Jump to content

51 U.S.C. Sec. 50115 SOURCES OF EARTH SCIENCE DATA


NASA

Recommended Posts

  • Publishers

51 USC Sec. 50115

Sec. 50115. Sources of Earth science data

(a) Acquisition.–The Administrator shall, to the extent possible and while satisfying the scientific or educational requirements of the Administration, and where appropriate, of other Federal agencies and scientific researchers, acquire, where cost-effective, space-based and airborne Earth remote sensing data, services, distribution, and applications from a commercial provider.

(b) Treatment as Commercial Item Under Acquisition Laws.–Acquisitions by the Administrator of the data, services, distribution, and applications referred to in subsection (a) shall be carried out in accordance with applicable acquisition laws and regulations (including chapters 137 and 140 of title 10). For purposes of such law and regulations, such data, services, distribution, and applications shall be considered to be a commercial item. Nothing in this subsection shall be construed to preclude the United States from acquiring, through contracts with commercial providers, sufficient rights in data to meet the needs of the scientific and educational community or the needs of other government activities.

(c) Safety Standards.–Nothing in this section shall be construed to prohibit the Federal Government from requiring compliance with applicable safety standards.

(d) Administration and Execution.–This section shall be carried out as part of the Commercial Remote Sensing Program at the Stennis Space Center.
 

-SOURCE-

Pub. L. 111-314, Subtitle V, Chapter 501, Sec. 50115, Dec. 18, 2010, 124 Stat. 3398

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      NASA to Showcase Earth Science Data at COP28
      This illustration shows the international Surface Water and Ocean Topography (SWOT) satellite in orbit over Earth. SWOT’s main instrument, KaRIn, helps survey the water on more than 90% of Earth’s surface. Credit: NASA/JPL-Caltech. NASA/JPL-Caltech With 26 Earth-observing satellite missions, as well as instruments flying on planes and the space station, NASA has a global vantage point for studying our planet’s oceans, land, ice, and atmosphere and deciphering how changes in one drive change in others.
      The agency will share that knowledge and data at the 28th U.N. Climate Change Conference of the Parties (COP28), which brings international parties together to accelerate action toward the goals of the Paris Agreement and the U.N. Framework Convention on Climate Change. COP28 will be held at the Expo City in Dubai, United Arab Emirates from Thursday, Nov. 30 to Tuesday, Dec. 12.
      All U.S. events at COP28 are open to the local press and will be live-streamed on the U.S. Center at COP28 website and the U.S. Center YouTube channel.
      NASA takes a full-picture approach to understanding all areas of our home planet using our vast satellite fleet and the data collected from their observations. The agency’s data is open-source and available for the public and scientists to study. NASA is showcasing the data at COP28 to share the different ways it can be used globally. The agency’s complete collection of Earth data can be found here.
      The scientific research and understanding developed from NASA’s Earth observations are made into predictive models. Those models can be used to develop applications and actionable science to inform individuals including civic leaders and planners, resource managers, emergency managers, and communities looking to mitigate and adapt to climate change.
      These satellites and models are augmented by the observations made from the International Space Station. The inclined, low Earth orbit from the station provides variable views and lighting over more than 90 percent of the inhabited surface of the Earth, a useful complement to sensor systems on satellites in higher-altitude polar orbits.
      Closer to the surface, NASA’s aviation research is focused on advancing technologies for more efficient airplane flight, including hybrid-electric propulsion, advanced materials, artificial intelligence, and machine learning. Technological advances in these areas have the potential to reduce human impacts on climate and air quality.
      Hyperwall
      At the U.S. Center at COP28, in-person visitors can see the NASA Hyperwall where NASA scientists will provide live presentations showing how the agency’s work supports the Biden-Harris Administration’s agenda to encourage a governmentwide approach to climate change. During the hyperwall talks, NASA leaders, scientists and interagency partners will discuss the agency’s end-to-end research about our planet. This includes designing new instruments, satellites, and systems to collect and freely distribute the most complete and precise data possible about Earth’s land, ocean, and atmospheric system. A full schedule of NASA’s hyperwall talks is available.
      Katherine Rohloff
      Headquarters, Washington
      202-358-1600
      katherine.a.rohloff@nasa.gov
      Share








      Details
      Last Updated Nov 27, 2023 Editor Contact Related Terms
      Climate Change Earth Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Climate Change


      NASA is a global leader in studying Earth’s changing climate.


      Explore Earth Science



      Earth Science Data


      View the full article
    • By European Space Agency
      Image: The Copernicus Sentinel-2 mission captures the colourful waters of two salty lakes in East Africa: Lake Natron in northern Tanzania and Lake Magadi in southern Kenya. View the full article
    • By NASA
      7 min read
      Science on Station: November 2023
      Inspiring Students with Ham Radio, Other Educational Programs
      As an orbiting microgravity laboratory, the International Space Station hosts experiments from almost every scientific field. It also is home to educational programs to encourage young people worldwide to study science, technology, engineering, and mathematics (STEM). These programs aim to inspire the next generation of space scientists and explorers and experts who can solve problems facing people on Earth.
      The first and longest running educational outreach program on the space station is ISS Ham Radio. An organization known as Amateur Radio on the International Space Station, or ARISS, helps run the program. ARISS is a partnership between NASA, the American Radio Relay League, the Radio Amateur Satellite Corporation, amateur radio organizations, and multiple international space agencies. Students use amateur or ham radio to talk with astronauts, asking them questions about life in space, career opportunities, and other space-related topics. Three contacts with schools in Australia and Canada were scheduled during the month of November 2023.
      JAXA astronaut Koichi Wakata during a ham radio session.NASA Before a contact, students help set up a ground radio station and study radio waves, space technology, the space station, geography, and the space environment. Contact events have been held with schools from kindergarten through 12th grade, universities, scout groups, museums, libraries, and after school programs, and at national and international events. Approximately 15,000 to 100,000 students are involved directly each year and thousands more people in their communities witness these contacts directly or through the news media.
      Rita Wright, a teacher at Burbank School in Burbank, IL, one of the first to have a contact with the space station, reported on the extensive study and preparation by the students there.1 She noted that their contact was “an interdisciplinary learning experience for all grades across a variety of academic concentrations that included math, science, reading, writing and art…. The transformation that took place was quite revolutionary. We came closer together as a school.” Students talked extensively about the experiment and parents pitched in and helped because they sensed how special the event was and wanted to be a part of it.
      Wright adds that ripple effects continued long after the December 2000 contact with astronaut William Shepherd. Staff members were inspired to look for other interdisciplinary projects and many students talked about pursuing careers associated with the space industry.
      After a contact at Sonoran Sky Elementary School in Scottsdale, AZ, teacher Carrie Cunningham reported that the students started an after-school Amateur Radio Club and that, “sparked by the excitement of the ARISS contact, many students have shown an interested in pursuing their own Amateur Radio experience.”2
      “There is a sense of accomplishment that results from the school and the students setting up and conducting the ISS ham contact themselves,” Cunningham reported. “The students better understand how NASA and the other international space agencies conduct science in space. The unique, hands-on nature of the amateur radio contact provides the incentive to learn about orbital mechanics, space flight, and radio operations.”
      In a 2018 conference presentation, members of the ARISS staff noted that the program and its predecessors have jump-started countless careers, touched millions of people from all walks of life, and even become local and international phenomena. Participants have ranged from disadvantaged students to heads of states, and the program has been mentioned in IMAX films, numerous television shows, and commercials.3
      A group of educators from Australia recently looked at how ham radio affected student interest in STEM subjects. They found that the program has a significant and positive impact on students and that interest in all STEM areas increases as a direct result of contacts.4
      That research also reported a strong belief among teachers that astronauts provide outstanding examples of role models for their students. While the greatest changes in student interests occurs with primary school age students, the program also creates strong change in the interests of high school students.
      NASA astronaut Edward M. (Mike) Fincke uses the station’s ham radio set during Expedition 9. NASA Patricia Palazzolo was the coordinator for gifted education in the Upper St. Clair School District in Pennsylvania during a 2004 contact with NASA astronaut Mike Fincke. She wrote a report about the event, noting that the positive impact of the program goes far beyond the numbers. “All of my students who have participated … have gone on to phenomenal accomplishments and careers that contribute much to society. Almost all have opted for careers in science, technology, or science-related fields.”
      Ham radio experiences help students make real-world connections among disciplines, teach problem-solving under the pressure of deadlines, hone communication skills, and illustrate the importance of technology.5 For the adults involved, contacts highlight the significance of sharing skills with others and provide an opportunity to model the power of passion, partnership, and persistence.
      AstroPi is an educational program from ESA (European Space Agency) where primary and secondary school students design experiments and write computer code for one of two Raspberry Pi computers on the space station. The computers are equipped with sensors to measure the environment inside the spacecraft, detect how the station moves through space, and pick up the Earth’s magnetic field. One of them has an infrared camera and the other a standard visible-spectrum camera. 
      One student project used the visible camera to observe small-scale gravity waves in different regions in the northern hemisphere.6 Atmospheric gravity waves transport energy and momentum to the upper layers of the atmosphere. These phenomena can be detected by visual patterns such as meteor trails, airglow, and clouds.
      ESA astronaut Samantha Cristoforetti poses with the AstroPi equipped with a visual camera.NASA YouTube Space Lab was a world-wide contest for students ages 14 to 18 to design an experiment about physics or biology using video. Two proposals were selected from 2,000 entries received from around the world. One of those documented the ability of the Phidippus jumping spider to walk on surfaces and make short, direct jumps to capture small flies in microgravity.7
      Other space station facilities that host student-designed projects include CubeSat small satellites, TangoLab, the Nanoracks platform, and Space Studio Kibo, a JAXA (Japan Aerospace Exploration Agency) broadcasting studio.
      NASA is committed to engaging, inspiring, and attracting future explorers and building a diverse future STEM workforce through a broad set of programs and opportunities. The space station is an important part of that commitment.
      John Love, ISS Research Planning Integration Scientist
      Expedition 70

      Search this database of scientific experiments to learn more about those mentioned above. Space Station Research Explorer.

      Citations:
      Wright RL. Remember, We’re Pioneers! The First School Contact with the International Space Station. AMSAT-NA Space Symposium. Arlington, VA. 2004 9pp. Cunningham C. NA1SS, NA1SS, This is KA7SKY Calling…… AMSAT-NA Space Symposium, Arlington, VA. 2004 Bauer F, Taylor D, White R. Educational Outreach and International Collaboration Through ARISS: Amateur Radio on the International Space Station. 2018 SpaceOps Conference, Marseille, France. 2018 28 May – 1 June; 14 pp. DOI: 10.2514/6.2018-2437. Diggens, M., Williams, J., Benedix, G. (2023). No Roadblocks in Low Earth Orbit: The Motivational Role of the Amateur Radio on the International Space Station (ARISS) School Program in STEM Education. Space Education & Strategic Applications. https://doi.org/10.18278/001c.89715 Palazzolo P. Launching Dreams: The Long-term Impact of SAREX and ARISS on Student Achievement. AMSAT-NA Space Symposium, Pittsburgh, PA. 2007 18pp. Magalhaes TE, Silva DE, Silva CE, Dinis AA, Magalhaes JP, Ribeiro TM. Observation of atmospheric gravity waves using a Raspberry Pi camera module on board the International Space Station. Acta Astronautica. 2021 May 1; 182416-423. DOI: 10.1016/j.actaastro.2021.02.022 Hill DE. Jumping spiders in outer space (Araneae: Salticidae). PECKHAMIA. 2016 September 17; 146(1): 7 pp. Facebook logo @ISS @Space_Station@ISS_Research Instagram logo @ISS Linkedin logo @NASA Keep Exploring Discover Related Topics
      Latest News from Space Station Research
      ISS National Laboratory
      Education and Outreach
      International Space Station
      View the full article
    • By NASA
      6 min read
      Bethany Theiling: Researching Oceans on Earth and Beyond
      Name: Bethany Theiling
      Formal Job Classification: Planetary research scientist
      Organization: Planetary Environment Laboratory, Science Directorate (Code 699)
      Bethany Theiling is a planetary research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.NASA/Rebecca Roth What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
      I am an ocean worlds geochemist, which combines chemistry and geology. I study oceans across the solar system including those on Earth.
      What is your educational background?
      I have a B.A. in anthropology and linguistics from Florida State University, a Master of Science in geology from the University of Georgia, and a Ph.D. in Earth and planetary sciences from the University of New Mexico.
      Where did you learn the techniques that make you successful?
      I ran the stable isotope lab at Purdue University. I was responsible for maintaining the facility and mentoring the students. I had to be very flexible and have a very deep understanding of all the equipment and everyone’s projects.
      I then did a postdoc at NASA’s Jet Propulsion Laboratory in Southern California. That was my introduction to planetary science. I fell in love with Europa and icy ocean worlds.
      What drew you to being a geology professor at the University of Tulsa?
      I always wanted to be a professor. I love everything about it; that you can teach, do research and mentor students. I thought that being a professor gave you total freedom over anything you wanted to explore. I loved it, but I had an abundance of research ideas and did not have the time and resources to pursue them.
      How did you come to Goddard? What was your impression?
      I started working at Goddard in August 2019 as a planetary research scientist.
      I did not know that a place like Goddard existed – a place that is truly supportive of the people who work there. The employees and management have an incredible positivity. Within the planetary science guideposts, I have the freedom to pursue almost any line of research I am able to get funded.
      What is your favorite part about laboratory work? Field work?
      In my laboratory work, I get to create other worlds in the lab.
      Just over a year ago, I completed fieldwork exploring lava caves on volcanos in Hawaii. We were trying to evaluate the atmosphere inside the lava cave to create a method for astronauts to determine environmental conditions in caves on Mars or the Moon. We also used isotopes in the air to identify life, which hopefully can also be used in a future mission.
      What is the most exciting research you are doing?
      I am very excited about my work developing an autonomous science agent. My team recognizes that for these planetary ocean worlds, it will be very challenging to explore and return data. We are hoping to develop artificial intelligence (AI) that can act as a scientist aboard a spacecraft. Many of the current autonomous functions of a spacecraft are robotic.
      We are trying to develop what we are terming “science autonomy.” We want multiple instruments to be able to collect data on board, that the science agent can analyze and make decisions about, including returning this information to Earth. This includes prioritizing, transmitting, and deciding where and when to take the next samples.
      The advantage of an AI agent is that we can avoid the sometimes 12-plus-hour delay in communicating with the spacecraft. We are hoping to do “opportunistic science,” meaning respond to real-time events.
      We have a series of capability demonstrations, but an AI science agent is a few years away. We can already do simple tasks, but cannot yet do opportunistic science.
      Ultimately no person can be on these spacecraft. We are trying to create an AI science agent to find “eureka moments” in real time on its own. We are trying to create AI independence through multiple observations.
      What advice do you give the people you mentor?
      Although I customize my advice, I am often asked what characteristics make someone successful and able to get through tough times. I always say: creativity and tenacity. I constantly come up with ideas, some better than others, and I explore them. I think about problems in creative ways. I stick with whatever I am thinking about until I figure it out, but sometimes you need to know when enough is enough. Creativity comes from myself, but also from listening to the people on my team.  
      These traits also describe Goddard’s culture, which is another reason why I love Goddard so much.
      What do you do for fun?
      So many things! Here’s just a few. I paint abstract art and impressionism in acrylics and watercolors. In the past, I had a costuming company for belly dancers and regular costumes. I also trained in opera and am getting back into it. I also love gardening and hiking.
      Who inspires you?
      My astrophysicist husband, who is a professor of physics and astronomy, is the most wonderful person. He has supported every wild idea I have ever had and helps me edit them. I can be up in the clouds and he brings me back down to earth, which I sometimes need. He has inspired most of my ideas in some way. He’s my best friend, and we have been together for over two decades.
      My vocal coach is incredibly supportive and wants to cultivate each of his students to find their own unique voice and not emulate someone else’s voice. That “voice” – perspective – is something I nurture in my hobbies and career.
      What is your “three-word memoir”?
      Opportunity is everywhere.
      This applies to me personally and also one I cultivate in our AI science agent.
      NASA Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Nov 21, 2023 Editor Jamie Adkins Contact Rob Garnerrob.garner@nasa.gov Location Goddard Space Flight Center Related Terms
      Goddard Space Flight Center People of Goddard People of NASA Explore More
      3 min read NASA to Highlight Inclusion During Bayou Classic Event 
      Article 1 day ago 4 min read NASA’s Webb Reveals New Features in Heart of Milky Way
      Article 1 day ago 3 min read NASA Researcher Honored by Goddard Tech Office for Earth Science Work
      Goddard researcher Dr. Antonia Gambacorta the 2023 IRAD Innovator of the Year for her work…
      Article 4 days ago View the full article
    • By NASA
      5 min read
      NASA Mission Excels at Spotting Greenhouse Gas Emission Sources
      Flaring, in which excess natural gas is intentionally burned into the air, is one way methane is released from oil and gas facilities. NASA’s EMIT mission, in more than a year in operation, has shown a proficiency at spotting emissions of methane and other greenhouse gases from space.Adobe Stock/Ilya Glovatskiy Since launching 16 months ago, the EMIT imaging spectrometer aboard the International Space Station has shown an ability to detect more than just surface minerals.
      More than a year after first detecting methane plumes from its perch aboard the International Space Station, data from NASA’s EMIT instrument is now being used to identify point-source emissions of greenhouse gases with a proficiency that has surprised even its designers.
      Short for Earth Surface Mineral Dust Source Investigation, EMIT was launched in July 2022 to map 10 key minerals on the surface of the world’s arid regions. Those mineral-related observations, which are already available to researchers and the public, will help improve understanding of how dust that gets lofted into the atmosphere affects climate.
      Detecting methane was not part of EMIT’s primary mission, but the instrument’s designers did expect the imaging spectrometer to have the capability. Now, with more than 750 emissions sources identified since August 2022 – some small, others in remote locations, and others persistent in time – the instrument has more than delivered in that regard, according to a new study published in Science Advances.
      “We were a little cautious at first about what we could do with the instrument,” said Andrew Thorpe, a research technologist on the EMIT science team at NASA’s Jet Propulsion Laboratory in Southern California and the paper’s lead author. “It has exceeded our expectations.”
      EMIT identified a cluster of 12 methane plumes within a 150-square-mile (400-square-kilometer) area of southern Uzbekistan on Sept. 1, 2022. The instrument captured the cluster within a single shot, called a scene by researchers. NASA/JPL-Caltech By knowing where methane emissions are coming from, operators of landfills, agriculture sites, oil and gas facilities, and other methane producers have an opportunity to address them. Tracking human-caused emissions of methane is key to limiting climate change because it offers a comparatively low-cost, rapid approach to reducing greenhouse gases. Methane lingers in the atmosphere for about a decade, but during this span, it’s up to 80 times more powerful at trapping heat than carbon dioxide, which remains for centuries.
      Surprising Results
      EMIT has proven effective at spotting emission sources both big (tens of thousands of pounds of methane per hour) and surprisingly small (down to the hundreds of pounds of methane per hour). This is important because it permits identification of a greater number of “super-emitters” – sources that produce disproportionate shares of total emissions. The new study documents how EMIT, based on its first 30 days of greenhouse gas detection, can observe 60% to 85% of the methane plumes typically seen in airborne campaigns.
      In a remote corner of southeastern Libya, EMIT on Sept. 3, 2022, detected a methane plume that was emitting about 979 pounds (444 kilograms) per hour. It’s one of the smallest sources detected so far by the instrument.NASA/JPL-Caltech From several thousand feet above the ground, methane-detecting instruments on aircraft are more sensitive, but to warrant sending a plane, researchers need prior indication that they’ll detect methane. Many areas are not examined because they are considered too remote, too risky, or too costly. Additionally, the campaigns that do occur cover relatively limited areas for short periods.
      On the other hand, from about 250 miles (400 kilometers) altitude on the space station, EMIT collects data over a large swath of the planet – specifically the arid regions that fall between 51.6 degrees north and south latitude. The imaging spectrometer captures 50-mile-by-50-mile (80-kilometer-by-80-kilometer) images of the surface – researchers call them “scenes” – including many regions that have been beyond the reach of airborne instruments.
      This time-lapse video shows the Canadarm2 robotic arm of the International Space Station maneuvering NASA’s EMIT mission onto the exterior of the station. Extraction from the SpaceX Dragon spacecraft began around 5:15 p.m. PDT on July 22 and was completed at 10:15 a.m. PDT on July 24. Portions of the installation have been omitted, while others have been speeded up. Credit: NASA “The number and scale of methane plumes measured by EMIT around our planet is stunning,” said Robert O. Green, a JPL senior research scientist and EMIT’s principal investigator.
      Scene-by-Scene Detections
      To support source identification, the EMIT science team creates maps of methane plumes and releases them on a website, with underlying data available at the joint NASA-United States Geological Survey Land Processes Distributed Active Archive Center (LP DAAC). The mission’s data is available for use by the public, scientists, and organizations.
      Since EMIT began collecting observations in August 2022, it has documented over 50,000 scenes. The instrument spotted a cluster of emissions sources in a rarely studied region of southern Uzbekistan on Sept. 1, 2022, detecting 12 methane plumes totaling about 49,734 pounds (22,559 kilograms) per hour.
      In addition, the instrument has spotted plumes far smaller than expected. Captured in a remote corner of southeastern Libya on Sept. 3, 2022, one of the smallest sources so far was emitting 979 pounds (444 kilograms) per hour, based on estimates of local wind speed.
      More About the Mission
      EMIT was selected from the Earth Venture Instrument-4 solicitation under the Earth Science Division of NASA’s Science Mission Directorate and was developed at NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech in Pasadena, California. The instrument’s data is available at the NASA Land Processes Distributed Active Archive Center for use by other researchers and the public.
      To learn more about the mission, visit:
      https://earth.jpl.nasa.gov/emit/
      See EMIT in 3D on the International Space Station with NASA's Eyes on the Earth News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      2023-172
      Share
      Details
      Last Updated Nov 17, 2023 Related Terms
      Dust Storms Earth Earth Science Division EMIT (Earth Surface Mineral Dust Source Investigation) Greenhouse Gases Jet Propulsion Laboratory Explore More
      7 min read NASA’s Cold Atom Lab Sets Stage for Quantum Chemistry in Space
      Article 2 days ago 10 min read Satellite Data Can Help Limit the Dangers of Windblown Dust
      Dust storms present a growing threat to the health and safety of U.S. populations.
      Article 2 days ago 6 min read NASA Data Reveals Possible Reason Some Exoplanets Are Shrinking
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...