Members Can Post Anonymously On This Site
Trio of Sentinel satellites map methane super-emitters
-
Similar Topics
-
By European Space Agency
Video: 00:03:23 Methane is the second most important greenhouse gas contributor to climate change after carbon dioxide. Curbing methane emissions could deliver immediate and long-lasting benefits for the climate, seeing as the gas only lingers in the atmosphere for a relatively short time.
Satellites have a really important role to play in reducing greenhouse gas emissions. The Tropomi instrument onboard the Copernicus Sentinel-5P satellite is the only instrument that maps global methane concentrations every single day. This lets scientists detect hotspots for large methane sources around the world – allowing us to address the consequences of methane emissions on our climate and environment.
View the full article
-
By NASA
6 min read
Construction on NASA Mission to Map 450 Million Galaxies Is Under Way
Sara Susca, deputy payload manager and payload systems engineer for NASA’s SPHEREx mission, looks up at one of the spacecraft’s photon shields. These concentric cones protect the telescope from light and heat from the Sun and the Earth, which can overwhelm the telescope’s detectors.NASA/JPL-Caltech SHPEREx Photon Shield Fabrication at Applied Aerospace Structures Corp. in Stockton CA Requester: Kaitlyn Soares Photographer: Gregory M. Waigand Date: 2023-07-12 Photolab order: 107469-11.02.03AACS Key elements are coming together for NASA’s SPHEREx mission, a space telescope that will create a map of the universe like none before.
NASA’s SPHEREx space telescope is beginning to look much like it will when it arrives in Earth orbit and starts mapping the entire sky. Short for Specto-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer, SPHEREx resembles a bullhorn, albeit one that will stand almost 8.5 feet tall (2.6 meters) and stretch nearly 10.5 feet (3.2 meters) wide. Giving the observatory its distinctive shape are its cone-shaped photon shields, which are being assembled in a clean room at NASA’s Jet Propulsion Laboratory in Southern California.
Three cones, each nestled within the other, will surround SPHEREx’s telescope to protect it from the light and heat of the Sun and Earth. The spacecraft will sweep over every section of the sky, like scanning the inside of a globe, to complete two all-sky maps every year.
“SPHEREx has to be quite agile because the spacecraft has to move relatively quickly as it scans the sky,” said JPL’s Sara Susca, deputy payload manager and payload systems engineer for the mission. “It doesn’t look that way, but the shields are actually quite light and made with layers of material like a sandwich. The outside has aluminum sheets, and inside is an aluminum honeycomb structure that looks like cardboard – light but sturdy.”
NASA’s SPHEREx will create a map of the sky like no other. Check out some of the special hardware the mission uses to do cutting-edge science. Credit: NASA/JPL-Caltech When it launches – no later than April 2025 – SPHEREx will help scientists better understand where water and other key ingredients necessary for life originated. To do this, the mission will measure the abundance of water ice in interstellar clouds of gas and dust, where new stars are born and from which planets eventually form. It will study the cosmic history of galaxies by measuring the collective light they produce. Those measurements will help tease out when galaxies began to form and how their formation has changed over time. Finally, by mapping the location of millions of galaxies relative to one another, SPHEREx will look for new clues about how the rapid expansion, or inflation, of the universe took place a fraction of a second after the big bang.
Cool and Stable
Amelia Quan, mechanical integration lead for NASA’s SPHEREx mission, is seen with a V-groove radiator, a piece of hardware that will help keep the space telescope cold.NASA/JPL-Caltech SPHEREx will do all this by detecting infrared light, a range of wavelengths longer than the visible light human eyes can see. Infrared light is also sometimes called heat radiation because all warm objects emit it. Even the telescope can create infrared light. Because that light would interfere with its detectors, the telescope has to be kept cold – below minus 350 degrees Fahrenheit (about minus 210 degrees Celsius).
The outer photon shield will block light and heat from the Sun and Earth, and the gaps between the cones will prevent heat from making its way inward toward the telescope. But to ensure SPHEREx gets down to its frigid operating temperature, it also needs something called a V-groove radiator: three conical mirrors, each like an upside-down umbrella, stacked atop one another. Sitting below the photon shields, each is composed of a series of wedges that redirect infrared light so it bounces through the gaps between the shields and out into space. This removes heat carried through the supports from the room-temperature spacecraft bus that contains the computer and electronics.
“We’re not just concerned with how cold SPHEREx is, but also that its temperature stays the same,” said JPL’s Konstantin Penanen, payload manager for the mission. “If the temperature varies, it could change the sensitivity of the detector, which could translate as a false signal.”
Eye on the Sky
The telescope for NASA’s SPHEREx mission undergoes testing at JPL. It is tilted on its base so it can see as much of the sky as possible while remaining within the protection of three concentric cones that protect the telescope from light and heat from the Sun and Earth.
NASA/JPL-Caltech The heart of SPHEREx is, of course, its telescope, which collects infrared light from distant sources using three mirrors and six detectors. The telescope is tilted on its base so it can see as much of the sky as possible while remaining within the protection of the photon shields.
Built by Ball Aerospace in Boulder, Colorado, the telescope arrived in May at Caltech in Pasadena, California, where it was integrated with the detectors and the V-groove radiator. Then, at JPL, engineers secured it to a vibration table that simulates the shaking that the telescope will endure on the rocket ride to space. After that, it went back to Caltech, where scientists confirmed its mirrors are still in focus following the vibration testing.
The heart of SPHEREx is, of course, its telescope, which collects infrared light from distant sources using three mirrors and six detectors. The telescope is tilted on its base so it can see as much of the sky as possible while remaining within the protection of the photon shields.
Built by Ball Aerospace in Boulder, Colorado, the telescope arrived in May at Caltech in Pasadena, California, where it was integrated with the detectors and the V-groove radiator. Then, at JPL, engineers secured it to a vibration table that simulates the shaking that the telescope will endure on the rocket ride to space. After that, it went back to Caltech, where scientists confirmed its mirrors are still in focus following the vibration testing.
SPHEREx’s Infrared ‘Vision’
NASA’s SPHEREx will use these filters to conduct spectroscopy, a technique that scientists can use to study the composition of an object or measure its distance. Each filter – about the size of a cracker – has multiple segments that block all but one specific wavelength of infrared light.NASA/JPL-Caltech The mirrors inside SPHEREx’s telescope collect light from distant objects, but it’s the detectors that can “see” the infrared wavelengths the mission is trying to observe.
A star like our Sun emits the entire range of visible wavelengths, so it is white (though Earth’s atmosphere causes it to look more yellow to our eyes). A prism can break that light into its component wavelengths – a rainbow. This is called spectroscopy.
SPHEREx will use filters installed on top of its detectors to perform spectroscopy. Only about the size of a cracker, each filter appears iridescent to the naked eye and has multiple segments to block all but one specific wavelength of infrared light. Every object SPHEREx observes will be imaged by each segment, enabling scientists to see the specific infrared wavelengths emitted by that object, whether it’s a star or a galaxy. In total, the telescope can observe more than 100 distinct wavelengths.
And from that, SPHEREx will create maps of the universe unlike any that have come before.
More About the Mission
SPHEREx is managed by JPL for NASA’s Astrophysics Division within the Science Mission Directorate in Washington. Ball Aerospace built the telescope and will supply the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions across the U.S. and in South Korea. Data will be processed and archived at IPAC at Caltech. The SPHEREx data set will be publicly available.
For more information about the SPHEREx mission visit:
https://www.jpl.nasa.gov/missions/spherex/
News Media Contact
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
2023-164
Share
Details
Last Updated Nov 09, 2023 Related Terms
Astrophysics Division Exoplanets Galaxies Galaxies, Stars, & Black Holes SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) The Universe Explore More
6 min read NASA’s Webb, Hubble Combine to Create Most Colorful View of Universe
Article 5 hours ago 5 min read NASA’s Webb Findings Support Long-Proposed Process of Planet Formation
Article 1 day ago 5 min read First Science Images Released From ESA Mission With NASA Contributions
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Tundra wetlands are shown in late spring at the Yukon Delta National Wildlife Refuge in Alaska. Scientists are studying how fire and ice drive methane emissions in the Yukon-Kuskokwim Delta, within which the refuge is located.U.S. Fish and Wildlife Service Methane ‘hot spots’ in the Yukon-Kuskokwim Delta are more likely to be found where recent wildfires burned into the tundra, altering carbon emissions from the land.
In Alaska’s largest river delta, tundra that has been scorched by wildfire is emitting more methane than the rest of the landscape long after the flames died, scientists have found. The potent greenhouse gas can originate from decomposing carbon stored in permafrost for thousands of years. Its release could accelerate climate warming and lead to more frequent wildfires in the tundra, where blazes have been historically rare.
The new study was conducted by a team of scientists working as part of NASA’s Arctic-Boreal Vulnerability Experiment (ABoVE), a large-scale study of environmental change in Alaska and Western Canada. Researchers found that methane hot spots were roughly 29% more likely to occur in tundra that had been scorched by wildfire in the past 50 years compared to unburned areas. The correlation nearly tripled in areas where a fire burned to the edge of a lake, stream, or other standing-water body. The highest ratio of hot spots occurred in recently burned wetlands.
The researchers first observed the methane hot spots using NASA’s next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) in 2017. Mounted on the belly of a research plane, the instrument has an optical sensor that records the interaction of sunlight with molecules near the land surface and in the air, and it has been used to measure and monitor hazards ranging from oil spills to crop disease.
Methane bubbles pop on the surface of an Alaskan lake being studied by scientists with NASA’s Arctic-Boreal Vulnerability Experiment. A potent greenhouse gas, methane is released in bubble seeps when microbes consume carbon released from thawing permafrost.NASA/Kate Ramsayer Roughly 2 million hot spots – defined as areas showing an excess of 3,000 parts per million of methane between the aircraft and the ground – were detected across some 11,583 square miles (30,000 square kilometers) of the Arctic landscape. Regionally, the number of hot spot detections in the Yukon-Kuskokwim Delta were anomalously high in 2018 surveys, but scientists didn’t know what was driving their formation.
Ice and Fire
To help fill this gap, Elizabeth Yoseph, an intern at the time with the ABoVE campaign, focused on a methane-active region located in a wet and peaty area of the massive delta. Yoseph and the team used the AVIRIS-NG data to pinpoint hot spots across more than 687 square miles (1,780 square kilometers), then overlaid their findings on historical wildfire maps.
“What we uncovered is a very clear and strong relationship between fire history and the distribution of methane hot spots,” said Yoseph, lead author of the new study.
The connection arises from what happens when fire burns into the carbon-rich frozen soil, or permafrost, that underlies the tundra. Permafrost sequesters carbon from the atmosphere and can store it for tens of thousands of years. But when it thaws and breaks down in wet areas, flourishing microbes feed on and convert that old carbon to methane gas. The saturated soils around lakes and wetlands are especially rich stocks of carbon because they contain large amounts of dead vegetation and animal matter.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Methane emission hot spots were observed from the air using NASA’s AVIRIS-NG instrument across broad regions of the North American Arctic as part of the agency’s Arctic-Boreal Vulnerability Experiment. Credit: NASA’s Scientific Visualization Studio “When fire burns into permafrost, there are catastrophic changes to the land surface that are different from a fire burning here in California, for example,” said Clayton Elder, co-author and scientist at NASA’s Jet Propulsion Laboratory in Southern California, which developed AVIRIS-NG. “It’s changing something that was frozen to thawed, and that has a cascading impact on that ecosystem long after the fire.”
Rare but Increasing Risk
Because of the cool marshes, low shrubs, and grasses, tundra wildfires are relatively rare compared to those in other environments, such as evergreen-filled forests. However, by some projections the fire risk in the Yukon-Kuskokwim Delta could quadruple by the end of the century due to warming conditions and increased lightning storms – the leading cause of tundra fires. Two of the largest tundra fires on record in Alaska occurred in 2022, burning more than 380 square miles (100,000 hectares) of primarily tundra landscapes.
More research is needed to understand how a future of increasing blazes at high latitudes could impact the global climate. Arctic permafrost holds an estimated 1,700 billion metric tons of carbon – roughly 51 times the amount of carbon the world released as fossil fuel emissions in 2019.
All that stored carbon also means that the carbon intensity of fire emissions from burning tundra is extremely high, said co-author Elizabeth Hoy, a fire researcher at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Tundra fires occur in areas that are remote and difficult to get to, and often can be understudied,” she noted. “Using satellites and airborne remote sensing is a really powerful way to better understand these phenomena.”
The scientists hope to continue exploring methane hot spots occurring throughout Alaska. Ground-based investigation is needed to better understand the links between fire, ice, and greenhouse gas emissions at the doorstep of the Arctic.
The study was published in the journal Environmental Research Letters.
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
Written by Sally Younger
2023-159
Share
Details
Last Updated Nov 01, 2023 Related Terms
Carbon Cycle Climate Change Earth Jet Propulsion Laboratory Natural Disasters Wildfires Explore More
4 min read 2023 Ozone Hole Ranks 16th Largest, NASA and NOAA Researchers Find
Article 2 hours ago 3 min read JPL Engineers Put Their Skills to the Test With Halloween Pumpkins
Article 16 hours ago 4 min read NASA, Partners Explore Sustainable Fuel’s Effects on Aircraft Contrails
Article 2 days ago View the full article
-
By NASA
The blue areas on this map of Mars are regions where NASA missions have detected subsurface water ice (from the equator to 60 degrees north latitude). Scientists can use the map – part of the Subsurface Water Ice Mapping project – to decide where the first astronauts to set foot on the Red Planet should land.NASA/JPL-Caltech/Planetary Science Institute These Mars global maps show the likely distribution of water ice buried within the upper 3 feet (1 meter) of the planet’s surface and represent the latest data from the SWIM project. Buried ice will be a vital resource for astronauts on Mars, serving as drinking water and a key ingredient for rocket fuel.NASA/JPL-Caltech/PSI The map could help the agency decide where the first astronauts to the Red Planet should land. The more available water, the less missions will need to bring.
Buried ice will be a vital resource for the first people to set foot on Mars, serving as drinking water and a key ingredient for rocket fuel. But it would also be a major scientific target: Astronauts or robots could one day drill ice cores much as scientists do on Earth, uncovering the climate history of Mars and exploring potential habitats (past or present) for microbial life.
The need to look for subsurface ice arises because liquid water isn’t stable on the Martian surface: The atmosphere is so thin that water immediately vaporizes. There’s plenty of ice at the Martian poles – mostly made of water, although carbon dioxide, or dry ice, can be found as well – but those regions are too cold for astronauts (or robots) to survive for long. That’s where the NASA-funded Subsurface Water Ice Mapping project comes in. SWIM, as it’s known, recently released its fourth set of maps – the most detailed since the project began in 2017.
Led by the Planetary Science Institute in Tucson, Arizona, and managed by NASA’s Jet Propulsion Laboratory in Southern California, SWIM pulls together data from several NASA missions, including the Mars Reconnaissance Orbiter (MRO), 2001 Mars Odyssey, and the now-inactive Mars Global Surveyor. Using a mix of data sets, scientists have identified the likeliest places to find Martian ice that could be accessed from the surface by future missions.
The ice-exposing impact crater at the center of this image is an example of what scientists look for when mapping places where future astronauts should land on Mars. It’s one of several such impacts incorporated into the latest version of a series of NASA-funded maps of subsurface water ice on the Red Planet.NASA/JPL-Caltech/University of Arizona Instruments on these spacecraft have detected what look like masses of subsurface frozen water along Mars’ mid-latitudes. The northern mid-latitudes are especially attractive because they have a thicker atmosphere than most other regions on the planet, making it easier to slow a descending spacecraft. The ideal astronaut landing sites would be a sweet spot at the southernmost edge of this region – far enough north for ice to be present but close enough to the equator to ensure the warmest possible temperatures for astronauts in an icy region. “If you send humans to Mars, you want to get them as close to the equator as you can,” said Sydney Do, JPL’s SWIM project manager. “The less energy you have to expend on keeping astronauts and their supporting equipment warm, the more you have for other things they’ll need.”
Building a Better Map
Previous iterations of the map relied on lower-resolution imagers, radar, thermal mappers, and spectrometers, all of which can hint at buried ice but can’t outright confirm its presence or quantity. For this latest SWIM map, scientists relied on two higher-resolution cameras aboard MRO. Context Camera data was used to further refine the northern hemisphere maps and, for the first time, HiRISE (High-Resolution Imaging Science Experiment) data was incorporated to provide the most detailed perspective of the ice’s boundary line as close to the equator as possible.
Scientists routinely use HiRISE to study fresh impact craters caused by meteoroids that may have excavated chunks of ice. Most of these craters are no more than 33 feet (10 meters) in diameter, although in 2022 HiRISE captured a 492-foot-wide (150-meter-wide) impact crater that revealed a motherlode of ice that had been hiding beneath the surface.
In this artist’s concept, NASA astronauts drill into the Martian subsurface. The agency has created new maps that show where ice is most likely to be easily accessible to future astronauts.NASA “These ice-revealing impacts provide a valuable form of ground truth in that they show us locations where the presence of ground ice is unequivocal,” said Gareth Morgan, SWIM’s co-lead at the Planetary Science Institute. “We can then use these locations to test that our mapping methods are sound.”
In addition to ice-exposing impacts, the new map includes sightings by HiRISE of so-called “polygon terrain,” where the seasonal expansion and contraction of subsurface ice causes the ground to form polygonal cracks. Seeing these polygons extending around fresh, ice-filled impact craters is yet another indication that there’s more ice hidden beneath the surface at these locations.
There are other mysteries that scientists can use the map to study, as well.
“The amount of water ice found in locations across the Martian mid-latitudes isn’t uniform; some regions seem to have more than others, and no one really knows why,” said Nathaniel Putzig, SWIM’s other co-lead at the Planetary Science Institute. “The newest SWIM map could lead to new hypotheses for why these variations happen.” He added that it could also help scientists tweak models of how the ancient Martian climate evolved over time, leaving larger amounts of ice deposited in some regions and lesser amounts in others. SWIM’s scientists hope the project will serve as a foundation for a proposed Mars Ice Mapper mission – an orbiter that would be equipped with a powerful radar custom-designed to search for near-surface ice beyond where HiRISE has confirmed its presence.
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Alana Johnson
NASA Headquarters, Washington
301-286-6284 / 202-358-1501
karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
2023-150
Share
Details
Last Updated Oct 26, 2023 Related Terms
Jet Propulsion Laboratory Mars The Solar System Explore More
5 min read NASA’s Scientists and Volunteers Tackle the October 14 Solar Eclipse
Did you see October 14th’s solar eclipse? Most of the time we can easily forget…
Article 1 day ago 5 min read How NASA Is Protecting Europa Clipper From Space Radiation
Article 2 days ago 6 min read Why NASA’s Roman Mission Will Study Milky Way’s Flickering Lights
Article 2 days ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.