Jump to content

Camera ‘hack’ lets Solar Orbiter peer deeper into Sun’s atmosphere


Recommended Posts

A_new_way_to_view_the_Sun_card_full.jpg

Scientists have used Solar Orbiter’s EUI camera in a new mode of operation to record part of the Sun’s atmosphere at extreme ultraviolet wavelengths that has been almost impossible to image until now. This new mode of operation was made possible with a last-minute ‘hack’ to the camera and will almost certainly influence new solar instruments for future missions. 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      9 Min Read Temperatures Across Our Solar System
      An illustration of our solar system. Planets and other objects are not to scale. Credits:
      NASA What’s the weather like out there? We mean waaaay out there in our solar system – where the forecast might not be quite what you think. 
      Let’s look at the mean temperature of the Sun, and the planets in our solar system. The mean temperature is the average temperature over the surface of the rocky planets: Mercury, Venus, Earth, and Mars. Dwarf planet Pluto also has a solid surface. But since the gas giants don’t have a surface, the mean is the average temperature at what would be equivalent at sea level on Earth. 
      An illustration of planets in our solar system showing their mean temperatures. Planets and dwarf planet Pluto are not to scale.  NASA Let’s start with our Sun. You already know the Sun is hot. OK, it’s extremely hot! But temperatures on the Sun also are a bit puzzling. 
      An image of the Sun taken Oct. 30, 2023, by NASA’s Solar Dynamics Observatory. NASA/SDO The hottest part of the Sun is its core, where temperatures top 27 million°F (15 million°C). The part of the Sun we call its surface – the photosphere – is a relatively cool 10,000° F (5,500°C). In one of the Sun’s biggest mysteries, the Sun’s outer atmosphere, the corona, gets hotter the farther it stretches from the surface. The corona reaches up to 3.5 million°F (2 million°C) – much, much hotter than the photosphere.
      So some temperatures on the Sun are a bit upside down. How about the planets? Surely things are cooler on the planets that are farther from the Sun. 
      Well, mostly. But then there’s Venus. 
      As it sped away from Venus, NASA’s Mariner 10 spacecraft captured this seemingly peaceful view of a planet the size of Earth, wrapped in a dense, global cloud layer. But, contrary to its serene appearance, the clouded globe of Venus is a world of intense heat, crushing atmospheric pressure and clouds of corrosive acid. NASA/JPL-Caltech Venus is the second closest planet to the Sun after Mercury, with an average distance from the Sun of about 67 million miles (108 million kilometers). It takes sunlight about six minutes to travel to Venus. 
      Venus also is Earth’s closest neighbor and is similar in size. It has even been called Earth’s twin. But Venus is shrouded in clouds and has a dense atmosphere that acts as a greenhouse and heats the surface to above the melting point of lead. It has a mean surface temperature of 867°F (464°C). 
      So Venus – not Mercury – is the hottest planet in our solar system. Save that bit of info for any future trivia contests.
      Maybe Venus is hotter, but Mercury is the closest planet to the Sun. Surely it gets hot, too? 
      Mercury as seen from NASA’s MESSENGER, the first spacecraft to orbit Mercury. NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington Mercury is about 36 million miles (57 million kilometers) from the Sun. From this distance, it takes sunlight about three minutes to travel to Mercury. Even though it’s sitting right next to the Sun – relatively speaking – Mercury gets extremely cold at night. It has a mean surface temperature of 333°F (167°C). Daytime temperatures get much hotter than the mean, and can reach highs of 800°F (430°C). But without an atmosphere thick enough to hold in the heat at night, temperatures can dip as low as -290°F (-180°C). 
      Ahhh, Earth. We know about the weather here, right? Even Earth has some temperatures you may not have heard about.
      An image of Earth from the Deep Space Climate Observatory, or DSCOVR. NASA Earth is an average of 93 million miles (150 million kilometers) from the Sun. It takes about eight minutes for light from the Sun to reach our planet.
      Our homeworld is a dynamic and stormy planet with everything from clear, sunny days, to brief rain showers, to tornados, to raging hurricanes, to blizzards, and dust storms. But in spite of its wide variety of storms – Earth generally has very hospitable temperatures compared to the other planets. The mean surface temperature on Earth is 59°F (15°C). But Earth days have some extreme temperatures. According to NOAA, Death Valley holds the record for the world’s highest surface air temperature ever recorded on Earth: 134°F (56.7°C) observed at Furnace Creek (Greenland Ranch), California, on July 10, 1913. Earth’s lowest recorded temperature was -128.6°F (89.2°C) at Vostok Station, Antarctica, on July 21, 1983, according to the World Meteorological Organization. 
      NASA missions have found lots of evidence that Mars was much wetter and warmer, with a thicker atmosphere, billions of years ago. How about now? 
      Side-by-side animated images show how a 2018 global dust storm enveloped the Red Planet. The images were taken by NASA’s Mars Reconnaissance Orbiter (MRO). NASA/JPL-Caltech/MSSS Mars is an average distance of 142 million miles (228 million kilometers) from the Sun. From this distance, it takes about 13 minutes for light to travel from the Sun to Mars.
      The median surface temperature on Mars is -85°F (-65°C). Because the atmosphere is so thin, heat from the Sun easily escapes Mars. Temperatures on the Red Planet range from the 70s°F (20s°C) to -225°F (-153°C). Occasionally, winds on Mars are strong enough to create dust storms that cover much of the planet. After such storms, it can be months before all of the dust settles.
      Two NASA rovers on Mars have weather stations. You can check the daily temps at their locations:
      Mars Weather Report From Perseverance Curiosity Daily Weather Report The ground temperature around the Perseverance rover ranges from about -136°F to 62°F (-93°C to 17°C). The air temperature near the surface ranges from about  -118°F to 8°F (-83°C to -13°C).
      As planets move farther away from the Sun, it really cools down fast! Since gas giants Jupiter and Saturn don’t have a solid surface, temperatures are taken from a level in the atmosphere equal in pressure to sea level on Earth. The same goes for the ice giants Uranus and Neptune.
      NASA’s Juno spacecraft took this image during a flyby of Jupiter. This view highlights Jupiter’s most famous weather phenomenon, the persistent storm known as the Great Red Spot. Citizen scientist Kevin M. Gill created this image using data from the spacecraft’s JunoCam imager. Enhanced image by Kevin M. Gill (CC-BY) based on images provided courtesy of NASA/JPL-Caltech/SwRI/MSSS Jupiter’s stripes and swirls are beautiful, but they are actually cold, windy clouds of ammonia and water, floating in an atmosphere of hydrogen and helium. The planet’s iconic Great Red Spot is a giant storm bigger than Earth that has raged for hundreds of years. The mean temperature on Jupiter is -166°F (-110°C). 
      Jupiter is an average distance of 484 million miles (778 million kilometers) from the Sun. From this distance, it takes sunlight 43 minutes to travel from the Sun to Jupiter. Jupiter has the shortest day in the solar system. One day on Jupiter takes only about 10 hours (the time it takes for Jupiter to rotate or spin around once), and Jupiter makes a complete orbit around the Sun (a year in Jovian time) in about 12 Earth years (4,333 Earth days).
      Jupiter’s equator is tilted with respect to its orbital path around the Sun by just 3 degrees. This means the giant planet spins nearly upright and does not have seasons as extreme as other planets do.
      As we keep moving out into the solar system, we come to Saturn – the sixth planet from the Sun and the second largest planet in our solar system. Saturn orbits the Sun from an average distance of 886 million miles (1.4 billion kilometers). It takes sunlight 80 minutes to travel from the Sun to Saturn.
      This series of images from NASA’s Cassini spacecraft shows the development of the largest storm seen on Saturn since 1990. These true-color and composite near-true-color views chronicle the storm from its start in late 2010 through mid-2011, showing how the distinct head of the storm quickly grew large but eventually became engulfed by the storm’s tail. NASA/JPL-Caltech/Space Science Institute Like fellow gas giant Jupiter, Saturn is a massive ball made mostly of hydrogen and helium and it doesn’t have a true surface. The mean temperature is -220°F (-140°C). 
      In addition to the bone-chilling cold, the winds in the upper atmosphere of Saturn reach 1,600 feet per second (500 meters per second) in the equatorial region. In contrast, the strongest hurricane-force winds on Earth top out at about 360 feet per second (110 meters per second). And the pressure – the same kind you feel when you dive deep underwater – is so powerful it squeezes gas into a liquid.
      This colorful movie made with images from NASA’s Cassini spacecraft is the highest-resolution view of the unique six-sided jet stream at Saturn’s north pole known as “the hexagon.” NASA/JPL-Caltech/SSI/Hampton University Saturn’s north pole has an interesting atmospheric feature – a six-sided jet stream. This hexagon-shaped pattern was first noticed in images from the Voyager I spacecraft and was more closely observed by the Cassini spacecraft. Spanning about 20,000 miles (30,000 kilometers) across, the hexagon is a wavy jet stream of 200-mile-per-hour winds (about 322 kilometers per hour) with a massive, rotating storm at the center. There is no weather feature like it anywhere else in the solar system.
      Crane your neck to the side while we go check out the weather on Uranus, the sideways planet.
      This is an image of the planet Uranus taken by the spacecraft Voyager 2 in 1986. NASA/JPL-Caltech The seventh planet from the Sun with the third largest diameter in our solar system, Uranus is very cold and windy. It has a mean temperature of  -320°F (-195°C). Uranus rotates at a nearly 90-degree angle from the plane of its orbit. This unique tilt makes Uranus appear to spin sideways, orbiting the Sun like a rolling ball. And like Saturn, Uranus has rings. The ice giant is surrounded by 13 faint rings and 27 small moons. 
      Now we move on to the last major planet in our solar system – Neptune. What’s the weather like there? Well you would definitely need a windbreaker if you went for a visit. Dark, cold, and whipped by supersonic winds, giant Neptune is the eighth and most distant major planet orbiting our Sun. The mean temperature on Neptune is -330°F (-200°C). 
      And not to be outdone by Jupiter and its Great Red Spot, Neptune has the Great Dark Spot – and Scooter. Yep, Scooter. 
      Voyager 2 photographed these features on Neptune in 1989.  NASA/JPL-Caltech This photograph of Neptune was created from two images taken by NASA’s Voyager 2 spacecraft in August 1989. It was the first and last time a spacecraft came close to Neptune. The image shows three of the features that Voyager 2 monitored. At the north (top) is the Great Dark Spot, accompanied by bright, white clouds that undergo rapid changes in appearance. To the south of the Great Dark Spot is the bright feature that Voyager scientists nicknamed “Scooter.” Still farther south is the feature called “Dark Spot 2,” which has a bright core. 
      More than 30 times as far from the Sun as Earth, Neptune is not visible to the naked eye. In 2011, Neptune completed its first 165-year orbit of the Sun since its discovery. 
      That wraps up forecasting for the major planets.
      But there is one more place we need to check out. Beyond Neptune is a small world, with a big heart – dwarf planet Pluto.
      New Horizons scientists use enhanced color images to detect differences in the composition and texture of Pluto’s surface. NASA/JHUAPL/SwRI With a mean surface temperature of -375°F (-225°C), Pluto is considered too cold to sustain life. Pluto’s interior is warmer, however, and some think there may be an ocean deep inside.
      From an average distance of 3.7 billion miles (5.9 billion kilometers) away from the Sun, it takes sunlight 5.5 hours to travel to Pluto. If you were to stand on the surface of Pluto at noon, the Sun would be 1/900 the brightness it is here on Earth. There is a moment each day near sunset here on Earth when the light is the same brightness as midday on Pluto.
      So the next time you’re complaining about the weather in your spot here on Earth, think about Pluto and all the worlds in between. 
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By European Space Agency
      Image: Fall into an ice giant’s atmosphere View the full article
    • By European Space Agency
      Europe – and the world – is in the midst of the ‘quantum decade’: a period in which the peculiar properties of matter that manifest at the very tiniest of scales are being transformed from mere scientific curiosities into the basis of practical technologies and products. The result? Major leaps forward in communications, navigation, computing and environmental sensing.
      The same is true in space: ESA is currently sending a quantum-enabled probe to Jupiter, developing communications based on quantum technologies and planning flying a quantum clock to the International Space Station, as part of its quantum technology cross-cutting initiative.
      View the full article
    • By NASA
      4 Min Read Arkansas City Welcomes NASA to Discuss 2024 Total Solar Eclipse
      Adam Kobelski, a solar astrophysicist with Marshall, shares tips to safely view a total solar eclipse. Many U.S. cities, including Russellville, Arkansas, are planning watch parties to view the April 2024 total solar eclipse. Credits: Joshua Mashon The contiguous United States will see only one total solar eclipse between now and the year 2044, and the citizens of Russellville, Arkansas, are ready.
      On Monday, April 8, 2024, the Moon will pass between the Sun and Earth, providing a rare opportunity for those in the path of the Moon’s shadow to see a total solar eclipse, including the Sun’s outer atmosphere, or corona. With more than 100,000 tourists expected to visit Russellville for this rare experience, elected officials and industry leaders hosted a team of NASA experts from the Marshall Space Flight Center in Huntsville, Alabama, to discuss educational outreach opportunities.
      More than 1,000 people attended a free solar eclipse presentation in Russellville, Arkansas, featuring experts from NASA’s Marshall Space Flight Center in Huntsville, Alabama, Oct. 30. Joshua Mashon “Having NASA involved elevates the importance of this eclipse and amplifies the excitement for our community,” said Russellville Mayor Fred Teague. “We are thankful for the rich discussions and insight provided by NASA, and we look forward to hosting them again during the April eclipse.”
      Due to the length of the eclipse totality in Russellville, NASA is planning to host part of the agency’s live television broadcast from the city, as well as conduct several scientific presentations and public outreach events for visitors. Additional factors for selecting Russellville included access to a large university, and proximity to Little Rock – the state’s capital – to engage media outlets and key stakeholders representing industry and academia.
      The day-long Oct. 30 visit helped NASA learn how the city is preparing for the massive influx of tourists and news media personnel. Christie Graham, director of Russellville Tourism, explained the city’s commitment to the eclipse and how their planning processes started more than a year in advance.
      “Months ago, we created our solar eclipse outreach committee, consisting of key stakeholders and thought leaders from across the city,” Graham said. “We’ve developed advanced communication and emergency management plans which will maximize our city’s resources and ensure everyone has a safe and memorable viewing experience.”
      Following the NASA public presentation about the April 2024 total solar eclipse, Kobelski chats with guests interested in learning more about NASA and heliophysics. NASA/Christopher Blair This visit also provided NASA an opportunity to share important heliophysics messaging with the public, including the next generation of scientists, engineers, and explorers. To learn how best to interact with local students, NASA team members met with the Russellville School District Superintendent Ginni McDonald and Arkansas Tech University President Russell Jones.
      “Leveraging the eclipse to provide quality learning opportunities will be a valuable and unforgettable experience for all,” said McDonald. “Our staff enjoyed discussing best strategies and look forward to sharing NASA educational content with our students.”
      The team also discussed internship opportunities available for students to work at NASA centers across the nation, as well as how to get involved in NASA’s Artemis student challenges, sophisticated engineering design challenges available for middle school, high school, college and university students.
      “Our university serves nearly 10,000 students, many pursuing a variety of STEM (science, technology, engineering, and math) degrees, including mechanical and electrical engineering, biological and computer sciences, nursing, and more,” Jones said.
      It is important our students learn of the many unique opportunities available with NASA and how they can get involved.”
      Russell Jones
      Arkansas Tech University President
      “It is important our students learn of the many unique opportunities available with NASA and how they can get involved.”
      The agency’s visit concluded with a free public presentation at the Center for Performing Arts, where more than 1,000 attendees gained insight on the upcoming eclipse from Dr. Adam Kobelski, a solar astrophysicist at Marshall. Following the presentation, all NASA team members participated in a question-and-answer session with audience members of all ages.
      Overall, the visit proved valuable for everyone with NASA team members remarking how enthusiastic and prepared both Russellville and the university are to support the eclipse event.
      Adam Kobelski, a solar astrophysicist with Marshall, shares tips to safely view a total solar eclipse. Many U.S. cities, including Russellville, Arkansas, are planning watch parties to view the April 2024 total solar eclipse. “It was a refreshing reminder of the public’s excitement for the science we conduct at NASA,” said Kobelski. “This experience established my overall confidence in their readiness to successfully host a quality viewing experience for everyone.”
      The April eclipse is part of the Heliophysics Big Year, a global celebration of solar science and the Sun’s influence on Earth and the entire solar system. Everyone is encouraged to participate in solar science events such as watching solar eclipses, experiencing an aurora, participating in citizen science projects, and other fun Sun-related activities.
      Cities across the nation are planning eclipse watch parties and other celebrations to commemorate the event. Weather permitting, the April 2024 total eclipse will be visible across 13 states, from Texas to New York.
      Learn More About the 2024 Eclipse Christopher Blair
      Marshall Space Flight Center, Huntsville, Ala
      256.544.0034
      christopher.e.blair@nasa.gov
      Share
      Details
      Last Updated Nov 09, 2023 Related Terms
      2024 Solar Eclipse Eclipses Marshall Space Flight Center Explore More
      4 min read NASA Project Manager Helps Makes Impact in Southeast Asia with SERVIR
      Article 1 day ago 2 min read Calling all Eclipse Enthusiasts: Become a NASA Partner Eclipse Ambassador!
      By Vivian White, Astronomical Society of the Pacific Are you an astronomy enthusiast or undergraduate…
      Article 2 days ago 8 min read Inspiring the Next Generation with Student Challenges and Learning Opportunities
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Solar Jet Hunter is Back, with New Data and New Features!
      A solar jet extending from the Sun. Join the re-launched Solar Jet Hunter Project and chase these incredible outbursts! Credit: Image data: NASA SDO/AIA NASA’s Solar Jet Hunter project invites you to help find solar jets, ejections of matter from the Sun. The project was on hold for a few months as the science team worked behind the scenes. It’s re-launching now with new data from NASA’s Solar Dynamic Observatory and new features! 
      “The project has been really successful in finding solar jets.” said project PI Dr. Sophie Musset from the European Space Agency. “But we need more help!”
      The project team has set up two workflows, or tasks, that need your help.  You’ll find them on the new project webpage — one or both may be active. “Jet or Not”, is a workflow that asks you to find jets, and “Box the Jets” is a workflow where you annotate movies of the Sun and draw boxes around jets that you spot.
      With your input, the Solar Jet Hunter science team is building a catalogue of jets that will be used by many solar physicists. Check the blog regularly for news on the science that your work enables—and join the hunt for solar jets at https://www.zooniverse.org/projects/sophiemu/solar-jet-hunter !

      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Facebook logo @DoNASAScience @DoNASAScience@SolarJetHunter Share








      Details
      Last Updated Nov 09, 2023 Related Terms
      Citizen Science Heliophysics View the full article
  • Check out these Videos

×
×
  • Create New...