Jump to content

OpenET Launches a New API


NASA

Recommended Posts

  • Publishers

5 min read

OpenET Launches a New API

screenshot-2023-08-16-at-2.50.56-pm.png
NASA / Ames

On Tuesday, October 3, NASA Ames’ OpenET program launched an application programming interface (API) for its widely-used Data Explorer tool.

OpenET is a program providing satellite-based information on evapotranspiration (ET) and agricultural water use, currently deployed across the 23 westernmost continental states. Data is provided at a scale of individual fields, or a quarter acre per pixel, and available at daily, monthly, and annual time scales.

The current Data Explorer is freely available online, with the intent that anyone with an internet connection can easily access, download, retrieve and review data on water management. The October 3 launch of the API comes as the second piece of a three-part initiative to achieve this goal: stage one was the creation of the Data Explorer itself. Stage two, the new API, is designed to allow data to be more easily retrieved and integrated with a variety of water management applications on local, state, or federal levels.

The program’s manager, Forrest Melton, saw many applications of the new API, “for on-farm water management, for irrigation scheduling, for use in irrigation design, or for use in development of water balances for an individual irrigation district or watershed. The API is the piece that will allow partners in the water resources management and agricultural sectors to begin to much more easily and automatically integrate data from OpenET into other applications and tools.”

The API is the piece that will allow partners in the water resources management and agricultural sectors to begin to much more easily and automatically integrate data from OpenET into other applications and tools.”

Forrest melton

Forrest melton

OpenET Program Manager

There are currently 10 states retrieving and incorporating information from OpenET into various state water data information systems; the API will now make it easier to formalize and automate the data retrievals, and hopefully enable more states to integrate satellite data into their water management platforms in the future.  

Map of OpenET use cases
This map showcases five different uses of OpenET data across the westernmost United States.

In an example of the need and efficacy of OpenET’s data systems, the new API is already being used as part of the Delta Alternative Compliance Plan. California passed a law at the end of 2021 requiring the monitoring and reporting of specific elements of water usage, affecting nearly every farm in the Delta: an expensive, complex, and time-consuming ask. Farmers worked with the Delta Water Master to propose the use of OpenET, facilitating the automatic integration of data from the data explorer with California’s State Water Resources Control Board report management system. Melton remarked on the significant impact the integration had on the farmers’ workloads:

“The process for reporting water use in the Delta that used to take farmers half a day to a day, they can now complete in about ten minutes. [It also] saves them thousands of dollars per year in cost for deploying and maintaining flow meters.”

The process for reporting water use in the Delta that used to take farmers half a day to a day, they can now complete in about ten minutes. [It also] saves them thousands of dollars per year in cost for deploying and maintaining flow meters.

Forrest melton

Forrest melton

OpenET Program Manager

Water resource management has historically been a controversial subject for California, and Melton said it is gratifying to help create a “win-win” opportunity that is mutually beneficial for both parties;

“They’ve had record levels of reporting this last year. We know it’s saved farmers money [and] time, and given the state more consistent data across the Delta, which is a critical nexus for water management in the state. […] It’s a bit in the weeds, I think, for the general audience. But for folks that work in water and understand how challenging some of these things have been, it’s a huge, huge win.”

OpenET Program Manager Forrest Melton stands in field with two farmers, checking satellite data on a handheld device.
OpenET Program Manager Forrest Melton stands in field with two California farmers, checking satellite data about water usage.

The OpenET team is also talking to the Western States Water Council about integrating satellite data into Upper Colorado River Basin demand management programs; an initiative the new API will be a critical piece of. Unlike the Delta, operating within this watershed would focus less on water use reporting and more on supporting the development of incentive-based water conservation. In short, such a program would allow farmers, ranchers, and other agricultural water rights holders to apply for funding to conserve water in the Colorado River Basin.

Developing a water conservation incentive program, however, is just one of the intended outcomes of the new API. Other goals stretch across the nation, and include:

  • Implementing the Sustainable Groundwater Management Act in California
  • Provisioning engineering firms and consultants to support multiple groundwater sustainability agencies
  • Supporting the USGS National Water Census and National Hydrologic Model
  • Supporting the Columbia River Basin evapotranspiration mapping tool; a multi-state initiative co- developed by the Oregon Water Resources Department, Idaho Department of Water Resources and Washington Department of Ecology
  • Providing low latency data and forecasted information to support irrigation scheduling, thereby aiding individual farmers and ranchers

Creating the API has taken Melton and his teams years of work, partnering closely with end-user agencies and organizations to test and refine the platform before its official release. This initial launch will go out to roughly 10,000 registered users, with the intent for wider promotion once the initial wave of usage is passed and the platform is performing smoothly.  

Looking at what is next for OpenET, Melton stated that the third stage of the open data architecture will be geared towards individual farmers and ranchers, creating custom reporting tools for farm and ranch management support. This final iteration will focus on providing a user-friendly interface to engage with those that may be interested in the technology but not have the programming background to synthesize the data sets in a way they can use. The graphical user interface, formally titled the OpenET Farm and Ranch Management Support (FARMS) tool, will sit on top of the API and guide users through the basics of setting up queries and running recurring reports. Melton was optimistic that a prototype of FARMS could be ready in early 2024.

About the Author

Milan Loiacono

Milan Loiacono

Science Communication Specialist

Milan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.

Share

Details

Last Updated
Oct 03, 2023

Related Terms

Keep Exploring

Discover More Topics From NASA

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Announcing the New Heliophysics Division Director 
      November 29, 2023
      NASA has selected Dr. Joseph Westlake to fill the position of Heliophysics Division Director. Joe will join the Science Mission Directorate and assume his new role on Jan. 16, 2024. 
      I am pleased to have Joe take on the role as the Heliophysics Division Director. Joe has a strong background in heliophysics and planetary science and has already made significant contributions to our efforts by supporting several NASA missions including the Magnetospheric Multiscale mission, the Van Allen Probes, Parker Solar Probe, the Interstellar Boundary Explorer mission, the Juno mission, Cassini and the European Space Agency’s Juice mission to Ganymede. 
      Joe brings with him more than 18 years of scientific, technical, management, and programmatic experience in heliophysics, astrophysics, and planetary science. He is coming to us from the Johns Hopkins University Applied Physics Laboratory (JHUAPL) where he works as a researcher and project scientist for the Interstellar Mapping and Acceleration Probe mission and principal investigator for the Plasma Instrument for Magnetic Sounding, or PIMS, instrument destined for Jupiter’s moon, Europa, onboard the Europa Clipper mission.  
      “I’m very excited to join NASA as the Division Director for Heliophysics,” said Westlake. “I look forward to diving in and working with the vibrant community of scientists and engineers that are uncovering the mysteries of our star.” 
      In 2024, the National Academies will release a new Decadal Survey that lays out a strategy to advance scientific understanding of the Sun, Sun-Earth connections and the origins of space weather, the Sun’s interactions with other bodies in the solar system, the interplanetary medium, and the interstellar medium; Joe’s experience across several scientific disciplines, as well as his leadership and technical experience, uniquely qualifies him for this critical leadership position in the Science Mission Directorate as we embark on an exciting new decade of solar and space physics. 
      I extend my sincere appreciation to Peg Luce who led the Division for nearly a year while the director position was vacant; she has done a stellar job. With nearly 10 years as the deputy director, Peg’s exceptional efforts have brought significant strides within Science Mission Directorate and the broader scientific community. I am thrilled she will continue serving as the Heliophysics Division Deputy Director and helping Joe usher the division into this new era. 
      “The Sun touches everything and the science of heliophysics is helping us unlock its mysteries,” said Peg Luce, deputy division director, Heliophysics Division at NASA Headquarters in Washington. “Joe’s unique experience and insight will help guide the division as we usher in solar max, launch a host of new heliophysics missions, and flow through the Heliophysics Big Year.” 
      Please join me in welcoming Joe to Headquarters! 
      View the full article
    • By NASA
      A view of the Earth with Aurora Borealis and an orbital sunrise taken by the Expedition 35 crew aboard the International Space Station.NASA Two small businesses are benefitting from NASA’s expertise as they develop heat shield technologies, cargo delivery systems, and new protective materials for spacecraft and space stations in the growing commercial industry of low Earth orbit operations.
      The two American companies – Canopy Aerospace Inc. of Littleton, Colorado and Outpost Technologies Corp. of Santa Monica, California – recently announced progress in the development of a new heat shield manufacturing capability and a new cargo transportation system for potential use on the International Space Station and future commercial space stations.
      “These projects are a great example of how NASA is supporting a growing commercial space industry,” said Angela Hart, manager of NASA’s Commercial Low Earth Orbit Development Program at the agency’s Johnson Space Center in Houston. “There is an entire ecosystem emerging where companies are working together and innovating to meet NASA’s needs and also positioning themselves to reach new customers, so that NASA can be just one of many customers in low Earth orbit.”
      The companies work with NASA’s Commercial Low Earth Orbit Development Program through SBIR (Small Business Innovation Research) contracts funded by NASA’s Space Technology Mission Directorate. Both contracts are part of an innovative pilot program known as SBIR Ignite, focused on small businesses with commercially viable technology ideas aligned with NASA mission needs that can help support the expanding aerospace ecosystem.
      Improving heat shields, saving time
      A piece of Thermal Protection System (TPS) material undergoes high temperature testing at Canopy Aerospace’s facility in Littleton, Colorado. Canopy Aerospace Canopy Aerospace Inc., a venture-funded startup, is collaborating with NASA to develop a new manufacturing system that can improve production of ceramic heat shields – otherwise referred to as thermal protection systems (TPS). In the vacuum of space, spacecraft and space station hardware must withstand extreme cold and heat environments. Upon re-entry to Earth’s atmosphere, these craft in low Earth orbits are exposed to temperatures as high as 3,000 degrees Fahrenheit.
      To protect spacecraft and space stations during re-entry, engineered TPS are required. NASA developed the first TPS types under the Space Shuttle Program, and similar technologies are still used today to protect the Orion spacecraft as it returns to Earth from space. Canopy’s RHAM (Reusable Heatshields Additive Manufacturing) platform builds on the shuttle program’s heritage methods, but utilizes novel materials, new binding, and heat treatment processes to create a new type of ceramic heat shield and produce it at scale in the commercial sector.
      As more companies enter the commercial space market, improved heat shield manufacturing methods are critical to driving down launch costs, shortening lead times, and enabling new mission capabilities for future spacecraft.
      Transporting cargo, saving space
      A concept infographic depicting the Cargo Ferry cargo transportation vehicle’s launch and return process. Outpost Technologies Outpost Technologies Corp. is collaborating with NASA to develop a new cargo transport vehicle, named Cargo Ferry. The reusable vehicle consists of a payload container for cargo, solar array wings to power the vehicle, a deployable heat shield to protect it on re-entry to Earth’s atmosphere, and a robotic paraglider system to deliver it safely to the ground with “landing pad” precision.
      Cargo Ferry could transport non-human cargo including science and hardware from space stations back down to Earth more frequently, freeing up vital research and stowage space on board the station. Commercial space stations are expected to be smaller than the International Space Station, thus systems like Cargo Ferry could offer a more versatile and adaptable solution for cargo transportation.
      NASA is supporting the design and development of multiple commercial space stations with three funded partners, as well as several other partners with unfunded agreements through NASA’s Collaborations for Commercial Space Capabilities-2 project.
      NASA’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost and enable the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
      For more information about NASA’s commercial space strategy, visit:
      https://www.nasa.gov/humans-in-space/commercial-space/
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Rebecca Turkington
      Johnson Space Center, Houston
      281-483-5111
      rebecca.turkington@nasa.gov
      Keep Exploring Discover More Topics
      Low Earth Orbit Economy
      Commercial Space
      Humans In Space
      Space Station Research and Technology
      View the full article
    • By Amazing Space
      Views of the Moon - New Views Every Minute
    • By NASA
      4 Min Read NASA’s Webb Reveals New Features in Heart of Milky Way
      Sagitarius C (NIRCam) Credits: NASA, ESA, CSA, STScI, and S. Crowe (University of Virginia). The latest image from NASA’s James Webb Space Telescope shows a portion of the dense center of our galaxy in unprecedented detail, including never-before-seen features astronomers have yet to explain. The star-forming region, named Sagittarius C (Sgr C), is about 300 light-years from the Milky Way’s central supermassive black hole, Sagittarius A*.
      Image: Sagitarius C (NIRCam)
      The NIRCam (Near-Infrared Camera) instrument on NASA’s James Webb Space Telescope’s reveals a portion of the Milky Way’s dense core in a new light. An estimated 500,000 stars shine in this image of the Sagittarius C (Sgr C) region, along with some as-yet unidentified features. A large region of ionized hydrogen, shown in cyan, contains intriguing needle-like structures that lack any uniform orientation.NASA, ESA, CSA, STScI, and S. Crowe (University of Virginia). “There’s never been any infrared data on this region with the level of resolution and sensitivity we get with Webb, so we are seeing lots of features here for the first time,” said the observation team’s principal investigator Samuel Crowe, an undergraduate student at the University of Virginia in Charlottesville. “Webb reveals an incredible amount of detail, allowing us to study star formation in this sort of environment in a way that wasn’t possible previously.”
      “The galactic center is the most extreme environment in our Milky Way galaxy, where current theories of star formation can be put to their most rigorous test,” added professor Jonathan Tan, one of Crowe’s advisors at the University of Virginia.
      Protostars
      Amid the estimated 500,000 stars in the image is a cluster of protostars – stars that are still forming and gaining mass – producing outflows that glow like a bonfire in the midst of an infrared-dark cloud. At the heart of this young cluster is a previously known, massive protostar over 30 times the mass of our Sun. The cloud the protostars are emerging from is so dense that the light from stars behind it cannot reach Webb, making it appear less crowded when in fact it is one of the most densely packed areas of the image. Smaller infrared-dark clouds dot the image, looking like holes in the starfield. That’s where future stars are forming.
      Webb’s NIRCam (Near-Infrared Camera) instrument also captured large-scale emission from ionized hydrogen surrounding the lower side of the dark cloud, shown cyan-colored in the image. Typically, Crowe says, this is the result of energetic photons being emitted by young massive stars, but the vast extent of the region shown by Webb is something of a surprise that bears further investigation. Another feature of the region that Crowe plans to examine further is the needle-like structures in the ionized hydrogen, which appear oriented chaotically in many directions.
      “The galactic center is a crowded, tumultuous place. There are turbulent, magnetized gas clouds that are forming stars, which then impact the surrounding gas with their outflowing winds, jets, and radiation,” said Rubén Fedriani, a co-investigator of the project at the Instituto Astrofísica de Andalucía in Spain. “Webb has provided us with a ton of data on this extreme environment, and we are just starting to dig into it.”
      Image: Sagitarius C Features
      Approximate outlines help to define the features in the Sagittarius C (Sgr C) region. Astronomers are studying data from NASA’s James Webb Space Telescope to understand the relationship between these features, as well as other influences in the chaotic galaxy center.NASA, ESA, CSA, STScI, Samuel Crowe (UVA) Around 25,000 light-years from Earth, the galactic center is close enough to study individual stars with the Webb telescope, allowing astronomers to gather unprecedented information on how stars form, and how this process may depend on the cosmic environment, especially compared to other regions of the galaxy. For example, are more massive stars formed in the center of the Milky Way, as opposed to the edges of its spiral arms?
      “The image from Webb is stunning, and the science we will get from it is even better,” Crowe said. “Massive stars are factories that produce heavy elements in their nuclear cores, so understanding them better is like learning the origin story of much of the universe.”
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro– rob.gutro@nasa.gov
      NASA’s  Goddard Space Flight Center, , Greenbelt, Md.
      Leah Ramsay lramsay@stsci.edu , Christine Pulliam cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.

      Downloads
      Download full resolution images for this article from the Space Telescope Science Institute.


      Related Information
      Star Formation
      Piercing the Dark Birthplaces of Massive Stars with Webb
      Our Milky Way
      Webb Mission – https://science.nasa.gov/mission/webb/
      Webb News – https://science.nasa.gov/mission/webb/latestnews/
      Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/

      Related For Kids
      What Is a Nebula?
      What Is a Galaxy?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope
      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
      Stars
      Overview Stars are giant balls of hot gas – mostly hydrogen, with some helium and small amounts of other elements.…
      Galaxies
      Our galaxy, the Milky Way, is typical: it has hundreds of billions of stars, enough gas and dust to make…
      Galaxies
      Overview Galaxies consist of stars, planets, and vast clouds of gas and dust, all bound together by gravity. The largest…
      Share
      Details
      Last Updated Nov 20, 2023 Editor Steve Sabia Contact Related Terms
      Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center James Webb Space Telescope (JWST) Protostars Stars The Milky Way The Universe View the full article
    • By NASA
      NASA’s Wallops Flight Facility supported the launch of two suborbital sounding rockets on Nov. 15, 2023, for Navy Strategic Systems Programs (SSP), and the Missile Defense Agency (MDA), in coordination with Naval Surface Warfare Center, Crane Division (NSWC Crane) and the Office of the Secretary of Defense’s Test Resource Management Center (TRMC) Multi-Service Advanced Capability Hypersonic Test Bed (MACH TB).

      This subscale test was executed by Sandia National Laboratories. Data collected from this test will be used to inform the development of the Navy’s Conventional Prompt Strike (CPS), MDA’s hypersonic defensive capability, and to mature other hypersonic technologies.
      A 3 stage sounding rocket was launched from Wallops Island Nov. 2023Courtesy Photo Share
      Details
      Last Updated Nov 17, 2023 Editor Amy L. Barra Contact Amy L. Barraamy.l.barra@nasa.gov Location Wallops Flight Facility Related Terms
      Wallops Flight Facility Explore More
      1 min read NASA Wallops to Support Sounding Rocket Launches
      Article 3 days ago 4 min read NASA C-130 Makes First-Ever Flight to Antarctica for GUSTO Balloon Mission
      Article 3 weeks ago 3 min read NASA Retires UHF SmallSat Tracking Site Ops at Wallops
      Article 3 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...