Jump to content

Science in Space: Week of Sept. 29, 2023 – Fire Safety in Space


NASA

Recommended Posts

  • Publishers

Crew members aboard the International Space Station conducted a variety of scientific investigations during the week ending Sept. 29, 2023, including FLARE.

This JAXA (Japan Aerospace Exploration Agency) investigation explores the flammability of materials in microgravity. Current tests of materials that are used in crewed spacecraft do not consider gravity, which significantly affects combustion phenomena. The ability for flames to spread over solid materials, for example, is affected by the forces of buoyancy, which are absent in microgravity. Removing the effects of buoyancy by conducting combustion experiments in microgravity also gives researchers a better understanding of specific flame behaviors.

male astronaut setting up hardware for a combustion experiment
JAXA astronaut Satoshi Furukawa sets up hardware for the FLARE investigation.
NASA

Other investigations on the space station have examined the behavior, spread, and growth of fire. This work helps guide selection of spacecraft cabin materials, improve understanding of early fire growth behavior, validate models used to determine material flammability, and identify optimal fire suppression techniques. Developing ways to prevent and extinguish fire is of critical importance to the safety of crew members and vehicles in space and in confined spaces such as aircraft on Earth. These settings limit the options for suppressing fires and can be difficult to evacuate from.

Burning and Suppression of Solids (BASS) was one of the first investigations to examine how to extinguish a variety of fuels burning in microgravity. Putting out fires in space must consider the geometry of the flame and characteristics of the materials and methods used to extinguish it, as those used on the ground could be ineffective or even make the flame worse. Analysis of 59 BASS burn tests provided data on heat flow, flame size, effects of fuel mixture flow, and other important parameters.

BASS-II examined the burning and extinction characteristics of a variety of fuel samples to test the hypothesis that materials burn as well if not better in microgravity than in normal gravity, given adequate ventilation and identical conditions such as pressure, oxygen concentration, and temperature. A number of papers have been published based on results from BASS-II, with findings including a report on the differences between flame spread and fuel regression and comparison of flame spread rates.

blue flame burning during combustion experiment
Image of a flame burning during the BASS experiments on extinguishing burning fuels.
NASA

Solid Fuel Ignition and Extinction – Growth and Extinction Limit (SoFIE-GEL), a research collaboration between NASA and Roscosmos, analyzes how the temperature of a fuel affects material flammability. Researchers report that experimental observations agree with trends predicted by the models. This investigation is the first in a series using the SoFIE insert for the station’s Combustion Integrated Rack.

Astronaut Samantha Cristoforetti reconfigures combustion research components
ESA (European Space Agency) astronaut Samantha Cristoforetti works on the SoFIE-GEL investigation of materials flammability.
NASA

Saffire is a series of experiments conducted aboard uncrewed Cygnus cargo spacecraft after they depart the station. Using these cargo vehicles provides distance from the crewed station and enables tests of larger fires. Results have shown that a flame spreading over thin fabrics in microgravity reaches a steady spread rate and a limiting length, which can be used to establish the rate of heat release in a spacecraft, and found that reducing pressure slows down the flame spread.

green fabric burns from left to right with particles of ash on the left and a flame line in the center
A sample of fabric burns inside an uncrewed Cygnus cargo craft for the Saffire-IV experiment.
NASA

Confined Combustion, sponsored by the ISS National Lab, examines the behavior of flame spread in confined spaces of different shapes. Confinement has been shown to have significant effects on fire characteristics and hazards. Researchers report specifics on interactions between a flame and its surrounding walls and the fate of the flame, such as growth or extinction. These data provide guidance for design of structures and fire safety codes and response in space and on Earth. Other results suggest that confinement can increase or decrease solid fuel flammability depending on conditions. Researchers also demonstrated that color pyrometry – capturing flame emission simultaneously at three broad spectral bands – can determine the temperature of a flame without disrupting its spread.

Flame studies help keep crews in space and people on Earth safe. This research also can lead to more efficient combustion, reducing impurities and producing greener and more efficient flames for uses on Earth such as heating and transportation.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      While observing the Orion Nebula with his 12-inch Dobsonian telescope, a sky-watcher noticed an unusual flashing object. As stars appeared to drift due to Earth's rotation, this particular object while flashing approximately every 20 seconds clearly travels through deep space. 

      The observer wonders whether it might be a rotating satellite or not. However, this isn’t the first sighting of cigar-shaped UFOs or other mysterious objects traveling through space near the Orion Nebula, so it is quite possible that it could be an interstellar craft. 
      Over the years, I have shared several articles, complete with images and videos, documenting similar UFO sightings around the Orion Nebula. You can explore these under the tag: Orion Nebula. 
      Interestingly, these sightings have all occurred between November and February, suggesting there may be a seasonal pattern to these observations.
        View the full article
    • By NASA
      The SpaceX Dragon spacecraft, carrying more than 6,000 pounds of supplies to the orbiting laboratory, lifted off at 9:29 p.m. EST Monday, on the company’s Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.Credits: NASA Following a successful launch of NASA’s SpaceX 31st commercial resupply mission, new scientific experiments and cargo for the agency are bound for the International Space Station.
      The SpaceX Dragon spacecraft, carrying more than 6,000 pounds of supplies to the orbiting laboratory, lifted off at 9:29 p.m. EST Monday, on the company’s Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      Live coverage of the spacecraft’s arrival will begin at 8:45 a.m. Tuesday, Nov. 5, on NASA+ and the agency’s website. Learn how to watch NASA content through a variety of platforms, including social media.
      The spacecraft is scheduled to autonomously dock at approximately 10:15 a.m. to the forward port of the space station’s Harmony module.
      The resupply mission will support dozens of research experiments conducted during Expedition 72. In addition to food, supplies, and equipment for the crew, Dragon will deliver several new experiments, including the Coronal Diagnostic Experiment, to examine solar wind and how it forms. Dragon also delivers Antarctic moss to observe the combined effects of cosmic radiation and microgravity on plants. Other investigations aboard include a device to test cold welding of metals in microgravity and an investigation that studies how space impacts different materials.
      These are just a sample of the hundreds of investigations conducted aboard the orbiting laboratory in the areas of biology and biotechnology, physical sciences, and Earth and space science. Such research benefits humanity and lays the groundwork for future human exploration through the agency’s Artemis campaign, which will send astronauts to the Moon to prepare for future expeditions to Mars.
      The Dragon spacecraft is scheduled to remain at the space station until December when it will depart the orbiting laboratory and return to Earth with research and cargo, splashing down off the coast of Florida.
      Learn more about space station activities by following @space_station and @ISS_Research on X, as well as the ISS Facebook, ISS Instagram, and the space station blog.
      Learn more about the commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-spacex-crs-31
      -end-
      Claire O’Shea / Josh Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Stephanie Plucinsky / Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      stephanie.n.plucinsky@nasa.gov / steven.p.siceloff@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      View the full article
    • By NASA
      Bioprinted patches could help wounds heal

      Researchers successfully demonstrated the function of a handheld bioprinter that could provide a simple and effective way to treat wounds in space using human skin cells. Crews could use this technology to treat their own injuries and protect crew health and mission success in the future.

      Spaceflight can affect how wounds heal. The Bioprint FirstAid device tested a process for bioprinting a patch to cover a wound and accelerate healing. In the future, a crew member’s own cells may be used to create personalized patches for treating an injury. The bioprinting device is easy to use, can be tailored to specific needs, has a low failure rate, and its mechanics are electronics- and maintenance-free. This ESA (European Space Agency) investigation was coordinated by the German Aerospace Center (DLR).

      ESA (European Space Agency) astronaut Matthias Maurer demonstrates the Bioprint FirstAid prototype during preflight training. German Aerospace Center/European Space Agency Countering post-flight proficiency challenges

      The day they return from spaceflight, astronauts demonstrate significant impairments in fine motor control and the ability to multitask in simulated flying and driving challenges. This finding could help develop countermeasures so crew members can safely land and conduct early operations on the Moon and Mars.

      Manual Control used a battery of tests to examine how spaceflight affects cognitive, sensory, and motor function after landing. Researchers concluded that subtle physiological changes that occur during spaceflight degrade post-flight performance. Subsequent tests showed recovery of performance once exposed to the task, suggesting that simulation training immediately before a task could be an effective countermeasure. Researchers also suggest limiting dual or competing tasks during mission-critical phases.

      A simulator used to test crew members’ ability to fly and drive after spaceflight. NASA Gamma-ray telescope resilient to space radiation

      Researchers found that the station’s Glowbug gamma-ray telescope could perform in the space radiation environment for multi-year missions. Radiation can affect these types of instruments, but Glowbug regularly detected gamma ray bursts (GRBs) during its one-year operation. Studying GRBs can help scientists better understand the universe and its origins.

      Glowbug demonstrated technology to detect and characterize cosmic GRBs, primarily short GRBs, which result from mergers of compact binary star systems containing either two neutron stars or a neutron star and a black hole. Short GRBs produce gravitational waves, ripples in space that travel at the speed of light. Studying these gravitational waves could provide insight into the star systems where they originate and the behavior of matter during the mergers.

      Learn more about GRB research here.
      View the full article
    • By NASA
      NASA Space shuttle Atlantis lifts off in this Nov. 3, 1994, image, with NASA astronauts Donald R. McMonagle, Curtis L. Brown, Jr., Ellen S. Ochoa, Scott E. Parazynski, and Joseph R. Tanner, and ESA (European Space Agency) astronaut Jean-Francois-Clervoy aboard. During the 11-day mission, the crew studied Earth’s atmosphere, gathering data on the Sun’s energy output, the atmosphere’s chemical composition, and how these affect global ozone levels.
      Learn more about the mission.
      Image credit: NASA
      View the full article
    • By NASA
      In August, the Association for Advancing Participatory Sciences (AAPS) announced a fellowship opportunity in partnership with the NASA Citizen Science Leaders Series. Fifty-five people applied! The applications came from graduate students and early career professionals in diverse disciplines, including astronomy, ecology, engineering, nursing, policy, and zoology, to name a few.

      Sadie Coffin, AAPS-NASA Cit Sci Leaders Fellow. (Credit: Olivia Schlichtkrull)
      We are delighted to announce that Sadie Coffin, PhD student and co-lead (alongside her advisor, Dr. Jeyhan Kartaltepe) of the Redshift Wrangler project, will serve as the AAPS-NASA Cit Sci Leaders Fellow. Sadie’s task is to curate resources, advice, and best practices on topics of common interest from four years of NASA Cit Sci Leaders events. Sadie will dig into our recordings to find the moments, speakers, advice, and resources that offer the best guidance for project leaders starting or managing projects. She’ll help package the best elements of the recordings into usable formats for busy scientists and project leaders interested in creating, managing, and improving participatory science projects. 
      “This fellowship offers a unique opportunity to gain the mentorship and expertise I need to build a career that not only advances research but also fosters public engagement and inclusivity in science,” said Sadie.
      The enthusiasm, talent, and passion in the applications we received revealed the broad appeal, utility, and growing acceptance of participatory research. One applicant commented, “Working in the participatory sciences is how I find meaning in my career as a researcher.”  Many others commented that they were eager to connect with mentors and colleagues who were as invested in this work as they were. 
      Thank you to everyone who applied for this fellowship and to all of the early career professionals working in this field. You are inspiring, and we can’t wait to see what big ideas you contribute to the growth of this field! AAPS will announce additional fellowships focused on different projects in the coming months. Please watch for upcoming calls, consider applying yourself, and share them with the inspiring early career individuals in your networks!
      Facebook logo @DoNASAScience @DoNASAScience Share








      Details
      Last Updated Nov 04, 2024 Related Terms
      Astrophysics Biological & Physical Sciences Citizen Science Earth Science Heliophysics Planetary Science Explore More
      4 min read Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass


      Article


      5 mins ago
      2 min read NASA’s New Edition of Graphic Novel Features Europa Clipper
      NASA has released a new edition of Issue 4 of the Astrobiology Graphic History series.…


      Article


      3 days ago
      5 min read 30 Years On, NASA’s Wind Is a Windfall for Studying our Neighborhood in Space


      Article


      3 days ago
      View the full article
  • Check out these Videos

×
×
  • Create New...