Jump to content

NASA Ames Astrogram – September/October 2023


NASA

Recommended Posts

  • Publishers
Astrogram banner

NASA Ames’ Contributions to OSIRIS-REx

by Gianine Figliozzi

Extraterrestrial rocks and dust – material scooped up from an asteroid – were delivered to Earth on Sept. 24, 2023. A safe landing in the Utah desert for the spacecraft carrying this bounty marked the end of a seven-year journey for NASA’s OSIRIS-REx – short for the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer – and the start of two intensive years of sample analysis activities for mission scientists on Earth. 

Over the coming decades, scientists around the world will study the rocks and dust collected from the asteroid Bennu to learn about the formation of the solar system and the delivery of organic molecules to early Earth.

updatedtagpose-1-1.png
Artist’s conception of NASA’s OSIRIS-REx about to land on asteroid Bennu.
Credit: NASA

Bennu is also one of the most potentially hazardous asteroids for Earth impact, although the chances of impact in the 22nd century are only one in 1,750. Understanding the physical and chemical properties of asteroids like Bennu will be critical, should humanity need to mitigate impact hazards in the future.

Teams at NASA Ames have played critical roles in preparing the mission for success and will continue to work on the OSIRIS-REx samples once they arrive. They helped design ways for the mission to collect high-quality samples, preserve them in pristine form, and develop a plan for the scientific community to study the essentially irreplaceable asteroid material. Ames experts also advised the mission on its thermal protection system – notably the heat shield that will protect the sample return capsule from the blistering heat of passing through Earth’s atmosphere.

Read on for more details of Ames’ contributions to OSIRIS-REx.

Preparing for an Asteroid Sample: From Canister to Curation 

Ames researcher Scott Sandford has been involved with OSIRIS-REx since the earliest days of the mission. A major area of his work was in the design and testing of the air filter system on the sample return canister that has housed the precious asteroid material during its journey to Earth and will protect it from contamination when it lands on the surface. 

The canister’s air filter was tested in Sandford’s lab before the mission launched. It will keep earthly contaminants out of the sample and, if the asteroid material is releasing any gases, the filter will trap them. If that’s happening, scientists could identify some components of Bennu. Sandford will coordinate a group of scientists in labs around the world to analyze the air filter after its return to Earth.

Sandford also leads the effort to analyze many components of the sample return capsule, both to assess potential sources of contamination in the samples and to assess the performance of the capsule.

Sandford’s sample curation work helped plan how the unique material from Bennu will be used. Three-quarters of it will be made available for study over the coming decades, while the remaining 25% may be distributed to researchers in efficient ways that let them address the mission’s scientific questions.

Withstanding the Heat of Earth Entry

The heat shield thermal protection system (TPS) is made of a material developed at Ames: phenolic-impregnated carbon ablator (PICA). PICA was first flown on NASA’s Stardust mission, which also delivered extraterrestrial material to Earth – from a comet.

The Stardust sample return capsule was nearly identical to that of OSIRIS-REx, so the latter mission was able to use the Earth-entry, descent, and landing systems successfully demonstrated by the earlier mission. Reusing many features of the Stardust capsule design, adjusted for the specific needs of the mission to Bennu, allowed OSIRIS-REx to reduce costs and the thermal protection team to leverage what they had learned from Stardust.

The OSIRIS-REx spacecraft's heat shield is made of a material developed at Ames: phenolic-impregnated carbon ablator (PICA). In this photo, PICA is undergoing testing in Ames' arc jet facility, which simulates atmospheric re-entry conditions, to confirm thermal protection performance for the heat shield's design.
The OSIRIS-REx spacecraft’s heat shield is made of a material developed at Ames: phenolic-impregnated carbon ablator (PICA). In this photo, PICA is undergoing testing in Ames’ arc jet facility, which simulates atmospheric re-entry conditions, to confirm thermal protection performance for the heat shield’s design.
Credit: NASA

They then worked with mission partner Lockheed Martin Space – who designed and built the spacecraft and capsule – to integrate the air filter and PICA elements onto the mission. 

Ames helped qualify the PICA to withstand the extremely high temperatures experienced upon entering Earth’s atmosphere. They provided guidance to the mission on the PICA thickness needed to protect the samples and tested the heat shield material under simulated atmospheric re-entry conditions in Ames’ arc jet facilities to confirm thermal protection performance for the design. Ames experts in computational fluid dynamics supplied analysis that validated the aerothermal environments used in those tests. 

Soon after the spacecraft returns, members of Ames’ thermal protection team also plan to laser-scan the OSIRIS-REx heat shield in coordination with colleagues at NASA’s Johnson Space Center in Houston, Lockheed Martin, or both. What they learn about PICA’s performance, relative to predictions, can support future missions such as Mars Sample Return, that will return samples collected by NASA’s Mars Perseverance rover to Earth in the future.

Asteroid Sample Science 

When the OSIRIS-REx capsule lands in the Utah desert, researcher Scott Sandford will be on the ground to help retrieve it. The chances of contaminants like soil and water entering the sample canister inside are extremely low. But, to be absolutely certain no one accidentally studies terrestrial materials thinking they are samples from Bennu, he will help collect samples from the environment where the capsule lands, for comparison with the asteroid material. 

Later, Sandford will perform scientific studies of the Bennu samples themselves. His study will focus on two areas. He’ll assess what, if any, spacecraft-related contaminants got into the samples, such as material coming off the heat shield as it ablated, or “burned off,” during atmospheric entry. Sandford will also probe the samples for any organic compounds. Scientists estimate that Bennu is 4.5 billion years old and contains well-preserved materials, including complex organics, from the early solar system. Finding organics could tell us something about what roles materials of the early solar system may have played in delivering organic “ingredients of life” to the early Earth.

The techniques Sandford uses will allow him to search for compounds inside the Bennu samples. At Ames he’ll use infrared microspectroscopy to detect various kinds of organics in the samples that contain carbon, hydrogen, nitrogen, and oxygen. He will also work with colleagues to study samples using the Advanced Light Source facility, a specialized particle accelerator that generates bright beams of X-ray light for scientific research, located at Lawrence Berkeley National Laboratory in Berkeley, California. Both techniques provide information about the kinds of chemical bonds present in the samples’ organic compounds. 

HORIS: A Study of Atmospheric Entry

NASA’s Langley Research Center in Hampton, Virginia, will manage an experiment taking advantage of the OSIRIS-REx sample arrival to study characteristics of re-entry through an atmosphere. 

Four aircraft and teams at three ground sites will track the capsule’s trajectory on its way to the surface, using imaging and spectroscopy instruments. Data from the project, called Hypervelocity OSIRIS-REx Reentry Imaging & Spectroscopy (HORIS), will be used to validate and develop planetary entry models. 

53058302661-302f6f3984-6k-0.jpg
Recovery teams participate in field rehearsals in preparation for the retrieval of the asteroid sample return capsule from NASA’s OSIRIS-REx mission, Tuesday, July 18, 2023, at the Department of Defense’s Utah Test and Training Range. NASA Ames researcher Scott Sandford, second from left, who has been involved with OSIRIS-REx since the earliest days of the mission, will participate in retrieval of the capsule when it lands in the desert on Sep. 24 and, later, will perform scientific studies of the samples from asteroid Bennu.
Credit: NASA Ames/Keegan Barber

NASA’s Earth Science Project Office (ESPO), based at Ames, will provide operational and shipping support to two international ground teams by setting up work sites at three different locations in northern Nevada.  

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. The university leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft and provides flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. Curation for OSIRIS-REx, including processing the sample when it arrives on Earth, will take place at NASA’s Johnson Space Center in Houston. International partnerships on this mission include the OSIRIS-REx Laser Altimeter instrument from CSA (the Canadian Space Agency) and asteroid sample science collaboration with JAXA’s (the Japan Aerospace Exploration Agency) Hayabusa2 mission. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.

Congratulations to the 2023 Ames Honor Awards Recipients

The honorees will be recognized at the center’s annual Ames Honor Awards ceremony to be held in person on Nov. 1, in the Syvertson Auditorium (N201) at 11 a.m. PDT.  Employees are invited to attend as we celebrate, recognize, and honor the achievements of our colleagues. Thank you to everyone who submitted a nomination for this prestigious award, and congratulations to the deserving recipients

Recipients of the 2023 Ames Honor Awards:

Administrative Assistant Support/Secretary
Lyn C. Bartlett

Administrative Professional
Erin K. Contreras
Trincy D. Lewis
Vanessa R. Westmoreland

Best First Paper
Dahlia D. Pham
Evan T. Kawamura

Contractor Employee
Sonja M. Caldwell, KBR
Athena Chan, Science and Technology Corporation
David Garcia Perez, Science and Technology Corporation
Dominic Hart, MORI Associates
Ignacio Gonzalo Lopez-Francos, KBR
Taejin Park, Bay Area Environmental Research Institute
Sasha V. Weston, Millennium Engineering & Integration Co.
Louis W. Wust, InuTeq, LLC.

Diversity, Equity, Inclusion and Accessibility
Kevin L. Jones
Garrett G. Sadler
Dorsa Shirazi
Juan L. Torres-Perez

Education and Outreach
Sarah A. Conley
Denise R. Snow

Engineer
Rodolphe De Rosee
Jesse C. Fusco
Scott T. Miller

Group/Team
Alpha Jet Atmospheric eXperiment (AJAX) Project Team
BioSentinel Mission Operations Team
CapiSorb Visible System ISS Payload & Experiment
ICEE Facility Team
NASA Ames Utility Team
Starling Team
TechEdSat Nano Orbit Workshop
TOSS 4 and RHEL8 Migration Team
VIPER MGRU Rover Team
Voluntary Protection Program Recertification Team

Mentor
Misty D. Davies
Marcie A. Smith
Gloria K. Yamauchi

Partnerships
Sigrid Reinsch

Project Management
Craig D. Burkhard
Kelly E. Kwan

Scientist or Researcher
Thomas P. Greene

Special Appreciation (Non-Ames Employees)
Jeffrey F. Haught, NASA Headquarters

Student
Avraham S. Gileadi, NIFS Intern
Stephanie I. Pass, Intern
Shivang M. Shelat, SJSU Research Foundation

Supervisor/Manager
Susie Go
Lynne H. Martin
Kerry Zarchi

Technical Support/Professional
Randal L. Hobbs
Robert W. Koteskey
Yonghong Shen

Technician
Kevin B. Gregory

Face of NASA: Protocol Officer Carolina Rudisel

“I never would have imagined myself here at NASA. I’m an immigrant. I was originally a Mexican citizen. I was actually born in Mexico, but my parents came over to the U.S. [and I got my green card] when I was two. … My parents originally came over on a worker visa, and so we were migrant workers [when I was] growing up.

Carolina Rudisel
“… I try to tell folks that it’s not where you started. It’s not the mistakes you’ve made. It’s what you do with it, and you can make that change not only for yourself but [also] so others can see you making the change and [know] that anything is possible.” — Carolina Rudisel, Protocol Officer, NASA’s Ames Research Center

“… It was a rough upbringing, and so I knew what my life held for me if I stayed in [my] small town. I knew that I would be stuck, as even now, looking back, some of the people I knew are still stuck. So, I decided that I would join the military because I knew that, for myself, I needed to make a radical change. And so I joined the military, and my life completely turned around. … That’s where I met my husband. We’ve been together 32 years; we’ve been married for 29 years.

“… [Before I joined] the military … I was on the wrong end of the law. I was literally standing in front of a judge who had my fate in their hands. … My recruiter happened to be at my hearing, and so we did a plea bargain and I was let off with a fine. But my life could have been completely different. So I knew the radical change was absolutely necessary for my life.

“… Fast forward: [I] joined the military, got out, and ended up spending most of the time overseas. I lived in Japan — as a matter of fact, both our kids together were born in Japan. [We] lived in Japan, Russia, Sri Lanka, Belgium, and our last post was London.

“… I worked for the Defense Attaché Office, and my co-worker was in the Navy and she was like, ‘There’s a job in NASA in Northern California! You’re from California, right? … You should apply.’ And I [thought], ‘There is no way.’ You know, I’m a businessperson, my background is in business. I was a finance budget analyst. And so, I was like, ‘There’s no way.’ She [said], ‘You should apply. Apply, apply, apply! The worst thing they could say is no.’ And I’m like, ‘You know what? You’re right.’ I applied, came to NASA, [and] actually started off here as the secretary for the center director.

Clues to Psyche Asteroid’s Metallic Nature Found in SOFIA Data

When the asteroid Psyche has its first close-up with a NASA spacecraft, scientists hypothesize they will find a metal-rich asteroid. It could be part or all of the iron-rich interior of a planetesimal, an early planetary building block, that was stripped of its outer rocky shell as it repeatedly collided with other large bodies during the early formation of the solar system.

New research from scientists at NASA’s Ames Research Center in California’s Silicon Valley suggests that is exactly what the agency’s Psyche mission will find.

An artist’s concept depicting the metal-rich asteroid Psyche, which is located in the main asteroid belt between Mars and Jupiter.
An artist’s concept depicting the metal-rich asteroid Psyche, which is located in the main asteroid belt between Mars and Jupiter.
Credit: NASA/JPL-Caltech/ASU

Led by Anicia Arredondo, the paper’s first author and a postdoctoral researcher at the Southwest Research Institute in San Antonio, Texas, and Maggie McAdam, Ames research scientist and principal investigator, the team observed Psyche in Feb. 2022 using NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA). The now-retired observatory was a Boeing 747SP aircraft modified to carry a reflecting telescope. As a flying telescope, SOFIA collected data that was not affected by Earth’s lower atmosphere and made observations from all over the world, including over the oceans.

For the first time, SOFIA was able to gather data from every part of Psyche’s surface. It also allowed the team to collect data about the materials that make up Psyche’s surface – information that could not be gathered from ground-based telescopes.

The Ames team studied the way different wavelengths of light bounce off Psyche. Researchers used a mid-infrared camera, which detects wavelengths in the middle of the electromagnetic spectrum, to observe the asteroid. They measured its emissivity(the amount of energy it radiates) and porosity (how many tiny holes or spaces an object has). Both characteristics can provide clues about the materials that make up an object.

The team observed that Psyche’s emissivity data was mostly flat, meaning there were no spikes or other notable features in its spectra – that is, a chart or a graph that shows the intensity of light the asteroid emits over a range of energies. Similarly flat spectra have been found in laboratory settings when mid-infrared instruments are used on metal objects. This led the researchers to conclude that Psyche is likely a metallic body.

Notably, the team did not observe a spectral feature called the 10-micron plateau, which typically indicates a “fluffy” surface, like lunar regolith. Previous studies of Psyche had observed this feature, which suggests there may be differences between the surface at Psyche’s north pole, which was facing the Earth at the time of the Ames team’s study, and the surface at its south pole, which was the focus of previous studies. The team also proposed that the south pole regolith observed by other researchers could have been ejected from a collision elsewhere on Psyche’s surface. This idea is supported by past observations of Psyche, which found evidence of huge depressions and impact craters across the asteroid.

“With this analysis and the previous studies of Psyche, we have reached the limit of what astronomical observations can teach us about this fascinating asteroid,” said McAdam. “Now we need to physically visit Psyche to study it up close and learn more about what appears to be a very unique planetary body.” NASA’s mission to Psyche will provide that opportunity. The spacecraft is set to launch on Oct. 12, 2023. It will arrive at the asteroid in 2029 and orbit it for at least 26 months.

screenshot-2023-10-04-at-2.16.21-pm.png
NASA’s Psyche spacecraft is shown in a clean room on June 26, 2023, at the Astrotech Space Operations facility near the agency’s Kennedy Space Center in Florida.
Credit: NASA/Frank Michaux

Psyche’s potential to answer many questions about planet formation is a key reason why it was selected for close observation by a spacecraft. Scientists believe that planets like Earth, Mars, and Mercury have metallic cores, but they are buried too far below the planets’ mantles and crusts to see or measure directly. If Psyche is confirmed to be a planetary core, it can help scientists understand what is inside the Earth and other large planetary bodies.

Psyche’s size is also important for advancing scientific understanding of Earth-like planets. It is the largest M-type (metallic) asteroid in our solar system and is long enough to cover the distance from New York City to Baltimore, Maryland. This means Psyche is more likely to show differentiation, which is when the materials inside a planet separate from one another, with the heaviest materials sinking to the middle and forming cores.

“Every time a new study of Psyche is published, it raises more questions,” said Arredondo, who was a postdoctoral researcher at Ames on the SOFIA mission when the Psyche observations were collected. “Our findings suggest the asteroid is very complex and likely holds many other surprises. The possibility of the unexpected is one of the most exciting parts of a mission to study an unexplored body, and we look forward to gaining a more detailed understanding of Psyche’s origins.”

More about the Psyche and SOFIA missions:

Arizona State University leads the Psyche mission. A division of Caltech in Pasadena, JPL is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis.

Psyche is the 14th mission selected as part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. NASA’s Launch Services Program, based at Kennedy, is managing the launch service.

SOFIA was a joint project of NASA and the German Space Agency at DLR. DLR provided the telescope, scheduled aircraft maintenance, and other support for the mission. NASA’s Ames Research Center in California’s Silicon Valley managed the SOFIA program, science, and mission operations in cooperation with the Universities Space Research Association, headquartered in Columbia, Maryland, and the German SOFIA Institute at the University of Stuttgart. The aircraft was maintained and operated by NASA’s Armstrong Flight Research Center Building 703, in Palmdale, California. SOFIA achieved full operational capability in 2014 and concluded its final science flight on Sept. 29, 2022.

President Biden Lands at NASA Ames, Greeted by Deputy Director

President Joe Biden arrived in California’s Silicon Valley on Tuesday, Sept. 26, 2023, where he was welcomed by Dr. David Korsmeyer, acting deputy center director at NASA Ames and Santa Clara County Supervisor, District 4, Susan Ellenberg. Biden landed aboard Air Force One  at Moffett Federal Airfield, located at Ames, before departing for a campaign event in the area.

Preside Biden Visit
President Joe Biden  arrived  in California’s Silicon Valley on Tuesday,  Sept. 26, 2023, where he was welcomed by  Dr. David Korsmeyer, acting deputy center director at NASA’s Ames Research Center and Santa Clara County Supervisor, District 4, Susan Ellenberg.
Credit: NASA Ames/Dominic Hart

New Simulations Shed Light on Origins of Saturn’s Rings and Icy Moons

by Frank Tavares

On a clear night, with a decent amateur telescope, Saturn and its series of remarkable rings can be seen from Earth’s surface. But how did those rings come to be? And what can they tell us about Saturn and its moons, one of the potential locations NASA hopes to search for life? A new series of supercomputer simulations has offered an answer to the mystery of the rings’ origins – one that involves a massive collision, back when dinosaurs still roamed the Earth.

rh-t100-tilbatilw-di-t100-tilbatilw-b15v
Still image from a computer simulation of an impact between two icy moons in orbit around Saturn. The collision ejects debris that could evolve into the planet’s iconic and remarkably young rings. The simulation used over 30 million particles, colored by their ice or rock material, run using the open source SWIFT simulation code.
Credit: NASA/Durham University/Glasgow University/Jacob Kegerreis/Luís Teodoro

According to new research by NASA and its partners, Saturn’s rings could have evolved from the debris of two icy moons that collided and shattered a few hundred million years ago. Debris that didn’t end up in the rings could also have contributed to the formation of some of Saturn’s present-day moons.

“There’s so much we still don’t know about the Saturn system, including its moons that host environments that might be suitable for life,” said Jacob Kegerreis, a research scientist at NASA’s Ames Research Center in California’s Silicon Valley. “So, it’s exciting to use big simulations like these to explore in detail how they could have evolved.”

NASA’s Cassini mission helped scientists understand just how young – astronomically speaking – Saturn’s rings and probably some of its moons are. And that knowledge opened up new questions about how they formed.

To learn more, the research team turned to the Durham University location of the Distributed Research using Advanced Computing (DiRAC) supercomputing facility in the United Kingdom. They modeled what different collisions between precursor moons might have looked like. These simulations were conducted at a resolution more than 100 times higher than previous such studies, using the open-source simulation code, SWIFT, and giving scientists their best insights into the Saturn system’s history.

Saturn’s rings today live close to the planet, within what’s known as the Roche limit – the farthest orbit where a planet’s gravitational force is powerful enough to disintegrate larger bodies of rock or ice that get any closer. Material orbiting farther out could clump together to form moons.

By simulating almost 200 different versions of the impact, the team discovered that a wide range of collision scenarios could scatter the right amount of ice into Saturn’s Roche limit, where it could settle into rings.

And, while alternative explanations haven’t been able to show why there would be almost no rock in Saturn’s rings – they are made almost entirely of chunks of ice – this type of collision could explain that.

“This scenario naturally leads to ice-rich rings,” said Vincent Eke, Associate Professor in the Department of Physics/Institute for Computational Cosmology, at Durham University and a co-author on the paper. “When the icy progenitor moons smash into one another, the rock in the cores of the colliding bodies is dispersed less widely than the overlying ice.” 

Ice and rocky debris would also have hit other moons in the system, potentially causing a cascade of collisions. Such a multiplying effect could have disrupted any other precursor moons outside the rings, out of which today’s moons could have formed.

But what could have set these events in motion, in the first place? Two of Saturn’s former moons could have been pushed into a collision by the usually small effects of the Sun’s gravity “adding up” to destabilize their orbits around the planet. In the right configuration of orbits, the extra pull from the Sun can have a snowballing effect – a “resonance” – that elongates and tilts the moons’ usually circular and flat orbits until their paths cross, resulting in a high-speed impact.

Saturn’s moon Rhea today orbits just beyond where a moon would encounter this resonance. Like the Earth’s Moon, Saturn’s satellites migrate outward from the planet over time. So, if Rhea were ancient, it would have crossed the resonance in the recent past. However, Rhea’s orbit is very circular and flat. This suggests that it did not experience the destabilizing effects of the resonance and, instead, formed more recently.

The new research aligns with evidence that Saturn’s rings formed recently, but there are still big open questions. If at least some of the icy moons of Saturn are also young, then what could that mean for the potential for life in the oceans under the surface of worlds like Enceladus? Can we unravel the full story from the planet’s original system, before the impact, through to the present day? Future research building on this work will help us learn more about this fascinating planet and the icy worlds that orbit it.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      7 min read
      NASA’s Fermi Mission Nets 300 Gamma-Ray Pulsars … and Counting
      A new catalog produced by a French-led international team of astronomers shows that NASA’s Fermi Gamma-ray Space Telescope has discovered 294 gamma-ray-emitting pulsars, while another 34 suspects await confirmation. This is 27 times the number known before the mission launched in 2008.
      This visualization shows 294 gamma-ray pulsars, first plotted on an image of the entire starry sky as seen from Earth and then transitioning to a view from above our galaxy. The symbols show different types of pulsars. Young pulsars blink in real time except for the Crab, which pulses slower than in real time because its rate is only slightly lower than the video’s frame rate. Millisecond pulsars remain steady, pulsing too quickly to see. The Crab, Vela, and Geminga were among the 11 gamma-ray pulsars known before Fermi launched. Other notable objects are also highlighted. Distances are shown in light-years (abbreviated ly). Download high-resolution video and images from NASA’s Scientific Visualization Studio. Credit: NASA’s Goddard Space Flight Center “Pulsars touch on a wide range of astrophysics research, from cosmic rays and stellar evolution to the search for gravitational waves and dark matter,” said study coordinator David Smith, research director at the Bordeaux Astrophysics Laboratory in Gironde, France, which is part of CNRS (the French National Center for Scientific Research). “This new catalog compiles full information on all known gamma-ray pulsars in an effort to promote new avenues of exploration.”
      The catalog was published on Monday, Nov. 27, in The Astrophysical Journal Supplement.

      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Narrow beams of energy emerge from hot spots on the surface of a neutron star in this artist’s concept. When one of these beams sweeps past Earth, astronomers detect a pulse of light. Credit: NASA’s Goddard Space Flight Center Conceptual Image Lab Pulsars are a type of neutron star, the city-sized leftover of a massive sun that has exploded as a supernova. Neutron stars, containing more mass than our Sun in a ball less than 17 miles wide, represent the densest matter astronomers can study directly. They possess strong magnetic fields, produce streams of energetic particles, and spin quickly – 716 times a second for the fastest known. Pulsars, in addition, emit narrow beams of energy that swing lighthouse-like through space as the objects rotate. When one of these beams sweeps past Earth, astronomers detect a pulse of emission.
      The new catalog represents the work of 170 scientists across the globe. A dozen radio telescopes carry out regular monitoring of thousands of pulsars, and radio astronomers search for new pulsars within gamma-ray sources discovered by Fermi. Other researchers have teased out gamma-ray pulsars that have no radio counterparts through millions of hours of computer calculation, a process called a blind search.
      More than 15 years after its launch, Fermi remains an incredible discovery machine, and pulsars and their neutron star kin are leading the way.
      Elizabeth Hays
      Fermi Project Scientist
      Of the 3,400 pulsars known, most of them observed via radio waves and located within our Milky Way galaxy, only about 10% also pulse in gamma rays, the highest-energy form of light. Visible light has energies between 2 and 3 electron volts. Fermi’s Large Area Telescope can detect gamma rays with billions of times this energy, and other facilities have observed emission thousands of times greater still from the nearby Vela pulsar, the brightest persistent source in the sky for Fermi.

      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      This movie shows the Vela pulsar in gamma rays detected by the Large Area Telescope aboard NASA’s Fermi observatory. A single pulsar cycle is repeated. Bluer colors indicate gamma rays with higher energies. Credit: NASA/DOE/Fermi LAT Collaboration The Vela pulsar and its famous sibling in the Crab Nebula are young, solitary objects, formed about 11,000 and 970 years ago, respectively. Their emissions arise as their magnetic fields spin through space, but this also gradually slows their rotation. The younger Crab pulsar spins nearly 30 times a second, while Vela clocks in about a third as fast.
      The Old and the Restless
      Paradoxically, though, pulsars that are thousands of times older spin much faster. One example of these so-called millisecond pulsars (MSPs) is J1824-2452A. It whirls around 328 times a second and, with an age of about 30 million years, ranks among the youngest MSPs known.
      Thanks to a great combination of gamma-ray brightness and smooth spin slowdown, the MSP J1231-1411 is an ideal “timer” for use in gravitational wave searches. By monitoring a collection of stable MSPs, astronomers hope to link timing changes to passing low-frequency gravitational waves – ripples in space-time – that cannot be detected by current gravitational observatories. It was discovered in one of the first radio searches targeting Fermi gamma-ray sources not associated with any known counterpart at other wavelengths, a technique that turned out to be exceptionally successful.
      “Before Fermi, we didn’t know if MSPs would be visible at high energies, but it turns out they mostly radiate in gamma rays and now make up fully half of our catalog,” said co-author Lucas Guillemot, an associate astronomer at the Laboratory of Physics and Chemistry of the Environment and Space and the University of Orleans, France.
      Along Come the Spiders
      The presence of MSPs in binary systems offers a clue to understanding the age-spin paradox. Left to itself, a pulsar’s emissions slow it down, and with slower spin its emissions dim. But if closely paired with a normal star, the pulsar can pull a stream of matter from its companion that, over time, can spin up the pulsar.
      “Spider” systems offer a glimpse of what happens next. They’re classified as redbacks or black widows – named for spiders known for consuming their mates. Black widows have light companions (less than about 5% of the Sun’s mass), while redbacks have heavier partners. As the pulsar spins up, its emissions and particle outflows become so invigorated that – through processes still poorly understood – it heats and slowly evaporates its companion. The most energetic spiders may fully evaporate their partners, leaving only an isolated MSP behind.
      J1555-2908 is a black widow with a surprise – its gravitational web may have ensnared a passing planet. An analysis of 12 years of Fermi data reveals long-term spin variations much larger than those seen in other MSPs. “We think a model incorporating the planet as a third body in a wide orbit around the pulsar and its companion describes the changes a little better than other explanations, but we need a few more years of Fermi observations to confirm it,” said co-author Colin Clark, a research group leader at the Max Planck Institute for Gravitational Physics in Hannover, Germany.
      Other curious binaries include the so-called transitional pulsars, such as J1023+0038, the first identified. An erratic stream of gas flowing from the companion to the neutron star may surge, suddenly forming a disk around the pulsar that can persist for years. The disk shines brightly in optical light, X-rays, and gamma rays, but pulses become undetectable. When the disk again vanishes, so does the high-energy light and the pulses return.

      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      This artist’s concept illustrates a possible model for the transitional pulsar J1023. When astronomers can detect pulses in radio (green), the pulsar’s energetic outflow holds back its companion’s gas stream. Sometimes the stream surges, creating a bright disk around the pulsar that can persist for years. The disk shines brightly in X-rays, and gas reaching the neutron star produces jets that emit gamma rays (magenta), obscuring the pulses until the disk eventually dissipates. Credit: NASA’s Goddard Space Flight Center Some pulsars don’t require a partner to switch things up. J2021+4026, a young, isolated pulsar located about 4,900 light-years away, underwent a puzzling “mode change” in 2011, dimming its gamma rays over about a week and then, years later, slowly returning to its original brightness. Similar behavior had been seen in some radio pulsars, but this was a first in gamma rays. Astronomers suspect the event may have been triggered by crustal cracks that temporarily changed the pulsar‘s magnetic field.
      Farther afield, Fermi discovered the first gamma-ray pulsar in another galaxy, the neighboring Large Magellanic Cloud, in 2015. And in 2021, astronomers announced the discovery of a giant gamma-ray flare from a different type of neutron star (called a magnetar) located in the Sculptor galaxy, about 11.4 million light-years away.
      “More than 15 years after its launch, Fermi remains an incredible discovery machine, and pulsars and their neutron star kin are leading the way,” said Elizabeth Hays, the mission’s project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      Explore the Fermi gamma-ray pulsar catalog on WorldWide Telescope
      Max Planck Institute release
      By Francis Reddy
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media contact:
      Claire Andreoli
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      (301) 286-1940
      Share








      Details
      Last Updated Nov 28, 2023 Editor Francis Reddy Location Goddard Space Flight Center Related Terms
      Astrophysics Binary Stars Fermi Gamma-Ray Space Telescope Gamma Rays Goddard Space Flight Center Neutron Stars Pulsars Stars The Universe Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      NASA Administrator Bill Nelson delivers remarks before the ribbon cutting ceremony to open NASA’s Earth Information Center, Wednesday, June 21, 2023, at the Mary W. Jackson NASA Headquarters building in Washington. The Earth Information Center is new immersive experience that combines live data sets with cutting-edge data visualization and storytelling to allow visitors to see how our planet is changing. NASA/Joel Kowsky NASA Administrator Bill Nelson and other agency leaders will participate in the 28th United Nations Climate Change Conference of the Parties (COP28) beginning Thursday, Nov. 30, through Tuesday, Dec. 12, in Dubai, United Arab Emirates.
      This global conference brings together countries committed to addressing climate change, which is a key priority for the Biden-Harris Administration and NASA. For the first time, a NASA administrator will attend, joining an expected 70,000 participants, world leaders, and representatives from nearly 200 countries.
      Throughout the conference, parties will review the implementation of the United Nations Framework Convention on Climate Change, the Kyoto Protocol and, also for the first time, provide a comprehensive assessment of progress since adopting the Paris Agreement. 
      In addition to Nelson, NASA participants in the conference include:
      Kate Calvin, NASA’s chief scientist and senior climate advisor Susie Perez Quinn, NASA’s chief of staff Karen St. Germain, director, NASA Earth Science Division Nadya Vinogradova Shiffer, program scientist, ocean physics, NASA Earth Science Division Laura Rogers, associate program manager, ecological conservation, NASA Langley Research Center Wenying Su, senior research scientist, climate science, NASA Langley Research Center Ben Hamlington, research scientist, sea level and ice, NASA Jet Propulsion Laboratory During the conference, Nelson will participate in the first Space Agency Leaders’ Summit, which aims to demonstrate a collective commitment toward strengthening global climate initiatives and promoting sustainable space operations.   
      Throughout the conference, NASA leaders also will participate in additional events and presentations at the NASA Hyperwall, a main attraction at the U.S. Center showing how  the agency’s climate science and research helps model and predict ocean health, heat waves, wildfires, hurricanes, floods, and droughts, among its other Earth-related research. NASA will provide a hyperwall presentation every day, some with interagency partners, between Sunday, Dec. 3, and Monday, Dec. 11.
      Climate adaptation and mitigation efforts require robust climate observations and research. NASA’s unique vantage point from space provides critical information to advance understanding of our changing planet. With more than two dozen satellites and instruments in orbit, NASA’s climate data – which is openly and freely available to anyone – provides insight on how the planet is changing and measure key climate indicators, such as greenhouse gas emissions, rising sea level and clouds, and precipitation.
      A full schedule of U.S. Center events at COP28 is available at:
      https://www.state.gov/u-s-center-at-cop28-schedule/
      -end-
      Faith McKie
      Headquarters, Washington 
      202-262-8342
      faith.d.mckie@nasa.gov
      Share
      Details
      Last Updated Nov 27, 2023 LocationNASA Headquarters Related Terms
      Climate Change Bill Nelson Earth View the full article
    • By NASA
      3 min read
      NASA to Showcase Earth Science Data at COP28
      This illustration shows the international Surface Water and Ocean Topography (SWOT) satellite in orbit over Earth. SWOT’s main instrument, KaRIn, helps survey the water on more than 90% of Earth’s surface. Credit: NASA/JPL-Caltech. NASA/JPL-Caltech With 26 Earth-observing satellite missions, as well as instruments flying on planes and the space station, NASA has a global vantage point for studying our planet’s oceans, land, ice, and atmosphere and deciphering how changes in one drive change in others.
      The agency will share that knowledge and data at the 28th U.N. Climate Change Conference of the Parties (COP28), which brings international parties together to accelerate action toward the goals of the Paris Agreement and the U.N. Framework Convention on Climate Change. COP28 will be held at the Expo City in Dubai, United Arab Emirates from Thursday, Nov. 30 to Tuesday, Dec. 12.
      All U.S. events at COP28 are open to the local press and will be live-streamed on the U.S. Center at COP28 website and the U.S. Center YouTube channel.
      NASA takes a full-picture approach to understanding all areas of our home planet using our vast satellite fleet and the data collected from their observations. The agency’s data is open-source and available for the public and scientists to study. NASA is showcasing the data at COP28 to share the different ways it can be used globally. The agency’s complete collection of Earth data can be found here.
      The scientific research and understanding developed from NASA’s Earth observations are made into predictive models. Those models can be used to develop applications and actionable science to inform individuals including civic leaders and planners, resource managers, emergency managers, and communities looking to mitigate and adapt to climate change.
      These satellites and models are augmented by the observations made from the International Space Station. The inclined, low Earth orbit from the station provides variable views and lighting over more than 90 percent of the inhabited surface of the Earth, a useful complement to sensor systems on satellites in higher-altitude polar orbits.
      Closer to the surface, NASA’s aviation research is focused on advancing technologies for more efficient airplane flight, including hybrid-electric propulsion, advanced materials, artificial intelligence, and machine learning. Technological advances in these areas have the potential to reduce human impacts on climate and air quality.
      Hyperwall
      At the U.S. Center at COP28, in-person visitors can see the NASA Hyperwall where NASA scientists will provide live presentations showing how the agency’s work supports the Biden-Harris Administration’s agenda to encourage a governmentwide approach to climate change. During the hyperwall talks, NASA leaders, scientists and interagency partners will discuss the agency’s end-to-end research about our planet. This includes designing new instruments, satellites, and systems to collect and freely distribute the most complete and precise data possible about Earth’s land, ocean, and atmospheric system. A full schedule of NASA’s hyperwall talks is available.
      Katherine Rohloff
      Headquarters, Washington
      202-358-1600
      katherine.a.rohloff@nasa.gov
      Share








      Details
      Last Updated Nov 27, 2023 Editor Contact Related Terms
      Climate Change Earth Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Climate Change


      NASA is a global leader in studying Earth’s changing climate.


      Explore Earth Science



      Earth Science Data


      View the full article
    • By NASA
      El astronauta de la NASA Frank Rubio, quien batió récords con su reciente misión, es el presentador de un video con el primer tour narrado en español del hogar de la humanidad en el espacio: la Estación Espacial Internacional.
      Rubio da la bienvenida al público a bordo de este laboratorio científico en microgravedad para compartir una mirada tras bastidores a la vida y el trabajo en el espacio. El astronauta grabó el tour durante su misión de 371 días en la estación espacial, la cual constituyó el vuelo espacial individual más largo realizado por un estadounidense.
      El video con el recorrido por la estación está disponible en el servicio de transmisión NASA+ de la agencia, en la aplicación de la NASA, en NASA Television, y en el canal de YouTube en español y el sitio web de la agencia.
      Habitada de forma ininterrumpida desde hace más de 23 años, la estación espacial es una plataforma científica única donde los miembros de la tripulación realizan experimentos en diferentes disciplinas de investigación, incluyendo las ciencias de la Tierra y el espacio, la biología, la fisiología humana, las ciencias físicas y demostraciones tecnológicas que no podrían llevarse a cabo en la Tierra.
      La tripulación que vive a bordo de la estación sirve como las manos de miles de investigadores en tierra quienes realizan más de 3.300 experimentos en microgravedad. Durante su misión récord, Rubio dedicó muchas horas a contribuir a las actividades científicas a bordo del laboratorio orbital, llevando a cabo desde estudios sobre la salud humana hasta investigaciones con plantas.
      Rubio regresó a la Tierra en septiembre de 2023, después de haber completado unas 5.936 órbitas alrededor de la Tierra y un viaje de más de 253 millones de kilómetros (157 millones de millas) durante su primer vuelo espacial, una distancia más o menos equivalente a 328 viajes de ida y vuelta a la Luna.
      Recibe las últimas noticias, imágenes y artículos de la NASA sobre la estación espacial a través de sus cuentas en inglés de Instagram, Facebook y X o sus cuentas en español de Instagram, Facebook y X de la agencia.
      Mantente al día sobre la Estación Espacial Internacional, sus investigaciones y su tripulación en el sitio web en inglés:
      https://www.nasa.gov/station
      -fin-
      María José Viñas
      Sede, Washington
      240-458-0248
      maria-jose.vinasgarcia@nasa.gov
      Chelsey Ballarte
      Centro Espacial Johnson, Houston
      281-483-5111
      chelsey.n.ballarte@nasa.gov
      View the full article
    • By NASA
      Record-breaking NASA astronaut Frank Rubio provides the first Spanish-language video tour of humanity’s home in space – the International Space Station.
      Rubio welcomes the public aboard the microgravity science laboratory in a behind-the-scenes look at living and working in space recorded during his 371-day mission aboard the space station, the longest single spaceflight in history by an American.
      The station tour is available to watch on the agency’s NASA+ streaming platform, NASA app, NASA Television, YouTube, and the agency’s website.
      Continuously inhabited for more than 23 years, the space station is a scientific platform where crew members conduct experiments across multiple disciplines of research, including Earth and space science, biology, human physiology, physical sciences, and technology demonstrations that could not be performed on Earth.
      The crew living aboard the station are the hands of thousands of researchers on the ground conducting more than 3,300 experiments in microgravity. During his record-breaking mission, Rubio spent many hours contributing to scientific activities aboard the orbiting laboratory, conducting everything from human health studies to plant research.
      Rubio returned to Earth in September, having completed approximately 5,936 orbits of the Earth and a journey of more than 157 million miles during his first spaceflight, roughly the equivalent of 328 trips to the Moon and back.
      Get the latest NASA space station news, images and features on Instagram, Facebook, and X.
      Keep up with the International Space Station, its research, and crew at:
      https://www.nasa.gov/station
      -end-
      María José Viñas
      Headquarters, Washington
      240-458-0248
      maria-jose.vinasgarcia@nasa.gov
      Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      chelsey.n.ballarte@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...