Jump to content

NASA and Bastion: A Collaborative Teamwork Advancing Deep Space Exploration and Ensuring Safety in Missions  


NASA

Recommended Posts

  • Publishers

As we continue to celebrate Hispanic Heritage Month, the NASA Office of Small Business Programs is pleased to share the contributions of Bastion Technologies Inc. (Bastion), a Hispanic-owned company that supports NASA’s missions. Their primary role is in Safety & Mission Assurance at NASA’s Marshall Space Flight Center in Huntsville, Alabama. This includes systems engineering, where they have worked on design and analysis activities for the International Space Station, space shuttle, and Artemis programs

Bastion engages in critical assessments to ensure the highest standards of safety and reliability in NASA missions. Their team provides mission assurance support for both crewed and uncrewed flight systems at various other NASA centers such as Stennis Space Center, Ames Research Center, Glenn Research Center, and NASA’s Jet Propulsion Laboratory. In addition to supporting the success of NASA missions, they have prioritized the safety of our astronauts and valuable payloads. As a result, Bastion has received the Marshall Space Flight Center Safety Award for maintaining an exemplary safety record, with 2 million work hours without any injuries.  

NASA has also recognized Bastion with the Space Flight Awareness Award for their role in multiple aspects of the Space Launch Program, particularly in ensuring the successful delivery and launch of the Artemis I launch vehicle.  During Artemis I, NASA’s SLS (Space Launch System), soared into the sky and sent the Orion spacecraft on a 1.4-million-mile journey beyond the Moon and back. The Space Launch System is NASA’s heavy-lift rocket and serves as the cornerstone for human exploration beyond Earth’s orbit. The SLS is the only rocket capable of sending the Orion spacecraft, four astronauts, and transporting extensive cargo directly to the Moon within a single mission.  

The core stage of NASA's Space Launch System (SLS) rocket has more than 1,000 sensors and 45 miles of cabling.
Liftoff! NASA’s Space Launch System carrying the Orion spacecraft lifts off the pad at Launch Complex 39B at the agency’s Kennedy Space Center in Florida at 1:47 a.m. EST on Nov. 16, 2022. The first in a series of increasingly complex missions, Artemis I will provide a foundation for human deep space exploration and demonstrate our commitment and capability to extend human presence to the Moon and beyond. The primary goal of Artemis I is to thoroughly test the integrated systems before crewed missions by operating the spacecraft in a deep space environment, testing Orion’s heat shield, and recovering the crew module after reentry, descent, and splashdown.

a

They have also aided in a 12-test series of the new RS-25 engines at the agency’s Stennis Space Center in Mississippi, which are integral to future SLS rocket missions. For over three decades, the RS-25 engine powered the space shuttle, completing 135 missions. This engine stands as one of the most rigorously tested large rocket engines in history, with over 3,000 starts and an accumulated firing time exceeding 1 million seconds through ground tests and flight. Throughout the Space Shuttle Program, the RS-25 underwent numerous design enhancements aimed at improving durability, reliability, safety, and performance. 

Four RS-25 engines attached to the core stage for Artemis I
Four RS-25 engines attached to the core stage for Artemis I

Furthermore, Bastion’s assistance in projects such as the Sample Cartridge Assembly and Copper Indium Sulfide Defect Growth  has been critical in completing the CISDG-C1 hardware for shipment and launch on the 28th SpaceX commercial resupply services mission for NASA. It launched to the International Space Station from the agency’s Kennedy Space Center in Florida on June 3, 2023.  On this mission, SpaceX’s Dragon spacecraft transported several thousand pounds of essential hardware,  scientific experiments, and technology demonstrations. It also encompassed research on plant stress adaptation, investigations into genetic structures known as telomeres, as well as the deployment of satellite projects designed by Canadian students.  

Embed Video: https://youtu.be/KMB9fvH-EsM  

Lastly, Bastion’s contribution to the Life Science Glovebox payload has seen a significant increase, with them completing 2.5 times as many integrated safety assessments in 2023 as they did in 2022. The Life Sciences Glovebox is a sealed work area in the International Space Station  which provides bioisolation and waste control. Crew members can perform experimental procedures in cell, insect, aquatic, plant, and animal developmental biology. 

NASA's new Life Sciences Glovebox undergoes testing at Marshall prior to its scheduled Sept. 10 flight to the ISS.
NASA’s new Life Sciences Glovebox undergoes testing at Marshall prior to its scheduled Sept. 10 flight to the International Space Station. The research facility is 26 inches high, 35 inches wide and 24 inches deep, with a 15-cubic-foot workspace.
NASA/MSFC/Steve Moon 

Hispanic professional continues to influence his daily work with NASA and Bastion in profound ways.  “Growing up in a culturally rich and diverse background, I have brought a unique perspective to problem-solving and teamwork. I’ve learned to adapt to different challenges and appreciate the value of diversity in the workplace,” says Hernandez.   

He goes on to emphasize that Bastion actively supports mentorship and advocates for underrepresented minorities in STEM fields, aiming to inspire the next generation of diverse professionals to reach for the stars.  

“Bastion’s journey supporting NASA has been deeply influenced by my heritage, which has driven our company to excel and promote diversity within the agency. Bastion is proud to contribute to NASA’s mission and play our part in advancing our understanding of the universe.” – Jorge Hernandez 

By: Maliya Malik 

NASA Office Of Small Business Programs Intern 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:08:29 Focus on Euclid with Laurent Brouard: “I’m going to show you what a telescope that we send into space looks like.”
      Laurent Brouard, Project Manager at Airbus Defence and Space, was responsible for building the Euclid payload module (PLM).
      In this interview, which took place in a clean room at the Airbus premises in Toulouse, he describes with words, gestures, and the Euclid PLM structural and thermal model how Euclid works.
      Did you know that Euclid sees the same part of the sky at the same time in both the infrared and visible wavelengths? Or that in space radiators keep the instruments cold? Have you ever wondered how light “travels” inside Euclid’s telescope?
      Listen to Laurent to know more about the technology behind the mission that will map the dark matter and the dark energy of the Universe.
      Space Team Europe is an ESA space community engagement initiative to gather European space actors under the same umbrella sharing values of leadership, autonomy, and responsibility.
      ©  ESA - European Space Agency
      Access the other Space Team Europe for Euclid videos
      View the full article
    • By NASA
      NASA Astronaut Mary L. Cleave. April 8, 1985NASA Retired NASA astronaut Mary Cleave, a veteran of two NASA spaceflights, died Nov. 27. She was 76. A scientist with training in civil and environmental engineering, as well as biological sciences and microbial ecology, Cleave was the first woman to serve as an associate administrator for NASA’s Science Mission Directorate.
      Born in Southampton, New York, Cleave received a Bachelor of Science degree in biological sciences from Colorado State University, Fort Collins, in 1969, and Master of Science in microbial ecology and a doctorate in civil and environmental engineering, both from Utah State University, Logan, in 1975 and 1979, respectively.
      “I’m sad we’ve lost trail blazer Dr. Mary Cleave, shuttle astronaut, veteran of two spaceflights, and first woman to lead the Science Mission Directorate as associate administrator,” said NASA Associate Administrator Bob Cabana. “Mary was a force of nature with a passion for science, exploration, and caring for our home planet. She will be missed.”
      Cleave was selected as an astronaut in May 1980. Her technical assignments included flight software verification in the SAIL (Shuttle Avionics Integration Laboratory), spacecraft communicator on five space shuttle flights, and malfunctions procedures book and crew equipment design.
      Cleave launched on her first mission, STS-61B, aboard space shuttle Atlantis on Nov. 26,1985. During the flight, the crew deployed communications satellites, conducted two six-hour spacewalks to demonstrate space station construction techniques, operated the Continuous Flow Electrophoresis experiment for McDonnell Douglas and a Getaway Special container for Telesat and tested the Orbiter Experiments Digital Autopilot.
      Cleave’s second mission, STS-30, which also was on Atlantis, launched May 4, 1989. It was a four-day flight during which the crew successfully deployed the Magellan Venus exploration spacecraft, the first planetary probe to be deployed from a space shuttle. Magellan arrived at Venus in August 1990 and mapped more than 95% of the surface. In addition, the crew also worked on secondary payloads involving indium crystal growth, electrical storms, and Earth observation studies.
      Cleave transferred from NASA’s Johnson Space Center in Houston to the agency’s Goddard Space Flight Center in Greenbelt, Maryland in May 1991. There, she worked in the Laboratory for Hydrospheric Processes as the project manager for SeaWiFS (Sea-viewing, Wide-Field-of-view-Sensor), an ocean color sensor which monitored vegetation globally.
      In March 2000, she went to serve as deputy associate administrator for advanced planning in the Office of Earth Science at NASA’s Headquarters in Washington. From August 2005 to February 2007, Cleave was the associate administrator for NASA’s Science Mission Directorate where she guided an array of research and scientific exploration programs for planet Earth, space weather, the solar system, and the universe. She also oversaw an assortment of grant-based research programs and a diverse constellation of spacecraft, from small, principal investigator-led missions to large flagship missions.
      Cleave’s awards included: two NASA Space Flight medals; two NASA Exceptional Service medals; an American Astronautical Society Flight Achievement Award; a NASA Exceptional Achievement Medal; and NASA Engineer of the Year.
      Cleave retired from NASA in February 2007.
      https://go.nasa.gov/3uDCykl
      -end-
      Cheryl Warner
      Headquarters, Washington
      202-358-1600
      cheryl.m.warner@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA completed a full duration, 650-second hot fire of the RS-25 certification engine Nov. 29, continuing a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. Danny Nowlin NASA completed a full duration, 650-second hot fire of the RS-25 certification engine Nov. 29, continuing a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. Danny Nowlin NASA completed a full duration, 650-second hot fire of the RS-25 certification engine Nov. 29, continuing a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all. Danny Nowlin NASA conducted the third RS-25 engine hot fire in a critical 12-test certification series Nov. 29, demonstrating a key capability necessary for flight of the SLS (Space Launch System) rocket during Artemis missions to the Moon and beyond.
      NASA is conducting the series of tests to certify new manufacturing processes for producing RS-25 engines for future deep space missions, beginning with Artemis V. Aerojet Rocketdyne, an L3Harris Technologies Company and lead engines contractor for the SLS rocket, is incorporating new manufacturing techniques and processes, such as 3D printing, in production of new RS-25 engines.
      Crews gimbaled, or pivoted, the RS-25 engine around a central point during the almost 11-minute (650 seconds) hot fire on the Fred Haise Test Stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. The gimbaling technique is used to control and stabilize SLS as it reaches orbit.
      During the Nov. 29 test, operators also pushed the engine beyond any parameters it might experience during flight to provide a margin of operational safety. The 650-second test exceeded the 500 seconds RS-25 engines must operate to help power SLS to space. The RS-25 engine also was fired to 113% power level, exceeding the 111% level needed to lift SLS to orbit.
      The ongoing series will stretch into 2024 as NASA continues its mission to return humans to the lunar surface to establish a long-term presence for scientific discovery and to prepare for human missions to Mars.
      Four RS-25 engines fire simultaneously to generate a combined 1.6 million pounds of thrust at launch and 2 million pounds of thrust during ascent to help power each SLS flight. NASA and Aerojet Rocketdyne modified 16 holdover space shuttle main engines, all proven flightworthy at NASA Stennis, for Artemis missions I through IV.
      Every new RS-25 engine that will help power SLS also will be tested at NASA Stennis. RS-25 tests at the site are conducted by a combined team of NASA, Aerojet Rocketdyne, and Syncom Space Services operators. Syncom Space Services is the prime contractor for Stennis facilities and operations.
      Social Media
      Stay connected with the mission on social media, and let people know you’re following it on X, Facebook, and Instagram using the hashtags #Artemis, #NASAStennis, #SLS. Follow and tag these accounts:
      Facebook logo @NASAStennis @NASAStennis Instagram logo @NASAStennis Share
      Details
      Last Updated Nov 29, 2023 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      3 min read NASA to Highlight Inclusion During Bayou Classic Event 
      Article 1 week ago 9 min read Lagniappe
      Article 2 weeks ago 2 min read NASA Conducts 1st Hot Fire of New RS-25 Certification Test Series
      Article 1 month ago Keep Exploring Discover More Topics from NASA Stennis
      Doing Business with NASA Stennis
      About NASA Stennis
      Visit NASA Stennis
      NASA Stennis Media Resources
      View the full article
    • By NASA
      2 min read
      NASA’s Hubble Space Telescope Pauses Science Due to Gyro Issue
      Hubble orbiting more than 300 miles above Earth as seen from the space shuttle. NASA NASA is working to resume science operations of the agency’s Hubble Space Telescope after it entered safe mode Nov. 23 due to an ongoing gyroscope (gyro) issue. Hubble’s instruments are stable, and the telescope is in good health.
      The telescope automatically entered safe mode when one of its three gyroscopes gave faulty readings. The gyros measure the telescope’s turn rates and are part of the system that determines which direction the telescope is pointed. While in safe mode, science operations are suspended, and the telescope waits for new directions from the ground.
      Hubble first went into safe mode Nov. 19. Although the operations team successfully recovered the spacecraft to resume observations the following day, the unstable gyro caused the observatory to suspend science operations once again Nov. 21. Following a successful recovery, Hubble entered safe mode again Nov. 23.
      The team is now running tests to characterize the issue and develop solutions. If necessary, the spacecraft can be re-configured to operate with only one gyro. The spacecraft had six new gyros installed during the fifth and final space shuttle servicing mission in 2009. To date, three of those gyros remain operational, including the gyro currently experiencing fluctuations. Hubble uses three gyros to maximize efficiency, but could continue to make science observations with only one gyro if required.
      NASA anticipates Hubble will continue making groundbreaking discoveries, working with other observatories, such as the agency’s James Webb Space Telescope, throughout this decade and possibly into the next.
      Launched in 1990, Hubble has been observing the universe for more than 33 years. Read more about some of Hubble’s greatest scientific discoveries.
      Media Contacts:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Alise Fisher
      NASA Headquarters, Washington, D.C.
      alise.m.fisher@nasa.gov
      Share
      Details
      Last Updated Nov 29, 2023 Editor Andrea Gianopoulos Contact Location Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Science Mission Directorate Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope
      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
      Galaxies Stories
      James Webb Space Telescope
      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
      Stars Stories
      View the full article
    • By Space Force
      The Department of the Air Force Rapid Capabilities Office, in partnership with the United States Space Force and SpaceX, is making final preparations to launch the seventh mission of the X-37B Orbital Test Vehicle. Due to launch delays and pad availability, USSF-52 will now launch on Dec. 10, 2023.

      View the full article
  • Check out these Videos

×
×
  • Create New...