Medal Award for her visionary contributions to the development, testing, transport, and launch of NASA’s premier space telescope since 2006. The medal was awarded during the World’s Largest Conference for Women in Engineering and Technology or WE23, which took place Oct. 26-28 in Los Angeles.
      Sandra Irish, lead structures engineer of NASA’s James Webb Space Telescope, was selected to receive the 2023 Society of Women Engineers Resnick Challenger Medal Award.NASA As an engineer at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for over 40 years, Irish’s mechanical systems expertise has helped to ensure the successful operation of many NASA programs including the Webb telescope.
      As Webb’s lead structures engineer, Irish led a group of 12 engineers that performed meticulous analysis and testing which helped confirm that the observatory’s mechanical design was fit to survive the rigors of spaceflight and on-orbit operations. While Irish’s primary focus was on preparing the telescope for a long life of service in space, she was also intimately involved in safely transporting the telescope to various locations around the United States for testing and assembly, and ultimately to its final destination where it launched from Europe’s Spaceport located near Kourou, French Guiana. Her steadfast dedication and expansive mechanical systems knowledge were key factors in the success of the notedly complex Webb mission. In addition to performing her duties on Webb, she served, and still actively serves, as the group lead for NASA Goddard’s mechanical systems analysis and simulation branch.
      Sandra Irish, lead structures engineer for NASA’s James Webb Space Telescope, stands in front of the nearly fully tested observatory she dedicated a significant part of her career to working on, just prior to its shipment to the launch site.Northrop Grumman “I am honored to be this year’s recipient of SWE’s Resnik Challenger Medal Award for my role in Webb,” said Irish. “For 16 years of my engineering career at NASA, I worked on designing, building, testing, and delivering the most amazing telescope that NASA has ever launched into space. It was a joy to lead Webb’s structures team of such dedicated and talented engineers. Each day we tackled challenging design and test problems together, which resulted in a telescope that is successfully operating a million miles away! I smile every time a new image or discovery is shared with the world. It was wonderful to have been a part of the Webb team!”
      About the Resnik Challenger Medal Award
      The Resnik Challenger Medal was established in 1986 to honor SWE’s Dr. Judith A. Resnik, NASA mission specialist on the Challenger space shuttle flight lost Jan. 28, 1986. It is awarded for visionary contributions to space programs to an individual who identifies as a woman with at least ten years of experience. This award acknowledges a specific engineering breakthrough or achievement that has expanded the horizons of human activities in space.
      SWE strives to advance and honor the contributions of women at all stages of their careers and recognize the successes of SWE members and individuals who enhance the engineering profession through contributions to the industry, education, and the community.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
      For more information about NASA’s Webb telescope visit: www.nasa.gov/webb
      Media Contacts
      Thaddeus Cesari
      NASA’s Goddard Space Flight Center, Greenbelt, Maryland
      Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      Share
      Details
      Last Updated Nov 01, 2023 Editor Marty McCoy Related Terms
      Goddard Space Flight Center James Webb Space Telescope (JWST) People of Goddard View the full article
  • Check out these Videos

×
×
  • Create New...