Jump to content

Recommended Posts

  • Publishers
Posted

5 min read

OpenET Launches a New API

screenshot-2023-08-16-at-2.50.56-pm.png
NASA / Ames

On Tuesday, October 3, NASA Ames’ OpenET program launched an application programming interface (API) for its widely-used Data Explorer tool.

OpenET is a program providing satellite-based information on evapotranspiration (ET) and agricultural water use, currently deployed across the 23 westernmost continental states. Data is provided at a scale of individual fields, or a quarter acre per pixel, and available at daily, monthly, and annual time scales.

The current Data Explorer is freely available online, with the intent that anyone with an internet connection can easily access, download, retrieve and review data on water management. The October 3 launch of the API comes as the second piece of a three-part initiative to achieve this goal: stage one was the creation of the Data Explorer itself. Stage two, the new API, is designed to allow data to be more easily retrieved and integrated with a variety of water management applications on local, state, or federal levels.

The program’s manager, Forrest Melton, saw many applications of the new API, “for on-farm water management, for irrigation scheduling, for use in irrigation design, or for use in development of water balances for an individual irrigation district or watershed. The API is the piece that will allow partners in the water resources management and agricultural sectors to begin to much more easily and automatically integrate data from OpenET into other applications and tools.”

The API is the piece that will allow partners in the water resources management and agricultural sectors to begin to much more easily and automatically integrate data from OpenET into other applications and tools.”

Forrest melton

Forrest melton

OpenET Program Manager

There are currently 10 states retrieving and incorporating information from OpenET into various state water data information systems; the API will now make it easier to formalize and automate the data retrievals, and hopefully enable more states to integrate satellite data into their water management platforms in the future.  

Map of OpenET use cases
This map showcases five different uses of OpenET data across the westernmost United States.

In an example of the need and efficacy of OpenET’s data systems, the new API is already being used as part of the Delta Alternative Compliance Plan. California passed a law at the end of 2021 requiring the monitoring and reporting of specific elements of water usage, affecting nearly every farm in the Delta: an expensive, complex, and time-consuming ask. Farmers worked with the Delta Water Master to propose the use of OpenET, facilitating the automatic integration of data from the data explorer with California’s State Water Resources Control Board report management system. Melton remarked on the significant impact the integration had on the farmers’ workloads:

“The process for reporting water use in the Delta that used to take farmers half a day to a day, they can now complete in about ten minutes. [It also] saves them thousands of dollars per year in cost for deploying and maintaining flow meters.”

The process for reporting water use in the Delta that used to take farmers half a day to a day, they can now complete in about ten minutes. [It also] saves them thousands of dollars per year in cost for deploying and maintaining flow meters.

Forrest melton

Forrest melton

OpenET Program Manager

Water resource management has historically been a controversial subject for California, and Melton said it is gratifying to help create a “win-win” opportunity that is mutually beneficial for both parties;

“They’ve had record levels of reporting this last year. We know it’s saved farmers money [and] time, and given the state more consistent data across the Delta, which is a critical nexus for water management in the state. […] It’s a bit in the weeds, I think, for the general audience. But for folks that work in water and understand how challenging some of these things have been, it’s a huge, huge win.”

OpenET Program Manager Forrest Melton stands in field with two farmers, checking satellite data on a handheld device.
OpenET Program Manager Forrest Melton stands in field with two California farmers, checking satellite data about water usage.

The OpenET team is also talking to the Western States Water Council about integrating satellite data into Upper Colorado River Basin demand management programs; an initiative the new API will be a critical piece of. Unlike the Delta, operating within this watershed would focus less on water use reporting and more on supporting the development of incentive-based water conservation. In short, such a program would allow farmers, ranchers, and other agricultural water rights holders to apply for funding to conserve water in the Colorado River Basin.

Developing a water conservation incentive program, however, is just one of the intended outcomes of the new API. Other goals stretch across the nation, and include:

  • Implementing the Sustainable Groundwater Management Act in California
  • Provisioning engineering firms and consultants to support multiple groundwater sustainability agencies
  • Supporting the USGS National Water Census and National Hydrologic Model
  • Supporting the Columbia River Basin evapotranspiration mapping tool; a multi-state initiative co- developed by the Oregon Water Resources Department, Idaho Department of Water Resources and Washington Department of Ecology
  • Providing low latency data and forecasted information to support irrigation scheduling, thereby aiding individual farmers and ranchers

Creating the API has taken Melton and his teams years of work, partnering closely with end-user agencies and organizations to test and refine the platform before its official release. This initial launch will go out to roughly 10,000 registered users, with the intent for wider promotion once the initial wave of usage is passed and the platform is performing smoothly.  

Looking at what is next for OpenET, Melton stated that the third stage of the open data architecture will be geared towards individual farmers and ranchers, creating custom reporting tools for farm and ranch management support. This final iteration will focus on providing a user-friendly interface to engage with those that may be interested in the technology but not have the programming background to synthesize the data sets in a way they can use. The graphical user interface, formally titled the OpenET Farm and Ranch Management Support (FARMS) tool, will sit on top of the API and guide users through the basics of setting up queries and running recurring reports. Melton was optimistic that a prototype of FARMS could be ready in early 2024.

About the Author

Milan Loiacono

Milan Loiacono

Science Communication Specialist

Milan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.

Share

Details

Last Updated
Oct 03, 2023

Related Terms

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A SpaceX Falcon 9 rocket carrying Northrop Grumman’s Cygnus XL spacecraft is launched on NASA’s Northrop Grumman Commercial Resupply Services 23 mission to the International Space Station on Sunday, Sept. 14, 2025.Credit: NASA NASA is sending more science, technology demonstrations, and crew supplies to the International Space Station following the successful launch of the agency’s Northrop Grumman Commercial Resupply Services 23 mission, or Northrop Grumman CRS-23.
      The company’s Cygnus XL spacecraft, carrying more than 11,000 pounds of cargo to the orbiting laboratory, lifted off at 6:11 p.m. EDT Sunday on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This mission is the first flight of the larger, more cargo-capable version of the solar-powered spacecraft. 
      Cygnus XL is scheduled to be captured at 6:35 a.m. on Wednesday, Sept. 17, by the Canadarm2 robotic arm, which NASA astronaut Jonny Kim will operate with assistance from NASA astronaut Zena Cardman. Following capture, the spacecraft will be installed to the Unity module’s Earth-facing port for cargo unloading.
      The resupply mission is carrying dozens of research experiments that will be conducted during Expedition 73, including materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. The spacecraft also will deliver a specialized UV light system to prevent the growth of microbe communities that form in water systems and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.
      These are just a sample of the hundreds of scientific investigations conducted aboard the station in the areas of biology and biotechnology, Earth and space science, physical sciences, as well as technology development and demonstrations. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, where astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including Artemis missions to the Moon and American astronaut missions to Mars.
      NASA’s arrival, capture, and installation coverage are as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, Sept. 17
      5 a.m. – Arrival coverage begins on NASA+, Amazon Prime, and more.
      6:35 a.m. – Capture of Cygnus XL with the space station’s robotic arm.
      8 a.m. – Installation coverage begins on NASA+, Amazon Prime, and more.
      All coverage times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date information.
      Cygnus XL is scheduled to remain at the orbiting laboratory until March 2026, before it departs and disposes of several thousand pounds of trash through its re-entry into Earth’s atmosphere, where it will harmlessly burn up. The spacecraft is named the S.S. William “Willie” C. McCool, in honor of the NASA astronaut who perished in 2003 during the space shuttle Columbia accident.
      Learn more about this NASA commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-northrop-grumman-crs-23/
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Sep 14, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center Northrop Grumman Commercial Resupply View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A ship plows through rough seas in the Bering Sea in the aftermath of Typhoon Tip, one of the largest hurricanes on record. The Sentinel-6B satellite will provide data crucial to forecasting sea states, information that can help ships avoid danger. CC BY 2.0 NOAA/Commander Richard Behn Sea surface height data from the Sentinel-6B satellite, led by NASA and ESA, will help with the development of marine weather forecasts, alerting ships to possible dangers.
      Because most global trade travels by ship, accurate, timely ocean forecasts are essential. These forecasts provide crucial information about storms, high winds, and rough water, and they depend on measurements provided by instruments in the ocean and by satellites including Sentinel-6B, a joint mission led by NASA and ESA (European Space Agency) that will provide essential sea level and other ocean data after it launches this November.
      The satellite will eventually take over from its twin, Sentinel-6 Michael Freilich, which launched in 2020. Both satellites have an altimeter instrument that measures sea levels, wind speeds, and wave heights, among other characteristics, which meteorologists feed into models that produce marine weather forecasts. Those forecasts provide information on the state of the ocean as well as the changing locations of large currents like the Gulf Stream. Dangerous conditions can result when waves interact with such currents, putting ships at risk.
      “Building on NASA’s long legacy of satellite altimetry data and its real-world impact on shipping operations, Sentinel-6B will soon take on the vital task of improving ocean and weather forecasts to help keep ships, their crews, and cargo safe”, said Nadya Vinogradova Shiffer, lead program scientist at NASA Headquarters in Washington.
      Sentinel-6 Michael Freilich and Sentinel-6B are part of the Sentinel-6/Jason-CS (Continuity of Service) mission, the latest in a series of ocean-observing radar altimetry missions that have monitored Earth’s changing seas since the early 1990s. Sentinel-6/Jason-CS is a collaboration between NASA, ESA, the European Union, EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites), and NOAA (U.S. National Oceanic and Atmospheric Administration). The European Commission provided funding support, and the French space agency CNES (Centre National d’Études Spatiales) contributed technical support.
      Keeping current
      “The ocean is getting busier, but it’s also getting more dangerous,” said Avichal Mehra, deputy director of the Ocean Prediction Center at the National Weather Service in College Park, Maryland. He and his colleagues produce marine weather forecasts using data from ocean-based instruments as well as complementary measurements from five satellites, including Sentinel-6 Michael Freilich. Among those measurements: sea level, wave height, and wind speed. The forecasters derive the location of large currents from changes in sea level.
      One of the planet’s major currents, the Gulf Stream is located off the southeastern coast of the United States, but its exact position varies. “Ships will actually change course depending on where the Gulf Stream is and the direction of the waves,” said Mehra. “There have been instances where, in calm conditions, waves interacting with the Gulf Stream have caused damage or the loss of cargo containers on ships.”
      Large, warm currents like the Gulf Stream can have relatively sharp boundaries since they are generally higher than their surroundings. Water expands as it warms, so warm seawater is taller than cooler water. If waves interact with these currents in a certain way, seas can become extremely rough, presenting a hazard to even the largest ships.
      “Satellite altimeters are the only reliable measurement we have of where these big currents can be,” said Deirdre Byrne, sea surface height team lead at NOAA in College Park.
      There are hundreds of floating sensors scattered about the ocean that could pick up parts of where such currents are located, but these instruments are widely dispersed and limited in the area they measure at any one time. Satellites like Sentinel-6B offer greater spatial coverage, measuring areas that aren’t regularly monitored and providing essential information for the forecasts that ships need.
      Consistency is key
      Sentinel-6B won’t just help marine weather forecasts through its near-real-time data, though. It will also extend a long-term dataset featuring more than 30 years of sea level measurements, just as Sentinel-6 Michael Freilich does today.
      “Since 1992, we have launched a series of satellites that have provided consistent sea level observations from the same orbit in space. This continuity allows each new mission to be calibrated against its predecessors, providing measurements with centimeter-level accuracy that don’t drift over time,” said Severine Fournier, Sentinel-6B deputy project scientist at NASA’s Jet Propulsion Laboratory in Southern California.  
      This long-running, repeated measurement has turned this dataset into the gold standard sea level measurement from space — a reference against which data from other sea level satellites is checked. It also serves as a baseline, giving forecasters a way to tell what ocean conditions have looked like over time and how they are changing now. “This kind of data can’t be easily replaced,” said Mehra.
      More about Sentinel-6B
      Sentinel-6/Jason-CS was jointly developed by ESA, EUMETSAT, NASA, and NOAA, with funding support from the European Commission and technical support from CNES.
      A division of Caltech in Pasadena, JPL contributed three science instruments for each Sentinel-6 satellite: the Advanced Microwave Radiometer, the Global Navigation Satellite System – Radio Occultation, and the Laser Retroreflector Array. NASA is also contributing launch services, ground systems supporting operation of the NASA science instruments, the science data processors for two of these instruments, and support for the U.S. members of the international Ocean Surface Topography and Sentinel-6 science teams.
      For more about Sentinel-6/Jason-CS, visit:
      https://sealevel.jpl.nasa.gov/missions/jason-cs-sentinel-6
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-491-1943 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2025-116
      Share
      Details
      Last Updated Sep 11, 2025 Related Terms
      Sentinel-6B Jason-CS (Continuity of Service) / Sentinel-6 Jet Propulsion Laboratory Oceans Weather and Atmospheric Dynamics Explore More
      6 min read NASA Marsquake Data Reveals Lumpy Nature of Red Planet’s Interior
      Article 2 weeks ago 4 min read NASA: Ceres May Have Had Long-Standing Energy to Fuel Habitability
      Article 3 weeks ago 4 min read NASA’s Psyche Captures Images of Earth, Moon
      Article 3 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA’s Perseverance Mars rover took this selfie on September 10, 2021, the 198th Martian day, or sol of its mission.Credit: NASA/JPL-Caltech NASA will host a news conference at 11 a.m. EDT Wednesday, to discuss the analysis of a rock sampled by the agency’s Perseverance Mars rover last year, which is the subject of a forthcoming science paper. The agency previously announced this event as a teleconference. 
      Watch the news conference on NASA’s YouTube channel and the agency’s website. Learn how to watch NASA content through a variety of platforms, including social media.
      Participants include:
      Acting NASA Administrator Sean Duffy NASA Associate Administrator Amit Kshatriya Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington Lindsay Hays, senior scientist for Mars Exploration, Planetary Science Division, NASA Headquarters Katie Stack Morgan, Perseverance project scientist, NASA’s Jet Propulsion Laboratory in Southern California Joel Hurowitz, planetary scientist, Stony Brook University, New York To ask questions by phone, members of the media must RSVP no later than one hour before the start of the event to: rexana.v.vizza@jpl.nasa.gov. Media who registered for the earlier teleconference-only version of this event do not need to re-register. NASA’s media accreditation policy is available online.
      The sample, called “Sapphire Canyon,” was collected in July 2024 from a set of rocky outcrops on the edges of Neretva Vallis, a river valley carved by water rushing into Jezero Crater long ago.
      Since landing in the Red Planet’s Jezero Crater in February 2021, Perseverance has collected 30 samples. The rover still has six empty sample tubes to fill, and it continues to collect detailed information about geologic targets that it hasn’t sampled by using its abrasion tool. Among the rover’s science instruments is a weather station that provides environmental information for future human missions, as well as swatches of spacesuit material so that NASA can study how it fares on Mars.
      Managed for NASA by Caltech, JPL built and manages operations of the Perseverance rover on behalf of the agency’s Science Mission Directorate as part of NASA’s Mars Exploration Program portfolio.
      To learn more about Perseverance visit:
      https://www.nasa.gov/perseverance
      -end-
      Bethany Stevens / Karen Fox
      Headquarters, Washington
      202-358-1600
      bethany.c.stevens@nasa.gov / karen.c.fox@nasa.gov
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Share
      Details
      Last Updated Sep 10, 2025 LocationNASA Headquarters Related Terms
      Perseverance (Rover) Mars 2020 Planetary Science Division Science Mission Directorate
      View the full article
    • By NASA
      NASA’s Perseverance Mars rover took this selfie on September 10, 2021, the 198th Martian day, or sol of its mission. Credit: NASA/JPL-Caltech NASA will host a media teleconference at 11 a.m. EDT Wednesday, Sept. 10, to discuss the analysis of a rock sampled by the agency’s Perseverance Mars rover last year, which is the subject of a forthcoming science paper.
      The sample, called “Sapphire Canyon,” was collected in July 2024 from a set of rocky outcrops on the edges of Neretva Vallis, a river valley carved by water rushing into Jezero Crater long ago.
      Audio and visuals of the call will stream on the agency’s website at:
      https://www.nasa.gov/live
      Participants in the teleconference include:
      Acting NASA Administrator Sean Duffy Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington Lindsay Hays, Senior Scientist for Mars Exploration, Planetary Science Division, NASA Headquarters Katie Stack Morgan, Perseverance Project Scientist, NASA’s Jet Propulsion Laboratory in Southern California Joel Hurowitz, planetary scientist, Stony Brook University, New York To ask questions by phone, members of the media must RSVP no later than two hours before the start of the event to: rexana.v.vizza@jpl.nasa.gov. NASA’s media accreditation policy is available online.
      Since landing in the Red Planet’s Jezero Crater in February 2021, Perseverance has collected 30 samples. The rover still has six empty sample tubes to fill, and it continues to collect detailed information about geologic targets that it hasn’t sampled by using its abrasion tool. Among the rover’s science instruments is a weather station that provides environmental information for future human missions, as well as swatches of spacesuit material so that NASA can study how it fares on Mars.
      Managed for NASA by Caltech, JPL built and manages operations of the Perseverance rover on behalf of the agency’s Science Mission Directorate as part of NASA’s Mars Exploration Program portfolio.
      To learn more about Perseverance visit:
      https://www.nasa.gov/perseverance
      -end-
      Bethany Stevens / Karen Fox
      Headquarters, Washington
      202-358-1600
      bethany.c.stevens@nasa.gov / karen.c.fox@nasa.gov
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Share
      Details
      Last Updated Sep 08, 2025 LocationNASA Headquarters Related Terms
      Perseverance (Rover) Mars Mars 2020 Planetary Science Division Science Mission Directorate View the full article
    • By NASA
      Students prepare their robots to enter Artemis Arena during NASA’s Lunabotics competition on May 20, 2025, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida. NASA/Isaac Watson As college students across the country embark upon the academic year, NASA is giving them something else to look forward to – the agency’s 2026 Lunabotics Challenge. Teams interested in participating can submit their applications and supporting materials through NASA’s Stem Gateway portal beginning Monday, Sept. 8.
      Key dates and challenge details are available in the 2026 Lunabotics Challenge Guidebook. Once all applications and supporting materials are received and evaluated, NASA will notify the selected teams to begin the challenge.
      Student teams participating in this year’s challenge will create robots capable of building berms out of lunar regolith – the loose, fragmental material on the Moon’s surface. Structures like these will be important during lunar missions as blast protection during lunar landings and launches, shading for cryogenic propellant tank farms, radiation shielding around nuclear power plants, and other uses critical to future Moon missions.
      “We are excited to continue the Lunabotics competition for universities as NASA develops new Moon to Mars technologies for the Artemis program,” said Robert Mueller, senior technologist at NASA, as well as co-founder and chief judge of the Lunabotics competition. “Excavating and moving regolith is a fundamental need to build infrastructure on the Moon and Mars and this competition creates 21st century skills in the future workforce.”
      An in-person qualifying event will be held May 12-17, 2026, at the University of Central Florida’s Space Institute’s Exolith Lab in Orlando. From this round, the top 10 teams will be invited to bring their robots to the final competition on May 19-21, at the Kennedy Space Center Visitor Complex’s Artemis Arena in Florida, which has an area filled with a lunar regolith simulant. The team scoring the most points will receive the Lunabotics Grand Prize and participate in an exhibition-style event at NASA Kennedy.
      By encouraging innovative construction techniques and assessing student designs and data the same way it does its own prototypes, NASA casts a wider net to find innovative solutions to challenges inherent in future Artemis missions, like developing future lunar excavators, in-situ resource utilization capabilities, and living on the Moon or Mars. With its multidisciplinary approach, Lunabotics also serves as a workforce pipeline, with teams gaining valuable hands-on experience in computer coding, engineering, manufacturing, fabricating, and other crucial skills, while also receiving technical expertise in space technology development.
      NASA’s Lunabotics Challenge, held annually since 2010, is one of several Artemis Student Challenges. The two-semester competition provides U.S. college and technical school teams an opportunity to design, build, and operate a prototype lunar robot using NASA systems engineering processes. Competitions help NASA get innovative design and operational data, reduce risks, and cultivate new ideas needed to return to the Moon under the Artemis campaign to prepare for human exploration of Mars.
      To learn more about Lunabotics, visit:
      https://www.nasa.gov/learning-resources/lunabotics-challenge/
      View the full article
  • Check out these Videos

×
×
  • Create New...