Jump to content

The sun reflects off peaks of the snow-capped Swiss Alps


Recommended Posts

  • Publishers
Posted
The sun reflects off peaks of the snow-capped Swiss Alps while casting shadows in the foothills of the mountain range as the International Space Station orbited 260 miles above Switzerland.
iss069e092489 (Sept. 25, 2023) — The sun reflects off peaks of the snow-capped Swiss Alps while casting shadows in the foothills of the mountain range as the International Space Station orbited 260 miles above Switzerland.
NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Danah Tommalieh, commercial pilot and engineer at Reliable Robotics, inputs a flight plan at the control center in Mountain View, California, ahead of remotely operating a Cessna 208 aircraft at Hollister municipal airport in Hollister, California.NASA/Don Richey NASA recently began a series of flight tests with partners to answer an important aviation question: What will it take to integrate remotely piloted or autonomous planes carrying large packages and cargo safely into the U.S. airspace? Researchers tested new technologies in Hollister, California, that are helping to investigate what tools and capabilities are needed to make these kinds of flights routine.  
      The commercial industry continues to make advancements in autonomous aircraft systems aimed at making it possible for remotely operated aircraft to fly over communities – transforming the way we will transport people and goods. As the Federal Aviation Administration (FAA) develops standards for this new type of air transportation, NASA is working to ensure these uncrewed flights are safe by creating the required technological tools and infrastructure. These solutions could be scaled to support many different remotely piloted aircraft – including air taxis and package delivery drones – in a shared airspace with traditional crewed aircraft. 
      “Remotely piloted aircraft systems could eventually deliver cargo and people to rural areas with limited access to commercial transportation and delivery services,” said Shivanjli Sharma, aerospace engineer at NASA’s Ames Research Center in California’s Silicon Valley. “We’re aiming to create a healthy ecosystem of many different kinds of remotely piloted operations. They will fly in a shared airspace to provide communities with better access to goods and services, like medical supply deliveries and more efficient transportation.”  
      During a flight test in November, Reliable Robotics, a company developing an autonomous flight system, remotely flew its Cessna 208 Caravan aircraft through pre-approved flight paths in Hollister, California. 
      Although a safety pilot was aboard, a Reliable Robotics remote pilot directed the flight from their control center in Mountain View, more than 50 miles away.
      Cockpit of Reliable Robotics’ Cessna 208 aircraft outfitted with autonomous technology for remotely-piloted operations.NASA/Brandon Torres Navarrete Congressional staffers from the United States House and Senate’s California delegation joined NASA Deputy Associate Administrator for Aeronautics Research Mission Directorate, Carol Caroll, Ames Aeronautics Director, Huy Tran, and other Ames leadership at Reliable Robotics Headquarters to view the live remote flight.
      Researchers evaluated a Collins Aerospace ground-based surveillance system’s ability to detect nearby air traffic and provide the remote pilot with information in order to stay safely separated from other aircraft in the future. 
      Initial analysis shows the ground-based radar actively surveilled the airspace during the aircraft’s taxi, takeoff, and landing. The data was transmitted from the radar system to the remote pilot at Reliable Robotics. In the future, this capability could help ensure aircraft remain safely separated across all phases of fight.   
      A Reliable Robotics’ modified Cessna 208 aircraft flies near Hollister Airport. A Reliable Robotics pilot operated the aircraft remotely from the control center in Mountain View.NASA/Brandon Torres Naverrete While current FAA operating rules require pilots to physically see and avoid other aircraft from inside the cockpit, routine remotely piloted aircraft will require a suite of integrated technologies to avoid hazards and coordinate with other aircraft in the airspace.  
      A radar system for ground-based surveillance offers one method for detecting other traffic in the airspace and at the airport, providing one part of the capability to ensure pilots can avoid collision and accomplish their desired missions. Data analysis from this testing will help researchers understand if ground-based surveillance radar can be used to satisfy FAA safety rules for remotely piloted flights. 
      NASA will provide analysis and reports of this flight test to the FAA and standards bodies. 
      “This is an exciting time for the remotely piloted aviation community,” Sharma said. “Among other benefits, remote operations could provide better access to healthcare, bolster natural disaster response efforts, and offer more sustainable and effective transportation to both rural and urban communities. We’re thrilled to provide valuable data to the industry and the FAA to help make remote operations a reality in the near future.”  
      Over the next year, NASA will work with additional aviation partners on test flights and simulations to test weather services, communications systems, and other autonomous capabilities for remotely piloted flights. NASA researchers will analyze data from these tests to provide a comprehensive report to the FAA and the community on what minimum technologies and capabilities are needed to enable and scale remotely piloted operations. 
      This flight test data analysis is led out of NASA Ames under the agency’s Air Traffic Management Exploration project. This effort supports the agency’s Advanced Air Mobility mission research, ensuring the United States stays at the forefront of aviation innovation. 
      Share
      Details
      Last Updated Jan 07, 2025 Related Terms
      Ames Research Center Advanced Air Mobility Aeronautics Aeronautics Research Mission Directorate Air Traffic Management – Exploration Airspace Operations and Safety Program Drones & You Explore More
      3 min read How a NASA Senior Database Administrator Manifested her Dream Job
      Article 2 weeks ago 16 min read NASA Ames Astrogram – December 2024
      Article 3 weeks ago 5 min read NASA’s Ames Research Center Celebrates 85 Years of Innovation
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 Min Read NASA’s Parker Solar Probe Makes History With Closest Pass to Sun
      An artist’s concept showing Parker Solar Probe. Credits:
      NASA/APL Operations teams have confirmed NASA’s mission to “touch” the Sun survived its record-breaking closest approach to the solar surface on Dec. 24, 2024.
      Breaking its previous record by flying just 3.8 million miles above the surface of the Sun, NASA’s Parker Solar Probe hurtled through the solar atmosphere at a blazing 430,000 miles per hour — faster than any human-made object has ever moved. A beacon tone received late on Dec. 26 confirmed the spacecraft had made it through the encounter safely and is operating normally.
      This pass, the first of more to come at this distance, allows the spacecraft to conduct unrivaled scientific measurements with the potential to change our understanding of the Sun.
      Flying this close to the Sun is a historic moment in humanity’s first mission to a star.
      Nicky fox
      NASA Associate Administrator, Science Mission Directorate
      “Flying this close to the Sun is a historic moment in humanity’s first mission to a star,” said Nicky Fox, who leads the Science Mission Directorate at NASA Headquarters in Washington. “By studying the Sun up close, we can better understand its impacts throughout our solar system, including on the technology we use daily on Earth and in space, as well as learn about the workings of stars across the universe to aid in our search for habitable worlds beyond our home planet.”
      NASA’s Parker Solar Probe survived its record-breaking closest approach to the solar surface on Dec. 24, 2024. Breaking its previous record by flying just 3.8 million miles above the surface of the Sun, the spacecraft hurtled through the solar atmosphere at a blazing 430,000 miles per hour — faster than any human-made object has ever moved.
      Credits: NASA This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14741.
      Parker Solar Probe has spent the last six years setting up for this moment. Launched in 2018, the spacecraft used seven flybys of Venus to gravitationally direct it ever closer to the Sun. With its last Venus flyby on Nov. 6, 2024, the spacecraft reached its optimal orbit. This oval-shaped orbit brings the spacecraft an ideal distance from the Sun every three months — close enough to study our Sun’s mysterious processes but not too close to become overwhelmed by the Sun’s heat and damaging radiation. The spacecraft will remain in this orbit for the remainder of its primary mission.
      “Parker Solar Probe is braving one of the most extreme environments in space and exceeding all expectations,” said Nour Rawafi, the project scientist for Parker Solar Probe at the Johns Hopkins Applied Physics Laboratory (APL), which designed, built, and operates the spacecraft from its campus in Laurel, Maryland. “This mission is ushering a new golden era of space exploration, bringing us closer than ever to unlocking the Sun’s deepest and most enduring mysteries.”
      Close to the Sun, the spacecraft relies on a carbon foam shield to protect it from the extreme heat in the upper solar atmosphere called the corona, which can exceed 1 million degrees Fahrenheit. The shield was designed to reach temperatures of 2,600 degrees Fahrenheit — hot enough to melt steel — while keeping the instruments behind it shaded at a comfortable room temperature. In the hot but low-density corona, the spacecraft’s shield is expected to warm to 1,800 degrees Fahrenheit.
      The spacecraft’s record close distance of 3.8 million miles may sound far, but on cosmic scales it’s incredibly close. If the solar system was scaled down with the distance between the Sun and Earth the length of a football field, Parker Solar Probe would be just four yards from the end zone — close enough to pass within the tenuous outer atmosphere of the Sun known as the corona. NASA/APL “It’s monumental to be able to get a spacecraft this close to the Sun,” said John Wirzburger, the Parker Solar Probe mission systems engineer at APL. “This is a challenge the space science community has wanted to tackle since 1958 and had spent decades advancing the technology to make it possible.”
      By flying through the solar corona, Parker Solar Probe can take measurements that help scientists better understand how the region gets so hot, trace the origin of the solar wind (a constant flow of material escaping the Sun), and discover how energetic particles are accelerated to half the speed of light.
      “The data is so important for the science community because it gives us another vantage point,” said Kelly Korreck, a program scientist at NASA Headquarters and heliophysicist who worked on one of the mission’s instruments. “By getting firsthand accounts of what’s happening in the solar atmosphere, Parker Solar Probe has revolutionized our understanding of the Sun.”
      Previous passes have already aided scientists’ understanding of the Sun. When the spacecraft first passed into the solar atmosphere in 2021, it found the outer boundary of the corona is wrinkled with spikes and valleys, contrary to what was expected. Parker Solar Probe also pinpointed the origin of important zig-zag-shaped structures in the solar wind, called switchbacks, at the visible surface of the Sun — the photosphere.
      Since that initial pass into the Sun, the spacecraft has been spending more time in the corona, where most of the critical physical processes occur.
      This conceptual image shows Parker Solar Probe about to enter the solar corona. NASA/Johns Hopkins APL/Ben Smith “We now understand the solar wind and its acceleration away from the Sun,” said Adam Szabo, the Parker Solar Probe mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This close approach will give us more data to understand how it’s accelerated closer in.”
      Parker Solar Probe has also made discoveries across the inner solar system. Observations showed how giant solar explosions called coronal mass ejections vacuum up dust as they sweep across the solar system, and other observations revealed unexpected findings about solar energetic particles. Flybys of Venus have documented the planet’s natural radio emissions from its atmosphere, as well as the first complete image of its orbital dust ring.
      So far, the spacecraft has only transmitted that it’s safe, but soon it will be in a location that will allow it to downlink the data it collected on this latest solar pass.
      The data that will come down from the spacecraft will be fresh information about a place that we, as humanity, have never been.
      Joe Westlake
      Heliophysics Division Director, NASA Headquarters
      “The data that will come down from the spacecraft will be fresh information about a place that we, as humanity, have never been,” said Joe Westlake, the director of the Heliophysics Division at NASA Headquarters. “It’s an amazing accomplishment.”
      The spacecraft’s next planned close solar passes come on March 22, 2025, and June 19, 2025.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact: Sarah Frazier
      Share








      Details
      Last Updated Dec 27, 2024 Editor Abbey Interrante Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Parker Solar Probe (PSP) Science & Research Science Mission Directorate Solar Flares Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More
      1 min read NASA’s Parker Solar Probe Touches The Sun For The First Time


      Article


      3 years ago
      4 min read Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass


      Article


      2 months ago
      6 min read 10 Things to Know About Parker Solar Probe
      On Aug. 12, 2018, NASA launched Parker Solar Probe to the Sun, where it will…


      Article


      6 years ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By USH
      On December 25, 2024, NASA's Stereo Lasco C3 satellite captured an extraordinary phenomenon near the sun. In a split second, the satellite's imaging was disrupted by what appeared to be a swarm of spherical objects hurtling through space at incredible speeds. 

      Speculation surrounds the event, with some suggesting it could be a meteor debris field. However, the unusual appearance of the objects has raised questions. Could debris naturally form into such perfectly round shapes, each featuring a dark center that resembles donut-shaped UFOs? 

      This event might be a natural occurrence, however, with all the recent strange sightings of unknown drones, UFOs, and orbs combined with predictions from several specialists that something significant might happen soon in the realm of the UFO phenomena, one might wonder if these mysterious spheres are connected to something larger on the horizon?


      View the full article
    • By Amazing Space
      NASA's Parker Solar Probe Reaches Unprecedented 435000 mph Touching The Sun
    • By NASA
      This article is for students grades 5-8.
      The Sun is the star of our solar system. Its gravity holds Earth and our planetary neighbors in its orbit. At 865,000 miles (1.4 million km) in diameter, it’s the largest object in our solar system. On Earth, its influence is felt in our weather, seasons, climate, and more. Let’s learn about our dynamic star and its connections to life on Earth.
      What is the Sun, and what is it made of?
      The Sun is a yellow dwarf star. It is approximately 4.5 billion years old and is in its “main sequence” phase. This means it is partway through its lifecycle with a few billion more years ahead of it.
      The Sun is made of hydrogen and helium gases. At its core, hydrogen is fused to form helium. This nuclear reaction creates the Sun’s heat and light. That energy moves outward through the Sun’s radiative zone and convective zone. It then reaches the Sun’s visible surface and lower atmosphere, called the photosphere. Above the photosphere lies the chromosphere, which forms the Sun’s middle atmosphere, and beyond that is the corona, the Sun’s outermost atmosphere.
      The Sun is a yellow dwarf star with a complex series of layers and features.NASA What is the solar cycle?
      The Sun goes through a pattern of magnetic activity known as the solar cycle. During each cycle, the Sun experiences a very active period called “solar maximum” and a less active period called “solar minimum.”
      During solar maximum, increased magnetic activity creates sunspots. These appear as darker, cooler spots on the Sun’s surface. The more sunspots we can see, the more active the Sun is.
      The solar cycle begins at solar minimum, peaks at solar maximum, and then returns to solar minimum. This cycle is driven by the Sun’s magnetic polarity, which flips – north becomes south, and vice versa – every 11 years. It takes two cycles – or 22 years – to complete the full magnetic cycle where the poles return to their original positions.  
      The Sun’s level of magnetic activity changes throughout its 11-year solar cycle. During each cycle, the Sun experiences a less-active period called “solar minimum” (left) and a very active period called “solar maximum” (right).NASA Wait. The Sun’s magnetic poles can flip??
      Yes! Like Earth, the Sun has north and south magnetic poles. But unlike Earth, the Sun’s poles flip regularly. Each 11-year solar cycle is marked by the flipping of the Sun’s poles. The increased magnetic activity during solar maximum makes the north and south poles less defined. As the cycle moves back to solar minimum, the polarization of the poles returns – with flipped polarity.
      Unlike Earth, the Sun’s poles regularly flip with each 11-year solar cycle.NASA What is space weather?
      Space weather includes phenomena such as solar wind, solar storms, and solar flares. When space weather conditions are calm, there may be little noticeable effect on Earth. But when the Sun is more active, space weather has real impacts on Earth and in space.
      Let’s explore these phenomena and how they affect our planet.
      Periods of increased solar activity can cause noticeable effects on Earth and in space.NASA What is solar wind?
      Solar wind is a stream of charged particles that flow outward from the Sun’s corona. It extends far beyond the orbit of the planets in our solar system. When solar wind reaches Earth, its charged particles interact with Earth’s magnetic field. This causes colorful streams of moving light at Earth’s north and south poles called aurora.
      Earth’s magnetic field protects our planet from the charged solar particles of the solar wind.NASA What are solar storms, solar flares, and coronal mass ejections?
      The Sun’s magnetic fields are a tangle of constant motion. These fields twist and stretch to the point that they snap and reconnect. When this magnetic reconnection occurs, it releases a burst of energy that can cause a solar storm.
      Solar storms can include phenomena such as solar flares or coronal mass ejections. They happen more frequently around the solar maximum of the Sun’s cycle. A solar flare is an intense burst of light and energy from the Sun’s surface. Solar flares tend to happen near sunspots where the Sun’s magnetic fields are strongest. A coronal mass ejection is a massive cloud of material flowing outward from the Sun. These can occur on their own or along with solar flares.
      The Sun’s magnetic field is strongest near sunspots. These active regions of the Sun’s surface release energy in the form of solar flares and coronal mass ejections like these.NASA How do these phenomena affect Earth?
      When a solar storm erupts towards Earth, our atmosphere and magnetic field protect us from significant harm. However, some impacts are possible, both on Earth and in space. For example, strong solar storms can cause power outages and radio blackouts. GPS signals can be disrupted. Satellite electronics can be affected. And astronauts working outside of the International Space Station could be exposed to dangerous radiation. NASA monitors and forecasts space weather to protect the safety and health of astronauts and spacecraft.
      When charged particles from intense solar storms interact with Earth’s magnetic fields, colorful auroras like this one captured in Saskatchewan, Canada, can occur.NASA Learn more about the Sun
      NASA’s Parker Solar Probe launched in 2018 on the first-ever mission to fly into the Sun’s corona. Since its first pass through the corona in 2021, every orbit has brought it closer to the Sun. On Dec. 24, 2024, it makes the first of its three final, closest solar approaches of its primary mission. Test your knowledge with NASA’s new quiz, Kahoot! Parker Solar Probe trivia.
      Visit these resources for more details about the Sun:
      https://science.nasa.gov/sun/facts/ https://spaceplace.nasa.gov/all-about-the-sun/en/ https://science.nasa.gov/exoplanets/stars/ Explore More For Students Grades 5-8 View the full article
  • Check out these Videos

×
×
  • Create New...