Jump to content

Journey to a Metal-Rich World: NASA’s Psyche Is Ready to Launch


Recommended Posts

  • Publishers
Posted
1-nhq202310110002.jpg?w=2048
A SpaceX Falcon Heavy rocket with the Psyche spacecraft onboard is seen at Launch Complex 39A as preparations continue for the Psyche mission, Wednesday, Oct. 11, 2023, at NASA’s Kennedy Space Center in Florida. NASA’s Psyche spacecraft will travel to a metal-rich asteroid by the same name orbiting the Sun between Mars and Jupiter to study its composition. The spacecraft also carries the agency’s Deep Space Optical Communications technology demonstration, which will test laser communications beyond the Moon.
NASA/Aubrey Gemignani

The spacecraft is targeting an Oct. 12 liftoff atop a Falcon Heavy rocket. Its destination, a metal-rich asteroid, may tell us more about how planets form.

In less than 24 hours, NASA’s Psyche spacecraft is slated to launch from the agency’s Kennedy Space Center in Florida. With its sights set on a mysterious asteroid of the same name, Psyche is NASA’s first scientific mission to be launched on a SpaceX Falcon Heavy rocket.

Launch is set for 10:16 a.m. EDT on Thursday, Oct. 12, with additional opportunities identified each day through Oct. 25. Each opportunity is instantaneous, meaning there is only one exact time per day when launch can occur.

“The team has worked tirelessly to prepare the spacecraft for its journey to a one-of-a-kind asteroid,” said Henry Stone, Psyche’s project manager at NASA’s Jet Propulsion Laboratory in Southern California. “All spacecraft systems, science instruments, and software have been integrated and extensively tested, and the spacecraft is fully configured for flight. We look forward to the launch and – more importantly – to accomplishing the mission’s objectives, marking yet another historic voyage of scientific discovery.”

The orbiter’s solar arrays are folded and stowed for launch. All systems have been tested and re-tested many times, along with the payload of three science instruments. Loaded with 2,392 pounds (1,085 kilograms) of the neutral gas xenon – the propellant that will get Psyche to the asteroid belt – the spacecraft sits inside the launch vehicle’s cone-shaped payload fairing, which protects it from aerodynamic pressure and heat during launch. The spacecraft and fairing have been mated to the SpaceX Falcon Heavy, which is poised for takeoff from Kennedy Space Center’s historic Launch Complex 39A.

Integrated onto the spacecraft is a technology demonstration called Deep Space Optical Communications (DSOC). DSOC will test high-data-rate laser communications – which could be used by future NASA missions – beyond the Moon for the first time. The tech demo will not relay Psyche mission data.

Launch Sequences

The rocket has two stages and two side boosters. After the side boosters separate and return to land, the core stage will be expended into the Atlantic Ocean. Then the second stage of the rocket, which will help Psyche escape Earth’s gravity, will fire its engine.

Once the rocket is out of Earth’s atmosphere, about four minutes after launch, the fairing will separate from its ride and split into two halves, which are jettisoned back to Earth. The spacecraft will then separate from the upper stage about an hour after launch. Soon after, it will deploy its twin solar arrays, one at a time, and direct them at the Sun. At this point, the spacecraft is in a planned “safe mode” (a precautionary standby status), with the Sun illuminating the deployed solar panels, and will begin to direct the low-gain antenna toward Earth for communications.

It could take up to two hours after separation from the rocket before the first signal is received.

Once stable communications have been established, mission controllers will begin to reconfigure the spacecraft into its planned operating mode. The ensuing three months of initial checkout include a commissioning phase to confirm that all hardware and software is operating as expected, including the electric thrusters. Starting about five months after launch, the thrusters will fire, one at a time, during long stretches of the trajectory to get to the asteroid.

Psyche’s efficient solar electric propulsion system works by accelerating and expelling charged atoms, or ions, of the neutral gas xenon – creating a thrust that will gently push the spacecraft on a journey of nearly six years and about 2.2 billion miles (3.6 billion kilometers) to the asteroid Psyche in the main asteroid belt between Mars and Jupiter.

Along the way, in May 2026, the spacecraft will fly by Mars and use the Red Planet’s gravity to slingshot itself toward Psyche, saving propellant while gaining speed and changing direction.

After the spacecraft reaches the asteroid in 2029, it will spend about 26 months in orbit, gathering images and other data.

Scientists believe Psyche could be part of the core of a planetesimal – an early planetary building block – and composed of a mixture of rock and iron-nickel metal. The metal will not be mined; it will be studied to give researchers a better idea of what makes up Earth’s core and how rocky planets formed in our solar system. Humans can’t bore a path to our planet’s core – or the cores of the other rocky planets – so visiting Psyche could provide a one-of-a-kind window into the violent history of collisions and accumulation of matter that created planets like our own.

More About the Mission

Arizona State University leads the Psyche mission. A division of Caltech in Pasadena, JPL is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis.

JPL manages DSOC for the Technology Demonstration Missions program within NASA’s Space Technology Mission Directorate and the Space Communications and Navigation program within the Space Operations Mission Directorate.

NASA’s Launch Services Program, based at Kennedy Space Center, is responsible for the insight and approval of the launch vehicle and manages the launch service for the Psyche mission. LSP certified the SpaceX Falcon Heavy rocket for use with the agency’s most complex and highest priority missions in early 2023 at the conclusion of a 2 ½-year effort.

Psyche is the 14th mission selected as part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama.

For more information about NASA’s Psyche mission go to: http://www.nasa.gov/psyche

News Media Contacts

Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
818-287-4115
gretchen.p.mccartney@jpl.nasa.gov

Alise Fisher / Alana Johnson
NASA Headquarters, Washington
202-358-2546 / 202-358-1501
alise.m.fisher@nasa.gov / alana.r.johnson@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Ingenuity Mars Helicopter, right, stands near the apex of a sand ripple in an image taken by Perseverance on Feb. 24, 2024, about five weeks after the rotorcraft’s final flight. Part of one of Ingenuity’s rotor blades lies on the surface about 49 feet (15 meters) west of helicopter (at left in image).NASA/JPL-Caltech/LANL/CNES/CNRS The review takes a close look the final flight of the agency’s Ingenuity Mars Helicopter, which was the first aircraft to fly on another world.
      Engineers from NASA’s Jet Propulsion Laboratory in Southern California and AeroVironment are completing a detailed assessment of the Ingenuity Mars Helicopter’s final flight on Jan. 18, 2024, which will be published in the next few weeks as a NASA technical report. Designed as a technology demonstration to perform up to five experimental test flights over 30 days, Ingenuity was the first aircraft on another world. It operated for almost three years, performed 72 flights, and flew more than 30 times farther than planned while accumulating over two hours of flight time.
      The investigation concludes that the inability of Ingenuity’s navigation system to provide accurate data during the flight likely caused a chain of events that ended the mission. The report’s findings are expected to benefit future Mars helicopters, as well as other aircraft destined to operate on other worlds.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA’s Ingenuity Mars Helicopter used its black-and-white navigation camera to capture this video on Feb. 11, 2024, showing the shadow of its rotor blades. The imagery confirmed damage had occurred during Flight 72. NASA/JPL-Caltech Final Ascent
      Flight 72 was planned as a brief vertical hop to assess Ingenuity’s flight systems and photograph the area. Data from the flight shows Ingenuity climbing to 40 feet (12 meters), hovering, and capturing images. It initiated its descent at 19 seconds, and by 32 seconds the helicopter was back on the surface and had halted communications. The following day, the mission reestablished communications, and images that came down six days after the flight revealed Ingenuity had sustained severe damage to its rotor blades.
      What Happened
      “When running an accident investigation from 100 million miles away, you don’t have any black boxes or eyewitnesses,” said Ingenuity’s first pilot, Håvard Grip of JPL. “While multiple scenarios are viable with the available data, we have one we believe is most likely: Lack of surface texture gave the navigation system too little information to work with.”
      The helicopter’s vision navigation system was designed to track visual features on the surface using a downward-looking camera over well-textured (pebbly) but flat terrain. This limited tracking capability was more than sufficient for carrying out Ingenuity’s first five flights, but by Flight 72 the helicopter was in a region of Jezero Crater filled with steep, relatively featureless sand ripples.
      This short animation depicts a NASA concept for a proposed follow-on to the agency’s Ingenuity Mars Helicopter called Mars Chopper, which remains in early conceptual and design stages. In addition to scouting, such a helicopter could carry science instruments to study terrain rovers can’t reach. One of the navigation system’s main requirements was to provide velocity estimates that would enable the helicopter to land within a small envelope of vertical and horizontal velocities. Data sent down during Flight 72 shows that, around 20 seconds after takeoff, the navigation system couldn’t find enough surface features to track.
      Photographs taken after the flight indicate the navigation errors created high horizontal velocities at touchdown. In the most likely scenario, the hard impact on the sand ripple’s slope caused Ingenuity to pitch and roll. The rapid attitude change resulted in loads on the fast-rotating rotor blades beyond their design limits, snapping all four of them off at their weakest point — about a third of the way from the tip. The damaged blades caused excessive vibration in the rotor system, ripping the remainder of one blade from its root and generating an excessive power demand that resulted in loss of communications.
      This graphic depicts the most likely scenario for the hard landing of NASA’s Ingenuity Mars Helicopter during its 72nd and final flight on Jan. 18, 2024. High horizontal velocities at touchdown resulted in a hard impact on a sand ripple, which caused Ingenuity to pitch and roll, damaging its rotor blades. NASA/JPL-Caltech Down but Not Out
      Although Flight 72 permanently grounded Ingenuity, the helicopter still beams weather and avionics test data to the Perseverance rover about once a week. The weather information could benefit future explorers of the Red Planet. The avionics data is already proving useful to engineers working on future designs of aircraft and other vehicles for the Red Planet.
      “Because Ingenuity was designed to be affordable while demanding huge amounts of computer power, we became the first mission to fly commercial off-the-shelf cellphone processors in deep space,” said Teddy Tzanetos, Ingenuity’s project manager. “We’re now approaching four years of continuous operations, suggesting that not everything needs to be bigger, heavier, and radiation-hardened to work in the harsh Martian environment.”
      Inspired by Ingenuity’s longevity, NASA engineers have been testing smaller, lighter avionics that could be used in vehicle designs for the Mars Sample Return campaign. The data is also helping engineers as they research what a future Mars helicopter could look like — and do.
      During a Wednesday, Dec. 11, briefing at the American Geophysical Union’s annual meeting in Washington, Tzanetos shared details on the Mars Chopper rotorcraft, a concept that he and other Ingenuity alumni are researching. As designed, Chopper is approximately 20 times heavier than Ingenuity, could fly several pounds of science equipment, and autonomously explore remote Martian locations while traveling up to 2 miles (3 kilometers) in a day. (Ingenuity’s longest flight was 2,310 feet, or 704 meters.)
      “Ingenuity has given us the confidence and data to envision the future of flight at Mars,” said Tzanetos.
      More About Ingenuity
      The Ingenuity Mars Helicopter was built by JPL, which also manages the project for NASA Headquarters. It is supported by NASA’s Science Mission Directorate. NASA’s Ames Research Center in California’s Silicon Valley and NASA’s Langley Research Center in Hampton, Virginia, provided significant flight performance analysis and technical assistance during Ingenuity’s development. AeroVironment, Qualcomm, and SolAero also provided design assistance and major vehicle components. Lockheed Space designed and manufactured the Mars Helicopter Delivery System. At NASA Headquarters, Dave Lavery is the program executive for the Ingenuity Mars helicopter.
      For more information about Ingenuity:
      https://mars.nasa.gov/technology/helicopter
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-171
      Share
      Details
      Last Updated Dec 11, 2024 Related Terms
      Ingenuity (Helicopter) Astrobiology Jet Propulsion Laboratory Mars Mars 2020 Perseverance (Rover) Explore More
      3 min read Leader of NASA’s VERITAS Mission Honored With AGU’s Whipple Award
      Article 2 days ago 3 min read Students Aim High at NASA JPL ‘Candy Toss’ Competition
      Article 5 days ago 5 min read NASA JPL Unveils the Dr. Edward Stone Exploration Trail
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      On Dec. 10, 1974, NASA launched Helios 1, the first of two spacecraft to make close observations of the Sun. In one of the largest international efforts at the time, the Federal Republic of Germany, also known as West Germany, provided the spacecraft, NASA’s Goddard Space Flight Center in Greenbelt, Maryland, had overall responsibility for U.S. participation, and NASA’s Lewis, now Glenn, Research Center in Cleveland provided the launch vehicle. Equipped with 10 instruments, Helios 1 made its first close approach to the Sun on March 15, 1975, passing closer and traveling faster than any previous spacecraft. Helios 2, launched in 1976, passed even closer. Both spacecraft  far exceeded their 18-month expected lifetime, returning unprecedented data from their unique vantage points. 

      The fully assembled Helios 1 spacecraft prepared for launch.Credit: NASA The West German company Messerchmitt-Bölkow-Blohm built the two Helios probes, the first non-Soviet and non-American spacecraft placed in heliocentric orbit, for the West German space agency DFVLR, today’s DLR. Each 815-pound Helios probe carried 10 U.S. and West German instruments, weighing a total of 158 pounds, to study the Sun and its environment. The instruments included high-energy particle detectors to measure the solar wind, magnetometers to study the Sun’s magnetic field and variations in electric and magnetic waves, and micrometeoroid detectors. Once activated and checked out, operators in the German control center near Munich controlled the spacecraft and collected the raw data. To evenly distribute the solar radiation the spacecraft spun on its axis once every second, and optical mirrors on its surface reflected the majority of the heat. 

      Workers encapsulate a Helios solar probe into its payload fairing. Credit: NASA
      Launch of Helios 1 took place at 2:11 a.m. EST Dec. 10, 1974, from Launch Complex 41 at Cape Canaveral Air Force, now Space Force, Station, on a Titan IIIE-Centaur rocket. This marked the first successful flight of this rocket, at the time the most powerful in the world, following the failure of the Centaur upper stage during the rocket’s inaugural launch on Feb. 11, 1974. The successful launch of Helios 1 provided confidence in the Titan IIIE-Centaur, needed to launch the Viking orbiters and landers to Mars in 1976 and the Mariner Jupiter-Saturn, later renamed Voyager, spacecraft in 1977 to begin their journeys through the outer solar system. The Centaur upper stage placed Helios 1 into a solar orbit with a period of 190 days, with its perihelion, or closest point to the Sun, well inside the orbit of Mercury. Engineers activated the spacecraft’s 10 instruments within a few days of launch, with the vehicle declared fully operational on Jan. 16, 1975. On March 15, Helios 1 reached its closest distance to the Sun of 28.9 million miles, closer than any other previous spacecraft – Mariner 10 held the previous record during its three Mercury encounters. Helios 1 also set a spacecraft speed record, traveling at 148,000 miles per hour at perihelion. Parts of the spacecraft reached a temperature of 261 degrees Fahrenheit, but the instruments continued to operate without problems. During its second perihelion on Sept. 21, temperatures reached 270 degrees, affecting the operation of some instruments. Helios 1 continued to operate and return useful data until both its primary and backup receivers failed and its high-gain antenna no longer pointed at Earth. Ground controllers deactivated the spacecraft on Feb. 18, 1985, with the last contact made on Feb. 10, 1986. 

      Helios 1 sits atop its Titan IIIE-Centaur rocket at Launch Complex 41 at Cape Canaveral Air Force, now Space Force, Station in Florida.Credit: NASA
      Helios 2 launched on Jan. 15, 1976, and followed a path similar to its predecessor’s but one that took it even closer to the Sun. On April 17, it approached to within 27 million miles of Sun, traveling at a new record of 150,000 miles per hour. At that distance, the spacecraft experienced 10% more solar heat than its predecessor. Helios 2’s downlink transmitter failed on March 3, 1980, resulting in no further useable data from the spacecraft. Controllers shut it down on Jan. 7, 1981. Scientists correlated data from the Helios instruments with similar data gathered by other spacecraft, such as the Interplanetary Monitoring Platform Explorers 47 and 50 in Earth orbit, the Pioneer solar orbiters, and Pioneer 10 and 11 in the outer solar system. In addition to their solar observations, Helios 1 and 2 studied the dust and ion tails of the comets C/1975V1 West, C/1978H1 Meier, and C/1979Y1 Bradfield. The information from the Helios probes greatly increased our knowledge of the Sun and its environment, and also raised more questions left for later spacecraft from unique vantage points to try to answer. 
      llustration of a Helios probe in flight, with all its booms deployed. Credit: NASA The joint ESA/NASA Ulysses mission studied the Sun from vantage points above its poles. After launch from space shuttle Discovery during STS-41 on Oct. 6, 1990, Ulysses used Jupiter’s gravity to swing it out of the ecliptic plane and fly first over the Sun’s south polar region from June to November 1994, then over the north polar region from June and September 1995. Ulysses continued its unique studies during several more polar passes until June 30, 2009, nearly 19 years after launch and more than four times its expected lifetime. NASA’s Parker Solar Probe, launched on Aug. 12, 2018, has made ever increasingly close passes to the Sun, including flying through its corona, breaking the distance record set by Helios 2. The Parker Solar Probe reached its first perihelion of 15 million miles on Nov. 5, 2018, with its closest approach of just 3.86 million miles of the Sun’s surface, just 4.5 percent of the Sun-Earth distance, planned for Dec. 24, 2024. The ESA Solar Orbiter launched on Feb. 10, 2020, and began science operations in November 2021. Its 10 instruments include cameras that have returned the highest resolution images of the Sun including its polar regions from as close as 26 million miles away. 
      Illustration of the Ulysses spacecraft over the Sun’s pole.Credit: NASA Illustration of the Parker Solar Probe during a close approach to the Sun.Credit: NASA The ESA Solar Orbiter observing the Sun.Credit: NASA About the Author
      John J. Uri

      Share
      Details
      Last Updated Dec 10, 2024 Related Terms
      Helios 1 Missions NASA History Explore More
      3 min read NASA Moves Drone Package Delivery Industry Closer to Reality
      Article 1 hour ago 5 min read NASA Scientific Balloon Flights to Lift Off From Antarctica
      Article 1 hour ago 6 min read NASA Invites Social Creators for Launch of Two NASA Missions 
      Article 3 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA’s SPHEREx observatory undergoes integration and testing at BAE Systems in Boulder, Colorado, in April 2024. The space telescope will use a technique called spectroscopy across the entire sky, capturing the universe in more than 100 colors. BAE Systems Registration is open for digital content creators to attend the launch of NASA’s Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) mission, and NASA’s Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission. SPHEREx will provide the first all-sky spectral survey, collecting data on more than 450 million galaxies along with more than 100 million stars in the Milky Way in order to explore the origins of the universe. PUNCH is a constellation of four small satellites in low-Earth orbit that will make global, 3D observations of the Sun’s corona to learn how the mass and energy there become solar wind. 
      NASA and SpaceX are targeting no earlier than February 2025 for the SPHEREx and PUNCH missions launch on a SpaceX Falcon 9 rocket from Space Launch Complex 4E at Vandenberg Space Force Base in California. 
      If your passion is to communicate and engage the world online, then this is the event for you! Seize the opportunity to see and share the SPHEREx and PUNCH missions’ launch. 
      A maximum of 50 social media users will be selected to attend this one-day event and will be given access similar to news media. 
      NASA Social participants will have the opportunity to: 
      View the launch of the SPHEREx and PUNCH satellites on a SpaceX Falcon 9 rocket.   Tour NASA facilities at Vandenberg Space Force Base.  Meet and interact with SPHEREx and PUNCH subject matter experts.  Meet fellow space enthusiasts who are active on social media.  NASA Social registration for the SPHEREx and PUNCH launch opens on Monday, Dec. 9, and the deadline to apply is Monday, Dec. 23 at noon ET. All social applications will be considered on a case-by-case basis. 
      APPLY NOW 
      Do I need to have a social media account to register? 
      Yes. This event is designed for people who: 
      Actively use multiple social networking platforms and tools to disseminate information to a unique audience.  Regularly produce new content that features multimedia elements.  Have the potential to reach a large number of people using digital platforms, or reach a unique audience, separate and distinctive from traditional news media and/or NASA audiences.  Must have an established history of posting content on social media platforms.  Have previous postings that are highly visible, respected, and widely recognized.  Users on all social networks are encouraged to use the hashtag #NASASocial. Updates and information about the event will be shared via @NASASocial and @NASA_LSP on X and via posts to LSP’s Facebook. 
      How do I register? 
      Registration for this event opens Monday, Dec. 9, and closes Monday, Dec. 23 at noon ET. Registration is for one person only (you) and is nontransferable. Each individual wishing to attend must register separately. Each application will be considered on a case-by-case basis. 
      Can I register if I am not a U.S. citizen? 
      Because of the security restrictions on the Space Force base, registration is limited to U.S. citizens. If you have a valid permanent resident card, you will be processed as a U.S. citizen. 
      When will I know if I am selected? 
      After registrations have been received and processed, an email with confirmation information and additional instructions will be sent to those selected. We expect to send the acceptance notifications by Jan. 31. 
      What are NASA Social credentials? 
      All social applications will be considered on a case-by-case basis. Those chosen must prove through the registration process that they meet specific engagement criteria. 
      If you do not make the registration list for this NASA Social, you still can attend the launch offsite and participate in the conversation online.  
      What are the registration requirements? 
      Registration indicates your intent to travel to Vandenberg Space Force Base in California and attend the one-day event in person. You are responsible for your own expenses for travel, accommodations, food, and other amenities. 
      Some events and participants scheduled to appear at the event are subject to change without notice. NASA is not responsible for loss or damage incurred as a result of attending. NASA, moreover, is not responsible for loss or damage incurred if the event is cancelled with limited or no notice. Please plan accordingly. 
      Vandenberg is a government facility. Those who are selected will need to complete an additional registration step to receive clearance to enter the secure areas. 
      IMPORTANT: To be admitted, you will need to provide two forms of unexpired government-issued identification; one must be a photo ID and match the name provided on the registration. Those without proper identification cannot be admitted. 
      For a complete list of acceptable forms of ID, please visit: NASA Credentialing Identification Requirements. 
      All registrants must be at least 18 years old. 
      What if the launch date changes? 
      Many different factors can cause a scheduled launch date to change multiple times. If the launch date changes, NASA may adjust the date of the NASA Social accordingly to coincide with the new target launch date. NASA will notify registrants of any changes by email. 
      If the launch is postponed, attendees will be invited to attend a later launch date. NASA cannot accommodate attendees for delays beyond 72 hours. 
      NASA Social attendees are responsible for any additional costs they incur related to any launch delay. We strongly encourage participants to make travel arrangements that are refundable and/or flexible. 
      What if I cannot come to Vandenberg Space Force Base? 
      If you cannot come to Vandenberg Space Force Base and attend in person, you should not register for the NASA Social. You can follow the conversation online using #NASASocial.  
      You can watch the launch on NASA+ or plus.nasa.gov/. NASA will provide regular launch and mission updates on @NASA and @NASA_LSP on X. 
      If you cannot make this NASA Social, don’t worry; NASA is planning many other Socials in the near future at various locations! Check back here for updates. 
      Keep Exploring Discover More Topics From NASA
      Sun
      Overview The Sun’s gravity holds the solar system together, keeping everything – from the biggest planets to the smallest particles…
      PUNCH
      SPHEREx
      Galaxies
      Galaxies consist of stars, planets, and vast clouds of gas and dust, all bound together by gravity. The largest contain…
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      U.S. Ambassador to El Salvador, William H. Duncan, speaks to attendees at the SERVIR Central America launch in San Salvador. SERVIR SERVIR, NASA’s flagship partnership with the U.S. Agency for International Development (USAID), launched a new regional center, or hub, in Central America on Dec. 3. The new hub is in partnership with the Tropical Agricultural Research and Higher Education Center in Turrialba, Costa Rica, and is supported by the USAID Central America and Mexico Regional Program. The launch event took place in San Salvador, El Salvador.
      The event introduced guests to the structure and mission of the new hub, featuring remarks from SERVIR Global Program Manager Dan Irwin and video overviews of some of its planned projects. Karen St Germain, director of NASA’s Earth Science Division and U.S. Ambassador to El Salvador, William H. Duncan, provided recorded remarks congratulating the new program.  
      Central America holds a special place in SERVIR’s history. Over three decades ago, Dan Irwin, research scientist at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and SERVIR’s founder and Global Program Manager, was working in Guatemala to use satellite data to map a new forest reserve. During this time, Irwin met with representatives from Central American environmental ministries to demonstrate how NASA Earth data could help to address environmental challenges and reduce disaster risk.
      “In this meeting, I realized that NASA has a vast library of Earth data, but this information wasn’t being used by experts across the globe who have the best understanding of local development issues. I wanted to find a way to bridge that gap,” Irwin shared.
      Under Irwin’s leadership, NASA and USAID partnered to create the SERVIR program, which was formally established in 2005. SERVIR’s mission is to “connect space to village,” increasing global access to NASA Earth data to support locally led environmental and development efforts.
      SERVIR Global Program Manager Dan Irwin from NASA’s Marshall Space Flight Center speaks about the history of the SERVIR program at the Central America launch in San Salvador. SERVIR SERVIR soon expanded its partnerships across the globe, with regional hubs in South America, Asia, and Africa.
      SERVIR Central America will work to serve more than 40 million people throughout the region, collaborating with governments, universities, and civil society organizations to support existing natural resource management and development decision-making. The hub will support resilience against environmental challenges including  hurricanes, droughts, deforestation, and biodiversity loss.
      SERVIR Central America will also strengthen the region’s technical capacity to use Earth observations and promote opportunities in science, technology, engineering, and math. The hub will expand the use of geospatial technology by young people and other groups with limited access to these tools.
      “The launch of SERVIR Central America marks a milestone in the collaboration between space-based technology and Central America’s local needs,” said Irwin. “This initiative represents NASA and USAID’s commitment to putting advanced technology at the service of the region.”
      To learn more about SERVIR, visit:
      https://www.nasa.gov/servir
      Elizabeth Vlock
      Headquarters, Washington
      202-358-1600
      elizabeth.a.vlock@nasa.gov
      Lane Figueroa
      Huntsville, Alabama
      256.544.0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated Dec 06, 2024 LocationMarshall Space Flight Center Related Terms
      SERVIR (Regional Visualization and Monitoring System) Marshall Earth Sciences Marshall Science Research & Projects Marshall Space Flight Center Explore More
      5 min read NASA’s IXPE Details Shapes of Structures at Newly Discovered Black Hole
      Article 4 mins ago 4 min read NASA AI, Open Science Advance Disaster Research and Recovery
      By Lauren Perkins When you think of NASA, disasters such as hurricanes may not be…
      Article 1 week ago 4 min read NASA Marshall Thermal Engineering Lab Provides Key Insight to Human Landing System
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Video: 00:03:40 The third Copernicus Sentinel-1 satellite, Sentinel-1C, has launched aboard a Vega-C rocket, flight VV25, from Europe’s Spaceport in French Guiana. The rocket lifted off on 5 December 2024 at 22:20 CET (18:20 local time).
      Sentinel-1C extends the legacy of its predecessors, delivering high-resolution radar imagery to monitor Earth’s changing environment, supporting a diverse range of applications and advance scientific research. Additionally, Sentinel-1C introduces new capabilities for detecting and monitoring maritime traffic. 
      The launch also marks Vega-C’s ‘return to flight’, a key step in restoring Europe’s independent access to space. Vega-C is the evolution of the Vega family of rockets and delivers increased performance, greater payload volume and improved competitiveness.
      View the full article
  • Check out these Videos

×
×
  • Create New...