Jump to content

To Study Atmosphere, NASA Rockets Will Fly into Oct. Eclipse’s Shadow


NASA

Recommended Posts

  • Publishers

5 min read

To Study Atmosphere, NASA Rockets Will Fly into Oct. Eclipse’s Shadow

A NASA sounding rocket mission will launch three rockets during the 2023 annular eclipse in October to study how the sudden drop in sunlight affects our upper atmosphere.

On Oct. 14, 2023, viewers of an annular solar eclipse in the Americas will experience the Sun dimming to 10% its normal brightness, leaving only a bright “ring of fire” of sunlight as the Moon eclipses the Sun. Those in the vicinity of the White Sands Missile Range in New Mexico, however, might also notice sudden bright streaks across the sky: trails of scientific rockets, hurtling toward the eclipse’s shadow.

A NASA sounding rocket mission will launch three rockets to study how the sudden drop in sunlight affects our upper atmosphere. The mission, known as Atmospheric Perturbations around the Eclipse Path or APEP, is led by Aroh Barjatya, a professor of engineering physics at Embry-Riddle Aeronautical University in Daytona Beach, Florida, where he directs the Space and Atmospheric Instrumentation Lab.

Some 50 miles up and beyond, the air itself becomes electric. Scientists call this atmospheric layer the ionosphere because it is where the UV component of sunlight can pry electrons away from atoms to form a sea of high-flying ions and electrons. The Sun’s constant energy keeps these mutually attracted particles separated throughout the day. But as the Sun dips below the horizon, many recombine into neutral atoms for the night, only to part ways again at sunrise.

During a solar eclipse, the sunlight vanishes and reappears over a small part of the landscape almost at once. In a flash, ionospheric temperature and density drop, then rise again, sending waves rippling through the ionosphere.

“If you think of the ionosphere as a pond with some gentle ripples on it, the eclipse is like a motorboat that suddenly rips through the water,” Barjatya said. “It creates a wake immediately underneath and behind it, and then the water level momentarily goes up as it rushes back in.”

2017-tec-ripples.gif
The animation shows the changes in the number of electrons (total electron content or TEC) in the ionosphere over the US during the 2017 eclipse. Overlaid on the measurements are the contours that represent location of the outer shadow of the eclipse as it moves across the sky.
Credit: Mrak, S., Semeter, J., Drob, D., & Huba, J. D. (2018). Direct EUV/X-Ray Modulation of the Ionosphere During the August 2017 Total Solar Eclipse. Geophysical Research Letters, 45(9), 3820-3828. https://doi.org/10.1029/2017GL076771

During the 2017 total solar eclipse visible across North America, instruments many hundreds of miles outside the eclipse’s path detected atmospheric changes. So did critical infrastructure like GPS and communications satellites that we rely on every day.

“All satellite communications go through the ionosphere before they reach Earth,” Barjatya said. “As we become more dependent on space-based assets, we need to understand and model all perturbations in the ionosphere.”

A man in a blue jumpsuit leans over a table displaying three metal cylindrical capsules
Aroh Barjatya, of Embry-Riddle Aeronautic University in Daytona Beach, Florida, leads the APEP mission. Here, Barjatya inspects the subpayloads, which will eject from the rocket mid-flight. The subpayloads carry the plasma density, neutral density, and magnetic field sensors.
Credit: NASA’s Wallops Flight Facility/Berit Bland
img-7679.jpg
Mechanical technician John Peterson of NASA’s Wallops Flight Facility and Barjatya check the six booms carrying the sensitive science sensors after a successful spin deployment testing.
Credit: NASA’s Wallops Flight Facility/Berit Bland
Three men stand over a rocket laid down on a table in front of them. Two in the foreground are adjusting a gold-colored metal rod protruding from the end of the rocket.
Mechanical technician John Peterson of NASA’s Wallops Flight Facility and Barjatya check the six booms carrying the sensitive science sensors after a successful spin deployment testing.
Credit: NASA’s Wallops Flight Facility/Berit Bland

To this end, Barjatya designed the APEP mission, choosing the acronym because it is also the name of the serpent deity from ancient Egyptian mythology, nemesis of the Sun deity Ra. It was said that Apep pursued Ra and every so often nearly consumed him, resulting in an eclipse.

The APEP team plans to launch three rockets in succession – one about 35 minutes before local peak eclipse, one during peak eclipse, and one 35 minutes after. They will fly just outside the path of annularity, where the Moon passes directly in front of the Sun. Each rocket will deploy four small scientific instruments that will measure changes in electric and magnetic fields, density, and temperature. If they are successful, these will be the first simultaneous measurements taken from multiple locations in the ionosphere during a solar eclipse.

Barjatya chose sounding rockets to answer the team’s science questions because they can pinpoint and measure specific regions of space with high fidelity. They can also measure changes that happen at different altitudes as the suborbital rocket ascends and falls back to Earth. The APEP rockets will take measurements between 45 and 200 miles (70 to 325 kilometers) above the ground along their trajectory.

“Rockets are the best way to look at the vertical dimension at the smallest possible spatial scales,” said Barjatya. “They can wait to launch at just the right moment and explore the lower altitudes where satellites can’t fly.”

While the in-situ rocket instruments are all being built by Embry-Riddle and Dartmouth College in New Hampshire, a host of ground-based observations will also support the mission. Co-investigators from the Air Force Research Laboratory at Kirtland Air Force Base in Albuquerque, New Mexico, will collect ionospheric density and neutral wind measurements. Co-investigators from the Massachusetts Institute of Technology’s Haystack Observatory in Westford, Massachusetts, will run their radar to measure ionospheric perturbations farther away from the eclipse path. Finally, a team of students from Embry-Riddle will deploy high-altitude balloons (reaching 100,000 feet) every 20 minutes to measure weather changes as the eclipse passes by. All of these measurements will aid ionosphere modeling efforts led by scientists at the University of Colorado Boulder and Embry-Riddle.

This won’t be the only APEP launch. The APEP rockets launched in New Mexico will be recovered and then relaunched from NASA’s Wallops Flight Facility in Virginia, on April 8, 2024, when a total solar eclipse will cross the U.S. from Texas to Maine. The April launches are farther from the eclipse path than for the October annular eclipse, but will present an opportunity to measure just how widespread the effects of an eclipse are.

Illustrated map of the United States shows the paths of two eclipses in 2024. Both cross the same spot in Texas, near San Antonio.
This map details the path the Moon’s shadow will take as it crosses the contiguous U.S. during the annular solar eclipse on Oct. 14, 2023, and total solar eclipse on April 8, 2024.
Credit: NASA/Scientific Visualization Studio/Michala Garrison; eclipse calculations by Ernie Wright

After these two eclipses, the next total solar eclipse over the contiguous U.S. is not until 2044, and the next annular eclipse is not until 2046. “We have to make hay while the Sun shines … or, I suppose for eclipse science, while it doesn’t,” Barjatya joked. “In all seriousness though, this data set will reveal the widespread effects that eclipses have on the ionosphere at the smallest spatial scales.”

APEP mission fact sheet
Learn more about the upcoming eclipses

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Candeska Cikana Community College uses selective laser sintering, a type of 3D-printing in which heat and pressure form specific structures using layers of powdered material. Shown here, a student works to remove excess material, in this case a powdered form of nylon with carbon fibers, to reveal a prototype of the “Mapi Hapa,” or “sky shoe.” Candeska Cikana Community College Human exploration on the lunar surface is no small feat. It requires technologists and innovators from all walks of life to tackle many challenges, including feet. 
      From designing astronaut boots, addressing hazardous Moon dust, and researching new ways to land on Mars, NASA is funding valuable research through M-STAR (Minority University Research and Education Project’s (MUREP) Space Technology Artemis Research). The M-STAR program provides opportunities for students and faculty at Minority Serving Institutions to participate in space technology development through capacity building and research grants. With more than $11.5 million awarded since 2020, M-STAR aims to ensure NASA isn’t leaving any potential solution behind. 
      Best Foot Forward 
      Nicholas Bitner from Candeska Cikana Community College, left, and Jesse Rhoades from the University of North Dakota (UND), right, are pictured in UND’s BiPed lab, where their students test and capture motion data for the Mapi Hapa. Walter Criswell, UND Today Supportive boots are required for astronauts who will perform long duration Artemis missions on the Moon. With astronaut foot health in mind, students and faculty of North Dakota’s Candeska Cikana Community College in Fort Totten and the University of North Dakota in Grand Forks are designing a solution for extravehicular activity Moon boots. The project, called Mapi Hapa, proposes a 3D printed device that helps astronauts achieve the range of motion that takes place in the ankle when you draw your toe back towards the shin. 
      Candeska Cikana Community College is a tribal college that serves the Spirit Lake Nation, including the Dakota, Lakota, Sisseton, Wahpeton, and Yanktonai peoples.  
      Nicholas Bitner, an instructor at Candeska Cikana and graduate student at the University of North Dakota, notes the unique skills that tribal students possess. “Their perspective, which is unlike that of any other student body, thrives on building with their hands and taking time to make decisions.” 
      Bitner also attributes many opportunities and successes of their program to M-STAR and its partnership which exemplifies the dire importance of consistent funding. 
      “Given the relationships, we have been able to expand our capabilities and our lab, but it has also given us funding. We were able to hire all our students in the engineering department as lab technicians. So, they get paid to do the research that they are a part of, and not only do they have that psychological ownership, but they also have a good paying job that looks nice on their resumes.”  
      In addition to addressing astronaut foot health, M-STAR funding is helping develop solutions to combat lunar regolith, or Moon dust, which can damage landers, spacesuits, and human lungs, if inhaled. 
      Lunar Dust Development 
      With M-STAR, New Mexico State University in Las Cruces developed affordable, reliable lunar regolith simulants to help test lunar surface technologies. The team also designed testing facilities that mimic environmental conditions on the Moon.   
      New Mexico State has already started sharing their simulants, including with a fellow M-STAR awardee. An M-STAR project selected in 2023 from the University of Maryland Eastern Shore in Princess Anne uses the simulants to help test their experience in smart agriculture to test applications for crop production on the Moon. 
      University of Maryland, Eastern Shore explores the possibility of growing crops in lunar regolith by mixing varying proportions of lunar regolith simulant, horse manure, and potting soil. The lunar regolith simulant was provided by fellow M-STAR awardee at New Mexico State University in in Las Cruces.Stephanie Yeldell/NASA Douglas Cortez, associate professor in civil engineering at New Mexico State, believes different perspectives are essential to maximizing solutions.  
      “There are hundreds of people working at Minority Serving Institutions that are used to looking at the world in a completely different way,” said Cortez. “When they start looking at the same problem and parameters, they come up with very different solutions.” 
      As we look to sustainable presence on the Moon, NASA also has its sights set on Mars and M-STAR is helping develop technologies to inform crewed Martian exploration.  
      Stick the Landing 
      San Diego State University in California was awarded funding for research on Mars entry, descent, and landing technologies. The team aims to achieve optimal trajectory by developing onboard algorithms that guide vehicles to descent autonomously. 
      The M-STAR research opportunities have been invaluable to students like Chris Davami and his teammates working to develop improved methods to land on Mars.  
      Christopher Davami, who supported San Diego State University’s 2021 M-STAR project, is pictured here at NASA’s Langley Research Center, where he was selected for internships supporting research in aeroelasticity, atmospheric flight, and entry systems research.NASA “I would definitely not have been able to have these opportunities with NASA if it weren’t for M-STAR,” said Davami. “M-STAR helped pay for my education, which helped me save a lot in student loans. I probably wouldn’t be going to graduate school right now if I did not have this opportunity. This program enabled me to keep pursuing my research and continue doing what I love.” 
      Following his contributions to the M-STAR-funded project, Davami was awarded a NASA Space Technology Graduate Research Opportunity in 2023 on his work in autonomous end-to-end trajectory planning and guidance constrained entry and precision power decent.  
      Through efforts like M-STAR, NASA aims to seed the future workforce and prepare colleges and universities to win other NASA research opportunities. When it comes to the advancement of space technology, people of different backgrounds and skillsets are needed to achieve what was once known as impossible. Not only can the diversification of ideas spark fundamental innovations in space, but it can also help students apply these technological advancements to solving problems here on Earth. 
      To learn more about M-STAR visit: 
      https://go.nasa.gov/442k76s
      by: Gabrielle Thaw, NASA’s Space Technology Mission Directorate 
      Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      Student & STEM Opportunities
      NASA Grants to Strengthen Diversity in Engineering, STEM Fields
      Get Involved
      Share
      Details
      Last Updated Nov 05, 2024 EditorLoura Hall Related Terms
      Space Technology Mission Directorate Technology View the full article
    • By NASA
      The SpaceX Dragon spacecraft, carrying more than 6,000 pounds of supplies to the orbiting laboratory, lifted off at 9:29 p.m. EST Monday, on the company’s Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.Credits: NASA Following a successful launch of NASA’s SpaceX 31st commercial resupply mission, new scientific experiments and cargo for the agency are bound for the International Space Station.
      The SpaceX Dragon spacecraft, carrying more than 6,000 pounds of supplies to the orbiting laboratory, lifted off at 9:29 p.m. EST Monday, on the company’s Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      Live coverage of the spacecraft’s arrival will begin at 8:45 a.m. Tuesday, Nov. 5, on NASA+ and the agency’s website. Learn how to watch NASA content through a variety of platforms, including social media.
      The spacecraft is scheduled to autonomously dock at approximately 10:15 a.m. to the forward port of the space station’s Harmony module.
      The resupply mission will support dozens of research experiments conducted during Expedition 72. In addition to food, supplies, and equipment for the crew, Dragon will deliver several new experiments, including the Coronal Diagnostic Experiment, to examine solar wind and how it forms. Dragon also delivers Antarctic moss to observe the combined effects of cosmic radiation and microgravity on plants. Other investigations aboard include a device to test cold welding of metals in microgravity and an investigation that studies how space impacts different materials.
      These are just a sample of the hundreds of investigations conducted aboard the orbiting laboratory in the areas of biology and biotechnology, physical sciences, and Earth and space science. Such research benefits humanity and lays the groundwork for future human exploration through the agency’s Artemis campaign, which will send astronauts to the Moon to prepare for future expeditions to Mars.
      The Dragon spacecraft is scheduled to remain at the space station until December when it will depart the orbiting laboratory and return to Earth with research and cargo, splashing down off the coast of Florida.
      Learn more about space station activities by following @space_station and @ISS_Research on X, as well as the ISS Facebook, ISS Instagram, and the space station blog.
      Learn more about the commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-spacex-crs-31
      -end-
      Claire O’Shea / Josh Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Stephanie Plucinsky / Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      stephanie.n.plucinsky@nasa.gov / steven.p.siceloff@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA employees plant an Artemis Moon Tree at NASA’s Stennis Space Center on Oct. 29 to celebrate NASA’s successful Artemis I mission as the agency prepares for a return around the Moon with astronauts on Artemis II. NASA/Danny Nowlin A tree-planting ceremony at NASA’s Stennis Space Center on Oct. 29 celebrated NASA’s successful Artemis I mission as the agency prepares for a return around the Moon with astronauts on Artemis II.
      “We already have a thriving Moon Tree from the Apollo years onsite,” NASA Stennis Director John Bailey said. “It is exciting to add trees for our new Artemis Generation as it continues the next great era of human space exploration.”
      NASA’s Office of STEM Engagement Next Gen STEM Project partnered with U.S. Department of Agriculture (USDA) Forest Service to fly five species of tree seeds aboard the Orion spacecraft during the successful uncrewed Artemis I test flight in 2022 as part of a national STEM Engagement and conservation education initiative. 
      The Artemis Moon Tree species included sweetgums, loblolly pines, sycamores, Douglas-firs, and giant sequoias. The seeds from the first Artemis mission have been nurtured by the USDA into seedlings to be a source of inspiration for the Artemis Generation.
      The Moon Tree education initiative is rooted in the legacy of Apollo 14 Moon Tree seeds flown in lunar orbit over 50 years ago by the late Stuart Roosa, a NASA astronaut and Mississippi Coast resident.
      NASA Stennis and the NASA Shared Services Center (NSSC), located at the site, planted companion trees during the Oct. 29 ceremony. Bailey and NSSC Executive Director Anita Harrell participated in a joint planting ceremony attended by a number of employees from each entity.
      The American sweetgum trees are the second and third Moon Trees at the south Mississippi site. In 2004, ASTRO CAMP participants planted a sycamore Moon Tree to honor the 35th anniversary of Apollo 11 and the first lunar landing on July 20, 1969.
      The road to space for both Apollo 14 and Artemis I went through Mississippi. Until 1970, NASA Stennis test fired first, and second stages of the Saturn V rockets used for Apollo.
      NASA Stennis now tests all the RS-25 engines powering Artemis missions to the Moon and beyond. Prior to Artemis I, NASA Stennis tested the SLS (Space Launch System) core stage and its four RS-25 engines.
      The Artemis Moon Trees have found new homes in over 150 communities and counting since last spring, and each of the 10 NASA centers also will plant one.
      As the tree grows at NASA Stennis, so, too, does anticipation for the first crewed mission with Artemis II. Four astronauts will venture around the Moon on NASA’s path to establishing a long-term presence at the Moon for science and exploration.
      The flight will test NASA’s foundational human deep space exploration capabilities – the SLS rocket and Orion spacecraft – for the first time with astronauts.
      Explore More NASA Stennis Image Articles View the full article
    • By NASA
      This archival photo shows engineers working on NASA’s Voyager 2 spacecraft on March 23, 1977. NASA/JPL-Caltech NASA’s Voyager mission launched in the 1970s. Today, it’s making history as it conducts new science. But how are two spacecraft from the ’70s not just surviving, but thriving farther out in space than any other spacecraft has been before?
      A Little Mission Background
      Voyager is a NASA mission made up of two different spacecraft, Voyager 1 and 2, which launched to space on Sept. 5, 1977, and Aug. 20, 1977, respectively. In the decades following launch, the pair took a grand tour of our solar system, studying Jupiter, Saturn, Uranus, and Neptune — one of NASA’s earliest efforts to explore the secrets of the universe. These twin probes later became the first spacecraft to operate in interstellar space — space outside the heliosphere, the bubble of solar wind and magnetic fields emanating from the Sun. Voyager 1 was the first to enter interstellar space in 2012, followed by Voyager 2 in 2018.  
      Today, Voyager continues not just because it can, but because it still has work to do studying interstellar space, the heliosphere, and how the two interact. “We wouldn’t be doing Voyager if it wasn’t taking science data,” said Suzanne Dodd, the mission’s current project manager and the director for the Interplanetary Network at NASA’s Jet Propulsion Laboratory.
      But across billions of miles and decades of groundbreaking scientific exploration, this trailblazing interstellar journey has not been without its trials. So, what’s the Voyager secret to success? 
      In short: preparation and creativity.  
      As NASA’s two Voyager spacecraft travel out into deep space, they carry a small American flag and a Golden Record packed with pictures and sounds — mementos of our home planet. This picture shows John Casani, Voyager project manager in 1977, holding a small Dacron flag that was folded and sewed into the thermal blankets of the Voyager spacecraft before they launched 36 years ago. Below him lie the Golden Record (left) and its cover (right). In the background stands Voyager 2 before it headed to the launch pad. The picture was taken at Cape Canaveral, Fla., on Aug. 4, 1977. NASA/JPL-Caltech We Designed Them Not to Fail
      According to John Casani, Voyager project manager from 1975 to launch in 1977, “we didn’t design them to last 30 years or 40 years, we designed them not to fail.”
      One key driver of the mission’s longevity is redundancy. Voyager’s components weren’t just engineered with care, they were also made in duplicate. 
      According to Dodd, Voyager “was designed with nearly everything redundant. Having two spacecraft — right there is a redundancy.” 
      “We didn’t design them to last 30 years or 40 years, we designed them not to fail.”
      John Casani
      Voyager Project Manager, 1975-1977
      A Cutting-Edge Power Source
      The twin Voyager spacecraft can also credit their longevity to their long-lasting power source. 
      Each spacecraft is equipped with three radioisotope thermoelectric generators. These nuclear “batteries” were developed originally by the U.S. Department of Energy as part of the Atoms for Peace program enacted by President Eisenhower in 1955. Compared to other power options at the time — like solar power, which doesn’t have the reach to work beyond Jupiter — these generators have allowed Voyager to go much farther into space. 
      Each of NASA’s Voyager probes are equipped with three radioisotope thermoelectric generators (RTGs), including the one shown here at NASA’s Kennedy Space Center in Florida. The RTGs provide power for the spacecraft by converting the heat generated by the decay of plutonium-238 into electricity. Launched in 1977, the Voyager mission is managed for NASA by the agency’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California.
      NASA/JPL-Caltech Voyager’s generators continue to take the mission farther than any before, but they also continue to generate less power each year, with instruments needing to be shut off over time to conserve power. 
      Creative Solutions  
      As a mission that has operated at the farthest edges of the heliosphere and beyond, Voyager has endured its fair share of challenges. With the spacecraft now in interstellar space running on software and hardware from the 1970s, Voyager’s problems require creative solutions.  
      Retired mission personnel who worked on Voyager in its earliest days have even come back out of retirement to collaborate with new mission personnel to not just fix big problems but to pass on important mission know-how to the next generation of scientists and engineers.
      “From where I sit as a project manager, it’s really very exciting to see young engineers be excited to work on Voyager. To take on the challenges of an old mission and to work side by side with some of the masters, the people that built the spacecraft,” Dodd said. “They want to learn from each other.” 
      After receiving data about the health and status of Voyager 1 for the first time in five months, members of the Voyager flight team celebrate in a conference room at NASA’s Jet Propulsion Laboratory on April 20. Credit: NASA/JPL-Caltech NASA/JPL-Caltech Within just the last couple of years, Voyager has tested the mission team’s creativity with a number of complex issues. Most recently, the thrusters on Voyager 1’s thrusters, which control the spacecraft’s orientation and direction, became clogged. The thrusters allow the spacecraft to point their antennae and are critical to maintaining communications with Earth. Through careful coordination, the mission team was able to remotely switch the spacecraft to a different set of thrusters. 
      These kinds of repairs are extra challenging as a radio signal takes about 22 ½ hours to reach Voyager 1 from Earth and another 22 ½ hours to return. Signals to and from Voyager 2 take about 19 hours each way.
      Voyager’s Interstellar Future
      This brief peek behind the curtain highlights some of Voyager’s history and its secrets to success. 
      The Voyager probes may continue to operate into the late 2020s. As time goes on, continued operations will become more challenging as the mission’s power diminishes by 4 watts every year, and the two spacecraft will cool down as this power decreases. Additionally, unexpected anomalies could impact the mission’s functionality and longevity as they grow older.
      As the mission presses on, the Voyager team grows this legacy of creative problem solving and collaboration while these twin interstellar travelers continue to expand our understanding of the vast and mysterious cosmos we inhabit. 
      Read More
      The Story Behind Voyager 1’s Pale Blue Dot The Story Behind Voyager 1’s Family Portrait Pale Blue Dot Poster Voyager 1 Mission Page Voyager 2 Mission Page Share








      Details
      Last Updated Nov 04, 2024 Related Terms
      Missions Voyager 1 Voyager 2 Voyager Program View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In Punakha, Bhutan, Dr. Aparna Phalke (left) from SERVIR works with a translator to converse with a local chili farmer (center) about his experiences cultivating these fields for over 30 years– including agricultural management practices, market prices, and farming challenges Sarah Cox/SERVIR NASA and the Kingdom of Bhutan have been actively learning from each other and growing together since 2019. The seeds planted over those years have ripened into improved environmental conservation, community-based natural resource management, and new remote sensing tools.
      Known for its governing philosophy of “gross national happiness,” and has a constitutional mandate to maintain at least 60% forest cover. The government’s goals include achieving nationwide food security by 2030. 
      Bhutan first approached the U.S. State Department to partner on science, technology, engineering, and mathematics (STEM) opportunities for the country, and NASA was invited to help lead these opportunities. In 2019, Bhutan’s King Jigme Khesar Namgyel Wangchuck visited NASA’s Ames Research Center in Silicon Valley, California, and was introduced to several NASA programs.
      NASA’s Earth scientists and research staff from several complementary programs have helped support Bhutan’s goals by providing data resources and training to make satellite data more useful to communities and decision makers. Bhutan now uses NASA satellite data in its national land management decisions and plans to foster more geospatial jobs to help address environmental issues.
      Supporting Bhutan’s Environmental Decision Makers
      Bhutan’s National Land Commission offers tax breaks to farmers to support food security and economic resilience. However, finding and reaching eligible farmers on the ground can be expensive and time consuming, which means small farmers in remote areas can be missed. 
      A team from SERVIR – a joint NASA-U.S. Agency for International Development initiative – worked with Bhutanese experts to create decision-making tools like the Farm Action Toolkit  (FAcT). The tool uses imagery from the NASA-U.S. Geological Survey Landsat satellites to identify and measure the country’s farmland. SERVIR researchers met with agricultural organizations – including Bhutan’s Ministry of Agriculture and Livestock, National Statistics Bureau, and National Center for Organic Agriculture – to adjust the tool for the country’s unique geography and farming practices. The Land Commission now uses FAcT to identify small farms and bring support to more of the country. 
      NASA also develops local capacity to use Earth data through efforts like the Applied Remote Sensing Training Program (ARSET). In early 2024, ARSET staff worked with SERVIR and Druk Holdings and Investments (DHI) to host a workshop with 46 Bhutanese government personnel. Using tailored local case studies, the teams worked to find ways to better manage natural resources, assist land use planning, and monitor disasters. 
      “We look forward to continuing this collaboration, as there are still many areas where NASA’s expertise can significantly impact Bhutan’s development goals,” said Manish Rai, an analyst with DHI who helped coordinate the workshop. “This collaboration is a two-way street. While Bhutan has benefited greatly from NASA’s support, we believe there are also unique insights and experiences that Bhutan can share with NASA, particularly in areas like environmental conservation and community-based natural resource management.” 
      Dr. Aparna Phalke gives a presentation on NASA technology and the SERVIR program to a group of 100 students at the Royal University of Bhutan College of Natural Resources. Sarah Cox/SERVIR Encouraging Bhutan’s Future Environmental Leaders
      By working with students and educators from primary schools to the university level, Bhutan and NASA have been investing in the country’s future environmental leadership. Supporting educators and “training trainers” have been pillars of this collaboration.
      NASA and Bhutan have worked together to boost the skills of early-career Earth scientists. For example, NASA’s DEVELOP program for undergraduates worked directly with local institutions to create several applied science internships for Bhutanese students studying in the U.S. 
      Tenzin Wangmo, a high school biology teacher in Bhutan, participated in DEVELOP projects focusing on agriculture and water resources. According to Wangmo, the lessons learned from those projects have been helpful in connecting with her students about STEM opportunities and environmental issues. “Most people only think of NASA as going to space, rather than Earth science,” she said. “It was encouraging to my students that there are lots of opportunities for you if you try.”
      NASA is also supporting Bhutan’s future environmental leadership through the GLOBE (Global Learning and Observations to Benefit the Environment) Program. The GLOBE program is a U.S. interagency outreach program that works with teachers to support STEM literacy through hands-on environmental learning. Since 2020, GLOBE has worked through the U.S. State Department and organizations like the Ugyen Wangchuck Institute for Forest Research and Training to support educators at two dozen schools in Bhutan. The program reached more than 650 students with activities like estimating their school’s carbon footprint. 
      This focus on STEM education enables students and professionals to contribute to Bhutan’s specific development goals now and in the future. 
      Sonam Tshering, a student who completed two DEVELOP projects on Bhutanese agriculture while studying at the University of Texas at El Paso, was able to share the value of these efforts at the 2023 United Nations Climate Conference. “By applying satellite data from NASA, we aimed to create actionable insights for our local farmers and our policymakers back in Bhutan,” she said. 
      News Media Contact
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Ala.
      256.544.0034
      lane.e.figueroa@nasa.gov 
      Share
      Details
      Last Updated Nov 04, 2024 Related Terms
      SERVIR (Regional Visualization and Monitoring System) Earth Earth Science Earth Science Division Marshall Science Research & Projects Marshall Space Flight Center Explore More
      2 min read Sadie Coffin Named Association for Advancing Participatory Sciences/NASA Citizen Science Leaders Series Fellow
      In August, the Association for Advancing Participatory Sciences (AAPS) announced a fellowship opportunity in partnership…
      Article 4 hours ago 4 min read International SWOT Satellite Spots Planet-Rumbling Greenland Tsunami
      Article 4 days ago 23 min read The Marshall Star for October 30, 2024
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...