Jump to content

NASA’s Global Science Hackathon Attracts Thousands of Participants


NASA

Recommended Posts

  • Publishers
NASA's 2023 Space Apps Challenge
NASA

More than 50,000 participants have registered for the 2023 NASA Space Apps Challenge Saturday, Oct. 7, to Sunday, Oct. 8, which is the largest annual worldwide hackathon.

During the two-day event, participants form teams and use software development, engineering, art, storytelling, science, and other skills to solve science-related challenges written by NASA personnel. Teams can be in-person at local events held around the world, or participate virtually.

This year’s theme celebrates the benefits and successes created through sharing open data: Explore Open Science Together.

“NASA has a 60-year legacy of pushing the limits of how science is used to understand our universe,” said Nicola Fox, associate administrator for science at NASA Headquarters in Washington. “This year’s Space Apps challenge supports one of our key goals to expand those limits: Spark a culture that ensures and insists our data is easily accessible for everyone. Open science produces research that is transparent, reproducible, and replicable – while increasing diversity and inclusion.”  

The Space Apps Challenge experience provides a platform to network locally and globally, develop new skills, and identify pathways to pursue academic and professional opportunities.

Here is a list of hackathon activities online:

  • Follow activities on Space Apps X, Space Apps Facebook, and Space Apps Instagram accounts. Use #SpaceApps on social posts.
  • 5 p.m. EDT on Friday: “Welcome to Space Apps” kick-off video premieres on the Space Apps YouTube page
  • 2:30 a.m. EDT on Sunday: Instagram Live on the Space Apps account featuring four local events from around the world (Italy, Australia, and two from across the United States)

Once the hackathon concludes, projects are submitted for judging to NASA and other space agency experts. Participants compete for one of 10 global awards. Winners are expected to be announced in January 2024, followed by a winners’ celebration in June.

Thirteen space agencies, as well as community partners and volunteers from around the world, collaborate with NASA to host a successful hackathon. Since its inception in 2021, the challenge has engaged more than 260,000 registrants from nearly 200 countries/territories around the world to build innovative solutions to challenges faced on Earth and in space. There is no cost to participate.

Learn more about NASA’s Space Apps Challenge online:

https://www.spaceappschallenge.org/2023/challenges/

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s SpaceX Crew-8 at the agency’s Kennedy Space Center in Florida. Pictured left to right, Roscosmos cosmonaut Alexander Grebenkin, NASA astronauts Michael Barratt, Matthew Dominick, and Jeanette Epps.Credit: SpaceX After spending 235 days in space, NASA’s SpaceX Crew-8 astronauts will discuss their science mission aboard the International Space Station during a post-flight news conference at 3:15 p.m. EST Friday, Nov. 8, from the agency’s Johnson Space Center in Houston.
      NASA astronauts Michael Barratt, Matthew Dominick, and Jeanette Epps will answer questions about their mission. The three crew members, along with Roscosmos cosmonaut Alexander Grebenkin, returned to Earth on Oct. 25. Grebenkin will not participate because of his travel schedule.
      NASA will provide live coverage on NASA+ and the agency’s website. Learn how to watch NASA content through a variety of additional platforms, including social media.
      Media are invited to attend in-person or virtually. For in-person attendance, media must contact the NASA Johnson newsroom no later than 5 p.m. Thursday, Nov. 7 at: jsccommu@mail.nasa.gov or 281-483-5111. Media participating by phone must dial into the news conference no later than 10 minutes prior to the start of the event to ask questions. Questions also may be submitted on social media using #AskNASA. A copy of NASA’s media accreditation policy is available on the agency’s website.
      The crew spent more than seven months in space, including 232 days aboard the orbiting laboratory, traveling nearly 100 million miles, and completing 3,760 orbits around Earth. While living and working aboard station, the crew completed hundreds of science experiments and technology demonstrations.
      Get the latest NASA space station news, images, and features on Instagram, Facebook, and X.
      Learn more about NASA’s Commercial Crew Program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Jimi Russell / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      james.j.russell@nasa.gov / claire.a.o’shea@nasa.gov
      Raegan Scharfetter
      Johnson Space Center, Houston
      281-910-4989
      raegan.r.scharfetter@nasa.gov
      Share
      Details
      Last Updated Nov 01, 2024 LocationNASA Headquarters Related Terms
      Commercial Crew Astronauts Humans in Space International Space Station (ISS) ISS Research Jeanette J. Epps Johnson Space Center Matthew Dominick Michael R. Barratt View the full article
    • By NASA
      Better Monitoring of the Air Astronauts Breathe

      Ten weeks of operations showed that a second version of the Spacecraft Atmosphere Monitor is sensitive enough to determine variations in the composition of cabin air inside the International Space Station. Volatile organic compounds and particulates in cabin air could pose a health risk for crew members, and this device increases the speed and accuracy of assessing such risk.

      Spacecraft Atmosphere Monitor is a miniaturized gas chromatograph mass spectrometer used to analyze the air inside the space station and ensure that it is safe for the crew and equipment. The device automatically reports results to the ground, eliminating the need to return samples to Earth. This version has several other technological advances, including that it can be relocated, is smaller, and uses less power.
      The first Spacecraft Atmosphere Monitor device on the International Space Station. NASA/Chris Cassidy Digging Deeper into Microgravity Effects on Muscle

      Prolonged exposure to microgravity affects human muscle precursor cells known as satellite cells and causes changes in the expression of specific genes involved in muscle structure and nerves. Exercise regimens on the space station do not adequately prevent or counteract muscle loss in astronauts, which can affect their motor function during missions and after return to Earth. Results could inform design of nutritional and pharmacological countermeasures to muscle changes during spaceflight.

      Muscle loss represents a major obstacle to human long-term spaceflight. Myogravity, an investigation developed with the Italian space agency ASI, looked at microgravity-induced changes in adult stem cells involved in the growth, maintenance, and repair of skeletal muscle tissue, known as satellite cells. These cells may play a major role in muscle loss during spaceflight.
      European Space Agency astronaut Paolo Nespoli sets up the Myogravity experiment. NASA Validating Next-Generation Earth Measurements

      Researchers completed a preliminary evaluation of the station’s Hyperspectral Imager Suite (HISUI) and report that the difference between model-corrected and actual measurements is small. Validation of spaceborne optical sensors like HISUI is important to demonstrate they provide the accuracy needed for scientific research.

      The JAXA (Japan Aerospace Exploration Agency) HISUI investigation tests a next-generation spaceborne hyperspectral Earth imaging system for gathering data on reflection of light from Earth’s surface, which reveals characteristics and physical properties of a target area. This technology has potential applications such as monitoring vegetation and identifying natural resources.
      The Hyperspectral Imager Suite is visible on the far left in this image outside the space station. NASAView the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Permafrost Tunnel north of Fairbanks, Alaska, was dug in the 1960s and is run by the U.S. Army’s Cold Regions Research and Engineering Laboratory. It is the site of much research into permafrost — ground that stays frozen throughout the year, for multiple years.NASA/Kate Ramsayer Earth’s far northern reaches have locked carbon underground for millennia. New research paints a picture of a landscape in change.
      A new study, co-authored by NASA scientists, details where and how greenhouse gases are escaping from the Earth’s vast northern permafrost region as the Arctic warms. The frozen soils encircling the Arctic from Alaska to Canada to Siberia store twice as much carbon as currently resides in the atmosphere — hundreds of billions of tons — and most of it has been buried for centuries.
      An international team, led by researchers at Stockholm University, found that from 2000 to 2020, carbon dioxide uptake by the land was largely offset by emissions from it. Overall, they concluded that the region has been a net contributor to global warming in recent decades in large part because of another greenhouse gas, methane, that is shorter-lived but traps significantly more heat per molecule than carbon dioxide.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Greenhouse gases shroud the globe in this animation showing data from 2021. Carbon dioxide is shown in orange; methane is shown in purple. Methane traps heat 28 times more effectively than carbon dioxide over a 100-year timescale. Wetlands are a significant source of such emissions.NASA’s Scientific Visualization Studio The findings reveal a landscape in flux, said Abhishek Chatterjee, a co-author and scientist at NASA’s Jet Propulsion Laboratory in Southern California. “We know that the permafrost region has captured and stored carbon for tens of thousands of years,” he said. “But what we are finding now is that climate-driven changes are tipping the balance toward permafrost being a net source of greenhouse gas emissions.”
      Carbon Stockpile
      Permafrost is ground that has been permanently frozen for anywhere from two years to hundreds of thousands of years. A core of it reveals thick layers of icy soils enriched with dead plant and animal matter that can be dated using radiocarbon and other techniques. When permafrost thaws and decomposes, microbes feed on this organic carbon, releasing some of it as greenhouse gases.
      Unlocking a fraction of the carbon stored in permafrost could further fuel climate change. Temperatures in the Arctic are already warming two to four times faster than the global average, and scientists are learning how thawing permafrost is shifting the region from being a net sink for greenhouse gases to becoming a net source of warming.
      They’ve tracked emissions using ground-based instruments, aircraft, and satellites. One such campaign, NASA’s Arctic-Boreal Vulnerability Experiment (ABoVE), is focused on Alaska and western Canada. Yet locating and measuring emissions across the far northern fringes of Earth remains challenging. One obstacle is the vast scale and diversity of the environment, composed of evergreen forests, sprawling tundra, and waterways.
      This map, based on data provided by the National Snow and Ice Data Center, shows the extent of Arctic permafrost. The amount of permafrost underlying the surface ranges from continuous — in the coldest areas — to more isolated and sporadic patches.NASA Earth Observatory Cracks in the Sink
      The new study was undertaken as part of the Global Carbon Project’s RECCAP-2 effort, which brings together different science teams, tools, and datasets to assess regional carbon balances every few years. The authors followed the trail of three greenhouse gases — carbon dioxide, methane, and nitrous oxide — across 7 million square miles (18 million square kilometers) of permafrost terrain from 2000 to 2020.
      Researchers found the region, especially the forests, took up a fraction more carbon dioxide than it released. This uptake was largely offset by carbon dioxide emitted from lakes and rivers, as well as from fires that burned both forest and tundra.
      They also found that the region’s lakes and wetlands were strong sources of methane during those two decades. Their waterlogged soils are low in oxygen while containing large volumes of dead vegetation and animal matter — ripe conditions for hungry microbes. Compared to carbon dioxide, methane can drive significant climate warming in short timescales before breaking down relatively quickly. Methane’s lifespan in the atmosphere is about 10 years, whereas carbon dioxide can last hundreds of years.
      The findings suggest the net change in greenhouse gases helped warm the planet over the 20-year period. But over a 100-year period, emissions and absorptions would mostly cancel each other out. In other words, the region teeters from carbon source to weak sink. The authors noted that events such as extreme wildfires and heat waves are major sources of uncertainty when projecting into the future.
      Bottom Up, Top Down
      The scientists used two main strategies to tally greenhouse gas emissions from the region. “Bottom-up” methods estimate emissions from ground- and air-based measurements and ecosystem models. Top-down methods use atmospheric measurements taken directly from satellite sensors, including those on NASA’s Orbiting Carbon Observatory-2 (OCO-2) and JAXA’s (Japan Aerospace Exploration Agency)Greenhouse Gases Observing Satellite.
      Regarding near-term, 20-year, global warming potential, both scientific approaches aligned on the big picture but differed in magnitude: The bottom-up calculations indicated significantly more warming.
      “This study is one of the first where we are able to integrate different methods and datasets to put together this very comprehensive greenhouse gas budget into one report,” Chatterjee said. “It reveals a very complex picture.”
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      Written by Sally Younger
      2024-147
      Share
      Details
      Last Updated Oct 29, 2024 Related Terms
      Earth Carbon Cycle Climate Change Greenhouse Gases Jet Propulsion Laboratory Explore More
      6 min read NASA’s Perseverance Rover Looks Back While Climbing Slippery Slope
      Article 22 hours ago 6 min read NASA Successfully Integrates Coronagraph for Roman Space Telescope
      Article 1 day ago 3 min read High-Altitude ER-2 Flights Get Down-to-Earth Data
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Stephanie Dudley, Gateway’s mission integration and utilization manager, sits inside a high-fidelity HALO (Habitation and Logistics Outpost) mockup at NASA’s Johnson Space Center.NASA/Josh Valcarcel Stephanie Dudley sits at the intersection of human spaceflight and science for Gateway, humanity’s first lunar space station that will host astronauts and unique scientific investigations.
      Gateway’s mission integration and utilization manager, Dudley recently posed for this photo in a high-fidelity mockup of the space station’s HALO (Habitation and Logistics Outpost), where astronauts will live, conduct science, and prepare for missions to investigate the lunar South Pole region. Dudley works with NASA’s partner space agencies and academia to identify science opportunities on Gateway.
      HALO will host various science experiments, including the Heliophysics Environmental and Radiation Measurement Experiment Suite, led by NASA, and the Internal Dosimeter Array, led by ESA (European Space Agency) and JAXA (Japan Aerospace Exploration Agency). The heliophysics experiment will fly on HALO’s exterior, and the dosimeter will be housed inside Gateway in a series of racks, mockups of which are shown to the right of Dudley in the image above. Both experiments will study solar and cosmic radiation to help the science community better understand how to protect astronauts and hardware during deep space travels to places like Mars.
      “We are building [Gateway] for a 15-year lifespan, but definitely hope that we go longer than that,” Dudley recently said on Houston We Have a Podcast. “And so that many years of scientific study in a place where humans have never worked and lived long-term, Gateway is going to allow us to do that.”
      Dudley pulls double duty as a deputy director for the Exploration Operations Office within NASA’s Moon to Mars Program, a role that connects her to Artemis science beyond Gateway, including science investigations on the Orion and Human Landing System spacecraft and lunar terrain vehicle.
      “My work…is helping to make sure that across all of the six [Artemis] programs, including Gateway, we’re all focusing on utilization in the same way,” Dudley said.
      Dudley’s team coordinates science payloads for Artemis II, the first mission to send humans to the Moon since 1972, and Artemis III, the first landing in the lunar South Pole region that is of keen interest to the global science community.
      Gateway’s HALO will launch with the space station’s Power and Propulsion Element ahead of the Artemis IV mission in 2028, the first lunar mission to include an orbiting space station.
      “Gateway sounds so science fiction, but it’s real,” Dudley recently said. “And we’re building it. And in a few years, it’s going to be around the Moon and that’s when the real work, the fun work in my opinion, is going to begin and science will never be the same.”
      Gateway is humanity’s first lunar space station as a central component of the Artemis campaign that will return humans to the Moon for scientific discovery and chart a path for the first human missions to Mars.
      Gateway’s HALO (Habitation and Logistics Outpost), one of four Gateway modules where astronauts will live, conduct science and prepare for lunar surface missions.Thales Alenia Space An artist’s rendering of the Heliophysics Environmental and Radiation Measurement Experiment Suite, or HERMES, one of the three Gateway science experiments that will study solar and cosmic radiation.NASA An artist’s rendering of HALO in lunar orbit. The HERMES science experiment is shown on the top right corner of the space station element.NASA/Alberto Bertolin, Bradley Reynolds Learn More About Gateway Share
      Details
      Last Updated Oct 29, 2024 EditorBriana R. ZamoraContactDylan Connelldylan.b.connell@nasa.govLocationJohnson Space Center Related Terms
      Gateway Space Station Artemis Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Humans in Space Johnson Space Center Science & Research Explore More
      2 min read Gateway: Life in a Lunar Module
      Article 7 days ago 1 min read Gateway Stands Tall for Stress Test
      The Gateway space station’s Habitation and Logistics Outpost has successfully completed static load testing in…
      Article 4 weeks ago 2 min read Through Astronaut Eyes, Virtual Reality Propels Gateway Forward  
      NASA astronauts are using virtual reality to explore Gateway. When they slip on their headsets,…
      Article 7 months ago Keep Exploring Discover More Topics From NASA
      Space Launch System (SLS)
      Orion Spacecraft
      Gateway
      Human Landing System
      View the full article
    • By NASA
      3 min read
      Sols 4345-4347: Contact Science is Back on the Table
      NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera on sol 4343 — Martian day 4,343 of the Mars Science Laboratory mission — on Oct. 24, 2024 at 15:26:28 UTC. NASA/JPL-Caltech Earth planning date: Friday, Oct. 25, 2024
      The changes to the plan Wednesday, moving the drive a sol earlier, meant that we started off planning this morning about 18 meters (about 59 feet) farther along the western edge of Gediz Vallis and with all the data we needed for planning. This included the knowledge that once again one of Curiosity’s wheels was perched on a rock. Luckily, unlike on Wednesday, it was determined that it was safe to still go ahead with full contact science for this weekend. This consisted of two targets “Mount Brewer” and “Reef Lake,” two targets on the top and side of the same block.
      Aside from the contact science, Curiosity has three sols to fill with remote imaging. The first two sols include “targeted science,” which means all the imaging of specific targets in our current workspace. Then, after we drive away on the second sol, we fill the final sol of the plan with “untargeted science,” where we care less about knowing exactly where the rover is ahead of time. A lot of the environmental team’s (or ENV) activities fall under this umbrella, which is why our dedicated “ENV Science Block” (about 30 minutes of environmental activities one morning every weekend) tends to fall at the end of a weekend plan. 
      But that’s getting ahead of myself. The weekend plan starts off with two ENV activities — a dust devil movie and a suprahorizon cloud movie. While cloud movies are almost always pointed in the same direction, our dust devil movie has to be specifically targeted. Recently we’ve been looking southeast toward a more sandy area (which you can see above), to see if we can catch dust lifting there. After those movies we hand the reins back over to the geology team (or GEO) for ChemCam observations of Reef Lake and “Poison Meadow.” Mastcam will follow this up with its own observations of Reef Lake and the AEGIS target from Wednesday’s plan. The rover gets some well-deserved rest before waking up for the contact science I talked about above, followed by a late evening Mastcam mosaic of “Fascination Turret,” a part of Gediz Vallis ridge that we’ve seen before. 
      We’re driving away on the second sol, but before that we have about another hour of science. ChemCam and Mastcam both have observations of “Heaven Lake” and the upper Gediz Vallis ridge, and ENV has a line-of-sight observation, to see how much dust is in the crater, and a pre-drive deck monitoring image to see if any dust moves around on the rover deck due to either driving or wind. Curiosity gets a short nap before a further drive of about 25 meters (about 82 feet). 
      The last sol of the weekend is a ChemCam special. AEGIS will autonomously choose a target for imaging, and then ChemCam has a passive sky observation to examine changing amounts of atmospheric gases. The weekend doesn’t end at midnight, though — we wake up in the morning for the promised morning ENV block, which we’ve filled with two cloud movies, another line-of-sight, and a tau observation to see how dusty the atmosphere is.
      Written by Alex Innanen, Atmospheric Scientist at York University
      Share








      Details
      Last Updated Oct 28, 2024 Related Terms
      Blogs Explore More
      4 min read Sols 4343-4344: Late Slide, Late Changes


      Article


      3 days ago
      2 min read Red Rocks with Green Spots at ‘Serpentine Rapids’


      Article


      3 days ago
      4 min read Sols 4341-4342: A Bumpy Road


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...