Jump to content

Dozens of Student Teams Worldwide to Compete in NASA Rover Challenge


NASA

Recommended Posts

  • Publishers
Students from Alabama A&M University near Huntsville, Alabama, pilot their vehicle through the obstacle course at the U.S. Space & Rocket Center during NASA’s Human Exploration Rover Challenge event on April 22, 2023. Credits: NASA
Students from Alabama A&M University near Huntsville, Alabama, pilot their vehicle through the obstacle course at the U.S. Space & Rocket Center during NASA’s Human Exploration Rover Challenge event on April 22, 2023.
Credits: NASA

NASA has selected 72 student teams to begin an engineering design challenge to build human-powered rovers that will compete next April at the U.S. Space & Rocket Center in Huntsville, Alabama, near the agency’s Marshall Space Flight Center.

Celebrating its 30th anniversary in 2024, the Human Exploration Rover Challenge tasks high school, college, and university students to design, build, and test lightweight, human-powered rovers on an obstacle course simulating lunar and Martian terrain, all while completing mission-focused science tasks.

Participating teams represent 42 colleges and universities and 30 high schools from 24 states, the District of Columbia, Puerto Rico, and 13 other nations from around the world. NASA’s handbook has complete proposal guidelines and task challenges.

“Throughout this authentic learning challenge, NASA encourages students to improve their understanding of collaboration, inquiry, and problem-solving strategies,” said Vemitra Alexander, rover challenge activity lead, Office of STEM Engagement at NASA Marshall. “Improving these critical real-world skills will benefit our students throughout their academic and professional careers.”

Throughout the nine-month challenge, students will complete design and safety reviews to mirror the process used by NASA engineers and scientists. The agency also incorporates vehicle weight and size requirements encouraging students to consider lightweight construction materials and stowage efficiency to be replicate similar payload restrictions of NASA launch operations.

Teams earn points throughout the year by successfully completing design reviews and fabricating a rover capable of meeting all criteria while completing course obstacles and mission tasks. The teams with the highest number of points accumulated throughout the project year will win their respective divisions. The challenge will conclude with an event April 19 and April 20, 2024, at the U.S. Rocket and Space Center.

This competition is one of nine Artemis Student Challenges and reflects the goals of NASA’s Artemis program, which includes landing the first woman and first person of color on the Moon. It is managed by NASA’s Southeast Regional Office of STEM Engagement at Marshall. NASA uses challenges and competitions to further the agency’s goal of encouraging students to pursue degrees and careers in science, technology, engineering, and mathematics.

For more information about the challenge, visit:

https://www.nasa.gov/roverchallenge/home/index.html

-end-

Claire O’Shea
Headquarters, Washington
202-358-1600
claire.a.oshea@nasa.gov

Christopher Blair
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
christopher.e.blair@nasa.gov

Share

Details

Last Updated
Oct 12, 2023

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Faces of NASA features Ames Research Center Pilot David Zahn
      In November 2023, “Faces of NASA” featured an aeronautics pilot from NASA Ames Research Center.  Learn more about David Zahn and his story at https://www.nasa.gov/image-article/nasa-research-pilot-david-zahn/.

      David Zahn pilots the ownship aircraft in the VMS’s R-Cab during the AVA-1h simulation in the VMS at NASA Ames Research Center.NASA / Dominic HartView the full article
    • By NASA
      5 Min Read NASA’s Psyche Delivers First Images and Other Data
      This mosaic was made from “first light” images acquired Dec. 4 by both of the cameras on NASA’s Psyche spacecraft. The star field lies in the constellation Pisces. Credits: NASA/JPL-Caltech/ASU The mission team has celebrated several successes since its launch from Kennedy Space Center on Oct. 13. The latest is the operation of the spacecraft’s cameras.
      NASA’s Psyche spacecraft is on a roll. In the eight weeks since it left Earth on Oct. 13, the orbiter has performed one successful operation after another, powering on scientific instruments, streaming data toward home, and setting a deep-space record with its electric thrusters. The latest achievement: On Monday, Dec. 4, the mission turned on Psyche’s twin cameras and retrieved the first images – a milestone called “first light.”
      View the full images here Already 16 million miles (26 million kilometers) from Earth, the spacecraft will arrive at its destination – the asteroid Psyche in the main asteroid belt between Mars and Jupiter – in 2029. The team wanted to test all of the science instruments early in the long journey to make sure they are working as intended, and to ensure there would be plenty of time to calibrate and adjust them as needed. The imager instrument, which consists of a pair of identical cameras, captured a total of 68 images, all within a star field in the constellation Pisces. The imager team is using the data to verify proper commanding, telemetry analysis, and calibration of the images.
      Psyche’s “first light” images make up this mosaic showing a starfield in the constellation Pisces. A version of the mosaic annotated with the names of the stars shown is at bottom.NASA/JPL-Caltech/ASU “These initial images are only a curtain-opener,” said Arizona State University’s Jim Bell, the Psyche imager instrument lead. “For the team that designed and operates this sophisticated instrument, first light is a thrill. We start checking out the cameras with star images like these, then in 2026 we’ll take test images of Mars during the spacecraft’s flyby. And finally, in 2029 we’ll get our most exciting images yet – of our target asteroid Psyche. We look forward to sharing all of these visuals with the public.”
      The imager takes pictures through multiple color filters, all of which were tested in these initial observations. With the filters, the team will use photographs in wavelengths of light both visible and invisible to the human eye to help determine the composition of the metal-rich asteroid Psyche. The imager team will also use the data to create 3D maps of the asteroid to better understand its geology, which will give clues about Psyche’s history.
      Solar Surprise
      Earlier in the mission, in late October, the team powered on the magnetometer, which will provide crucial data to help determine how the asteroid formed. Evidence that the asteroid once had a magnetic field would be a strong indication that the body is a partial core of a planetesimal, a building block of an early planet. The information could help us better understand how our own planet formed.
      See the Psyche spacecraft in 3D on NASA's Eyes on the Solar System Shortly after being powered on, the magnetometer gave scientists an unexpected gift: It detected a solar eruption, a common occurrence called a coronal mass ejection, where the Sun expels large quantities of magnetized plasma. Since then, the team has seen several of these events and will continue to monitor space weather as the spacecraft travels to the asteroid.
      The good news is twofold. Data collected so far confirms that the magnetometer can precisely detect very small magnetic fields. It also confirms that the spacecraft is magnetically “quiet.” The electrical currents powering a probe of this size and complexity have the potential to generate magnetic fields that could interfere with science detections. Because Earth has its own powerful magnetic field, scientists obtained a much better measurement of the spacecraft magnetic field once it was in space.
      In the Zone
      On Nov. 8, amid all the work with the science instruments, the team fired up two of the four electric propulsion thrusters, setting a record: the first-ever use of Hall-effect thrusters in deep space. Until now, they’d been used only on spacecraft going as far as lunar orbit. By expelling charged atoms, or ions, of xenon gas, the ultra-efficient thrusters will propel the spacecraft to the asteroid (a 2.2-billion-mile, or 3.6-billion-kilometer journey) and help it maneuver in orbit.
      Less than a week later, on Nov. 14, the technology demonstration built into the spacecraft, an experiment called Deep Space Optical Communications (DSOC), set its own record. DSOC achieved first light by sending and receiving optical data from far beyond the Moon. The instrument beamed a near-infrared laser encoded with test data from nearly 10 million miles (16 million kilometers) away – the farthest-ever demonstration of optical communications.
      The Psyche team has also successfully powered on the gamma-ray detecting component of its third science instrument, the gamma-ray and neutron spectrometer. Next, the instrument’s neutron-detecting sensors will be turned on the week of Dec. 11. Together those capabilities will help the team determine the chemical elements that make up the asteroid’s surface material.
      More About the Mission
      Arizona State University (ASU) leads the Psyche mission. A division of Caltech in Pasadena, NASA’s Jet Propulsion Laboratory is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis. ASU leads the operations of the imager instrument, working in collaboration with Malin Space Science Systems in San Diego on the design, fabrication, and testing of the cameras.
      JPL manages DSOC for the Technology Demonstration Missions program within NASA’s Space Technology Mission Directorate and the Space Communications and Navigation program within the Space Operations Mission Directorate.
      Psyche is the 14th mission selected as part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. NASA’s Launch Services Program, based at Kennedy, managed the launch service.
      For more information about NASA’s Psyche mission go to:
      http://www.nasa.gov/psyche
      News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      Karen Fox / Alana Johnson
      NASA Headquarters, Washington
      301-286-6284 / 202-358-1501
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      2023-077
      Share
      Details
      Last Updated Dec 05, 2023 Related Terms
      Psyche Mission Asteroids Jet Propulsion Laboratory Psyche Asteroid The Solar System Explore More
      4 min read December’s Night Sky Notes: A Flame in the Sky – the Orion Nebula
      It’s that time of year again: winter! Here in the Northern Hemisphere, the cold, crisp…
      Article 4 days ago 4 min read NASA Orbiter Snaps Stunning Views of Mars Horizon
      Article 1 week ago 3 min read NASA’s Dragonfly to Proceed with Final Mission Design Work
      NASA’s Dragonfly mission has been authorized to proceed with work on final mission design and…
      Article 1 week ago View the full article
    • By NASA
      A pair of precision-orbiting small satellites will attempt to capture the first views ever of small-scale features near the surface of the Sun that scientists believe drive the heating and acceleration of solar wind.
      Heliophysicist Dr. Doug Rabin at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, said photon sieves, a technology that can focus extreme ultraviolet light, should be able to resolve features 10 to 50 times smaller than what can be seen today with the Solar Dynamics Observatory’s EUV imager.
      Photon sieves like this are cut from a single wafer of silicon or niobium to focus extreme ultraviolet light – a difficult wavelength to capture.NASA / Christopher Gunn To be most effective, however, they must be wide, super-thin, and etched with precise holes to refract light. Working in Goddard’s Detector Development Laboratory, Goddard engineer Kevin Denis developed new ways to create wider and thinner membranes from wafers of silicon and niobium. Each advancement so far has required additional steps to protect the resulting sieves, such as leaving a honeycomb of thicker material to support the membrane and prevent tearing.
      “It’s a sheer physical challenge to construct sieves with such precision,” said Goddard Heliophysicist Dr. Doug Rabin. “Their smallest features are a 2-microns across with a 2-micron gap between perforations, that’s about the size of most bacteria.”
      New photon sieves consist of a honeycomb structure supporting a super-thin membrane cut to focus extreme-ultraviolet light. In this sieve, the largest gaps and holes can be seen in the center hexagon, but the rest quickly become too small for the human eye to detect.NASA / Christopher Gunn Etched with from the center with ever smaller rings of holes, sieves are built to refract light similarly to Fresnel lenses used in lighthouses. Extreme ultraviolet light passing through this sieve is bent gradually inward to a distant camera. Thin membranes matter for solar science because these sieves transmit more light than thicker materials, Denis said.
      He and fellow engineer Kelly Johnson successfully produced a 3-inch (8-cm) diameter silicon sieve, a mere 100 nanometers thick. Now they are experimenting with niobium membranes which can further improve light-gathering efficiency because they transmit up to seven times more light than silicon. They have successfully etched a 5-inch (13 cm) diameter niobium sieve just 200 nanometers thick.  
      Denis takes inspiration from working closely with scientists to overcome barriers to advancing their field, he said. “They have done a great job using the sieves in near-term science applications while we push the technology for larger and more capable missions.”
      Kevin DenisNASA / Christopher Gunn Photon sieves cut from materials as thick as 25 microns are already part of the technology demonstration VISORS – Virtual Super Optics Reconfigurable Swarm – CubeSat mission, expected to launch in 2024. VISORS consists of one compact satellite about the size of a briefcase outfitted with sieves to refract light onto a receiver on a second satellite 130 feet (40 m) away. Maintaining these spacecraft’s high-precision orbit and developing a sunshade are the focus of other Goddard IRAD project.
      VISOR’s success could pave the way for a larger future mission, with spacecraft separation measured in kilometers, employing the greater resolution of Denis’s thinner sieves once they are ready for spaceflight.
      Another larger photon sieve will be used to calibrate the MUSE – Multi-slit Solar Explorer – spectrometer expected to launch in 2027. 
      Denis’s work was highlighted in Physics Today, a publication of the American Institute for Physics, and has resulted with two patents already with a third submitted. Goddard Chief Technologist Peter Hughes awarded Denis the FY23 IRAD Innovator of the Year Award during the program’s annual poster session held Nov. 15.
      While he continues to push the limits of engineering, Denis said he is looking forward to the MUSE and VISORS launches. “It’s a great motivation to see how they are going to be used for new science even as we continue to improve.”
      By Karl B. Hille
      NASA’s Goddard Space Flight Center in Greenbelt, Md.
      Share
      Details
      Last Updated Dec 05, 2023 Related Terms
      Technology Goddard Space Flight Center People of Goddard Explore More
      3 min read NASA Audio Specialist Named in Forbes 30 Under 30 List of Innovators
      Article 23 hours ago 8 min read Hubble Celebrates 30th Anniversary of Servicing Mission 1
      In the pre-dawn hours on Dec. 2, 1993, the space shuttle Endeavour launched from Kennedy…
      Article 4 days ago 3 min read Hubble Views a Double Cluster of Glowing Galaxies
      This Hubble image features a massive cluster of brightly glowing galaxies, first identified as Abell 3192.…
      Article 4 days ago View the full article
    • By NASA
      (Nov. 8, 2021) — The International Space Station is pictured from the SpaceX Crew Dragon Endeavour during a fly around of the orbiting lab that took place following its undocking from the Harmony module’s space-facing port on Nov. 8, 2021.NASA/SpaceX NASA is celebrating the 25th anniversary of International Space Station operations during a live conversation with crew aboard the microgravity laboratory for the benefit of humanity. During a space-to-Earth call at 12:25 p.m. EST Wednesday, Dec. 6, the Expedition 70 crew will speak with NASA Associate Administrator Bob Cabana and Joel Montalbano, space station program manager.
      Watch on the NASA+ streaming service at no cost on demand. The discussion also will air live on NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA TV through a variety of platforms including social media.
      On Dec. 6, 1998, the first two elements of the orbital outpost, Unity and Zarya, were attached by crew members of space shuttle Endeavour’s STS-88 mission. Cabana was the commander of the mission and the first American to enter the space station.
      Through this global endeavor, astronauts have continuously lived and worked aboard the space station for more than 23 years, testing technologies, performing science, and developing the skills needed to explore farther from Earth. It has been visited by 273 people from 21 countries.
      More than 3,300 research and educational investigations have been conducted on station from 108 countries and areas. Many of these research and technology investigations benefit people on Earth, and many lay the groundwork for future commercial destinations in low Earth orbit and exploration farther into the solar system. Together with Artemis missions to the Moon, these proving grounds will help prepare NASA for future human exploration of Mars.
      Learn more about the International Space Station at:
      https://www.nasa.gov/station
      -end-
      Josh Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Share
      Details
      Last Updated Dec 05, 2023 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) View the full article
    • By NASA
      Students participate in the 21st annual Disability Mentoring Day on Tuesday, Nov. 14, 2023, at NASA’s Kennedy Space Center in Florida. The visiting students paired with mentors from Kennedy based on interests spanning from public affairs to engineering, shadowing them to learn about their respective day-to-day duties at the spaceport. Mentors shared experiences and insight on their path to NASA and provided learning opportunities to students looking to kickstart their career development.NASA/Glenn Benson By Matina Douzenis
      NASA’s John F. Kennedy Space Center
      Meeting members of the Artemis generation often inspires NASA’s workforce as much as it encourages the students themselves. For one recent group of students, a visit to the agency’s Kennedy Space Center in Florida brought mentorship, new experiences, and inspiration for answering the profound questions of our universe.
      The 22 students traveled to the world’s preeminent spaceport on Nov. 14 for the 21st annual Disability Mentoring Day hosted at Kennedy by the Disability Awareness and Action Working Group (DAAWG). Students were paired with a mentor based on interests spanning communication to engineering. Mentors shared experiences and insight on their path to NASA and provided learning opportunities to students hoping to kickstart their career development.
      “As a first-year mentor, it’s hard to capture the spirit of Disability Mentoring Day with words,” said NASA Public Affairs Officer Danielle Sempsrott. “Seeing how excited these kids were to be here at Kennedy, learning what we do, was amazing. One of the students asked us to keep them in mind for any job openings in the future. It’s really cool knowing we made them feel welcome and maybe sparked an interest that may not have been there before.”
      At Kennedy, teams of diverse people collaborate to do groundbreaking work across a wide range of programs. Event organizers hope that mentoring day will inspire the Artemis generation, who are still in school today, to enter the NASA orbit in any number of career fields.
      “When I was a young kid, I didn’t have this opportunity to participate in any disability mentoring day,” said DAAWG Co-Chair Nicole Delvesco and NASA cost accountant who has a cochlear implant. “If I had, I know I would have felt better about myself, would have had a lot more confidence to achieve a lot more than I already have.”
      The mentoring day is just one activity that helps further NASA Kennedy’s diversity, equity, accessibility, and inclusion goals. DAAWG also serves as an advocate for the center’s employees with disabilities and disabled veterans, advises the Center Director on matters relating to employees with disabilities, and serves as a resource to the Office of Diversity and Equal Opportunity and other directorates.
      Other programs like National Disability Employment Awareness Month, which occurs every October, celebrates the accomplishments and achievements of all individuals with disabilities. The U.S. Congress created the observance in 1988 to raise awareness of disability employment needs and to celebrate the many and varied contributions of individuals with all types of disabilities.
      “It is important for people to learn about different disabilities – hidden or visible,” said Paul Spann, the Disability Mentoring Day event lead who is a NASA accountant with a cochlear implant. “Most individuals with disabilities that I know will work harder to show their capabilities and always look for ways to prove themselves – I personally have had to do this throughout my career to remove doubts from people. It’s important that everyone understand how to focus on the strengths of individuals with disabilities in the workplace.”
      View the full article
  • Check out these Videos

×
×
  • Create New...