Jump to content

The Science of NASA's SpaceX Crew-6 Mission


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      7 min read
      NASA’s Fermi Mission Nets 300 Gamma-Ray Pulsars … and Counting
      A new catalog produced by a French-led international team of astronomers shows that NASA’s Fermi Gamma-ray Space Telescope has discovered 294 gamma-ray-emitting pulsars, while another 34 suspects await confirmation. This is 27 times the number known before the mission launched in 2008.
      This visualization shows 294 gamma-ray pulsars, first plotted on an image of the entire starry sky as seen from Earth and then transitioning to a view from above our galaxy. The symbols show different types of pulsars. Young pulsars blink in real time except for the Crab, which pulses slower than in real time because its rate is only slightly lower than the video’s frame rate. Millisecond pulsars remain steady, pulsing too quickly to see. The Crab, Vela, and Geminga were among the 11 gamma-ray pulsars known before Fermi launched. Other notable objects are also highlighted. Distances are shown in light-years (abbreviated ly). Download high-resolution video and images from NASA’s Scientific Visualization Studio. Credit: NASA’s Goddard Space Flight Center “Pulsars touch on a wide range of astrophysics research, from cosmic rays and stellar evolution to the search for gravitational waves and dark matter,” said study coordinator David Smith, research director at the Bordeaux Astrophysics Laboratory in Gironde, France, which is part of CNRS (the French National Center for Scientific Research). “This new catalog compiles full information on all known gamma-ray pulsars in an effort to promote new avenues of exploration.”
      The catalog was published on Monday, Nov. 27, in The Astrophysical Journal Supplement.

      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Narrow beams of energy emerge from hot spots on the surface of a neutron star in this artist’s concept. When one of these beams sweeps past Earth, astronomers detect a pulse of light. Credit: NASA’s Goddard Space Flight Center Conceptual Image Lab Pulsars are a type of neutron star, the city-sized leftover of a massive sun that has exploded as a supernova. Neutron stars, containing more mass than our Sun in a ball less than 17 miles wide, represent the densest matter astronomers can study directly. They possess strong magnetic fields, produce streams of energetic particles, and spin quickly – 716 times a second for the fastest known. Pulsars, in addition, emit narrow beams of energy that swing lighthouse-like through space as the objects rotate. When one of these beams sweeps past Earth, astronomers detect a pulse of emission.
      The new catalog represents the work of 170 scientists across the globe. A dozen radio telescopes carry out regular monitoring of thousands of pulsars, and radio astronomers search for new pulsars within gamma-ray sources discovered by Fermi. Other researchers have teased out gamma-ray pulsars that have no radio counterparts through millions of hours of computer calculation, a process called a blind search.
      More than 15 years after its launch, Fermi remains an incredible discovery machine, and pulsars and their neutron star kin are leading the way.
      Elizabeth Hays
      Fermi Project Scientist
      Of the 3,400 pulsars known, most of them observed via radio waves and located within our Milky Way galaxy, only about 10% also pulse in gamma rays, the highest-energy form of light. Visible light has energies between 2 and 3 electron volts. Fermi’s Large Area Telescope can detect gamma rays with billions of times this energy, and other facilities have observed emission thousands of times greater still from the nearby Vela pulsar, the brightest persistent source in the sky for Fermi.

      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      This movie shows the Vela pulsar in gamma rays detected by the Large Area Telescope aboard NASA’s Fermi observatory. A single pulsar cycle is repeated. Bluer colors indicate gamma rays with higher energies. Credit: NASA/DOE/Fermi LAT Collaboration The Vela pulsar and its famous sibling in the Crab Nebula are young, solitary objects, formed about 11,000 and 970 years ago, respectively. Their emissions arise as their magnetic fields spin through space, but this also gradually slows their rotation. The younger Crab pulsar spins nearly 30 times a second, while Vela clocks in about a third as fast.
      The Old and the Restless
      Paradoxically, though, pulsars that are thousands of times older spin much faster. One example of these so-called millisecond pulsars (MSPs) is J1824-2452A. It whirls around 328 times a second and, with an age of about 30 million years, ranks among the youngest MSPs known.
      Thanks to a great combination of gamma-ray brightness and smooth spin slowdown, the MSP J1231-1411 is an ideal “timer” for use in gravitational wave searches. By monitoring a collection of stable MSPs, astronomers hope to link timing changes to passing low-frequency gravitational waves – ripples in space-time – that cannot be detected by current gravitational observatories. It was discovered in one of the first radio searches targeting Fermi gamma-ray sources not associated with any known counterpart at other wavelengths, a technique that turned out to be exceptionally successful.
      “Before Fermi, we didn’t know if MSPs would be visible at high energies, but it turns out they mostly radiate in gamma rays and now make up fully half of our catalog,” said co-author Lucas Guillemot, an associate astronomer at the Laboratory of Physics and Chemistry of the Environment and Space and the University of Orleans, France.
      Along Come the Spiders
      The presence of MSPs in binary systems offers a clue to understanding the age-spin paradox. Left to itself, a pulsar’s emissions slow it down, and with slower spin its emissions dim. But if closely paired with a normal star, the pulsar can pull a stream of matter from its companion that, over time, can spin up the pulsar.
      “Spider” systems offer a glimpse of what happens next. They’re classified as redbacks or black widows – named for spiders known for consuming their mates. Black widows have light companions (less than about 5% of the Sun’s mass), while redbacks have heavier partners. As the pulsar spins up, its emissions and particle outflows become so invigorated that – through processes still poorly understood – it heats and slowly evaporates its companion. The most energetic spiders may fully evaporate their partners, leaving only an isolated MSP behind.
      J1555-2908 is a black widow with a surprise – its gravitational web may have ensnared a passing planet. An analysis of 12 years of Fermi data reveals long-term spin variations much larger than those seen in other MSPs. “We think a model incorporating the planet as a third body in a wide orbit around the pulsar and its companion describes the changes a little better than other explanations, but we need a few more years of Fermi observations to confirm it,” said co-author Colin Clark, a research group leader at the Max Planck Institute for Gravitational Physics in Hannover, Germany.
      Other curious binaries include the so-called transitional pulsars, such as J1023+0038, the first identified. An erratic stream of gas flowing from the companion to the neutron star may surge, suddenly forming a disk around the pulsar that can persist for years. The disk shines brightly in optical light, X-rays, and gamma rays, but pulses become undetectable. When the disk again vanishes, so does the high-energy light and the pulses return.

      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      This artist’s concept illustrates a possible model for the transitional pulsar J1023. When astronomers can detect pulses in radio (green), the pulsar’s energetic outflow holds back its companion’s gas stream. Sometimes the stream surges, creating a bright disk around the pulsar that can persist for years. The disk shines brightly in X-rays, and gas reaching the neutron star produces jets that emit gamma rays (magenta), obscuring the pulses until the disk eventually dissipates. Credit: NASA’s Goddard Space Flight Center Some pulsars don’t require a partner to switch things up. J2021+4026, a young, isolated pulsar located about 4,900 light-years away, underwent a puzzling “mode change” in 2011, dimming its gamma rays over about a week and then, years later, slowly returning to its original brightness. Similar behavior had been seen in some radio pulsars, but this was a first in gamma rays. Astronomers suspect the event may have been triggered by crustal cracks that temporarily changed the pulsar‘s magnetic field.
      Farther afield, Fermi discovered the first gamma-ray pulsar in another galaxy, the neighboring Large Magellanic Cloud, in 2015. And in 2021, astronomers announced the discovery of a giant gamma-ray flare from a different type of neutron star (called a magnetar) located in the Sculptor galaxy, about 11.4 million light-years away.
      “More than 15 years after its launch, Fermi remains an incredible discovery machine, and pulsars and their neutron star kin are leading the way,” said Elizabeth Hays, the mission’s project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      Explore the Fermi gamma-ray pulsar catalog on WorldWide Telescope
      Max Planck Institute release
      By Francis Reddy
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media contact:
      Claire Andreoli
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      (301) 286-1940
      Share








      Details
      Last Updated Nov 28, 2023 Editor Francis Reddy Location Goddard Space Flight Center Related Terms
      Astrophysics Binary Stars Fermi Gamma-Ray Space Telescope Gamma Rays Goddard Space Flight Center Neutron Stars Pulsars Stars The Universe Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      3 min read
      NASA to Showcase Earth Science Data at COP28
      This illustration shows the international Surface Water and Ocean Topography (SWOT) satellite in orbit over Earth. SWOT’s main instrument, KaRIn, helps survey the water on more than 90% of Earth’s surface. Credit: NASA/JPL-Caltech. NASA/JPL-Caltech With 26 Earth-observing satellite missions, as well as instruments flying on planes and the space station, NASA has a global vantage point for studying our planet’s oceans, land, ice, and atmosphere and deciphering how changes in one drive change in others.
      The agency will share that knowledge and data at the 28th U.N. Climate Change Conference of the Parties (COP28), which brings international parties together to accelerate action toward the goals of the Paris Agreement and the U.N. Framework Convention on Climate Change. COP28 will be held at the Expo City in Dubai, United Arab Emirates from Thursday, Nov. 30 to Tuesday, Dec. 12.
      All U.S. events at COP28 are open to the local press and will be live-streamed on the U.S. Center at COP28 website and the U.S. Center YouTube channel.
      NASA takes a full-picture approach to understanding all areas of our home planet using our vast satellite fleet and the data collected from their observations. The agency’s data is open-source and available for the public and scientists to study. NASA is showcasing the data at COP28 to share the different ways it can be used globally. The agency’s complete collection of Earth data can be found here.
      The scientific research and understanding developed from NASA’s Earth observations are made into predictive models. Those models can be used to develop applications and actionable science to inform individuals including civic leaders and planners, resource managers, emergency managers, and communities looking to mitigate and adapt to climate change.
      These satellites and models are augmented by the observations made from the International Space Station. The inclined, low Earth orbit from the station provides variable views and lighting over more than 90 percent of the inhabited surface of the Earth, a useful complement to sensor systems on satellites in higher-altitude polar orbits.
      Closer to the surface, NASA’s aviation research is focused on advancing technologies for more efficient airplane flight, including hybrid-electric propulsion, advanced materials, artificial intelligence, and machine learning. Technological advances in these areas have the potential to reduce human impacts on climate and air quality.
      Hyperwall
      At the U.S. Center at COP28, in-person visitors can see the NASA Hyperwall where NASA scientists will provide live presentations showing how the agency’s work supports the Biden-Harris Administration’s agenda to encourage a governmentwide approach to climate change. During the hyperwall talks, NASA leaders, scientists and interagency partners will discuss the agency’s end-to-end research about our planet. This includes designing new instruments, satellites, and systems to collect and freely distribute the most complete and precise data possible about Earth’s land, ocean, and atmospheric system. A full schedule of NASA’s hyperwall talks is available.
      Katherine Rohloff
      Headquarters, Washington
      202-358-1600
      katherine.a.rohloff@nasa.gov
      Share








      Details
      Last Updated Nov 27, 2023 Editor Contact Related Terms
      Climate Change Earth Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Climate Change


      NASA is a global leader in studying Earth’s changing climate.


      Explore Earth Science



      Earth Science Data


      View the full article
    • By NASA
      7 min read
      Science on Station: November 2023
      Inspiring Students with Ham Radio, Other Educational Programs
      As an orbiting microgravity laboratory, the International Space Station hosts experiments from almost every scientific field. It also is home to educational programs to encourage young people worldwide to study science, technology, engineering, and mathematics (STEM). These programs aim to inspire the next generation of space scientists and explorers and experts who can solve problems facing people on Earth.
      The first and longest running educational outreach program on the space station is ISS Ham Radio. An organization known as Amateur Radio on the International Space Station, or ARISS, helps run the program. ARISS is a partnership between NASA, the American Radio Relay League, the Radio Amateur Satellite Corporation, amateur radio organizations, and multiple international space agencies. Students use amateur or ham radio to talk with astronauts, asking them questions about life in space, career opportunities, and other space-related topics. Three contacts with schools in Australia and Canada were scheduled during the month of November 2023.
      JAXA astronaut Koichi Wakata during a ham radio session.NASA Before a contact, students help set up a ground radio station and study radio waves, space technology, the space station, geography, and the space environment. Contact events have been held with schools from kindergarten through 12th grade, universities, scout groups, museums, libraries, and after school programs, and at national and international events. Approximately 15,000 to 100,000 students are involved directly each year and thousands more people in their communities witness these contacts directly or through the news media.
      Rita Wright, a teacher at Burbank School in Burbank, IL, one of the first to have a contact with the space station, reported on the extensive study and preparation by the students there.1 She noted that their contact was “an interdisciplinary learning experience for all grades across a variety of academic concentrations that included math, science, reading, writing and art…. The transformation that took place was quite revolutionary. We came closer together as a school.” Students talked extensively about the experiment and parents pitched in and helped because they sensed how special the event was and wanted to be a part of it.
      Wright adds that ripple effects continued long after the December 2000 contact with astronaut William Shepherd. Staff members were inspired to look for other interdisciplinary projects and many students talked about pursuing careers associated with the space industry.
      After a contact at Sonoran Sky Elementary School in Scottsdale, AZ, teacher Carrie Cunningham reported that the students started an after-school Amateur Radio Club and that, “sparked by the excitement of the ARISS contact, many students have shown an interested in pursuing their own Amateur Radio experience.”2
      “There is a sense of accomplishment that results from the school and the students setting up and conducting the ISS ham contact themselves,” Cunningham reported. “The students better understand how NASA and the other international space agencies conduct science in space. The unique, hands-on nature of the amateur radio contact provides the incentive to learn about orbital mechanics, space flight, and radio operations.”
      In a 2018 conference presentation, members of the ARISS staff noted that the program and its predecessors have jump-started countless careers, touched millions of people from all walks of life, and even become local and international phenomena. Participants have ranged from disadvantaged students to heads of states, and the program has been mentioned in IMAX films, numerous television shows, and commercials.3
      A group of educators from Australia recently looked at how ham radio affected student interest in STEM subjects. They found that the program has a significant and positive impact on students and that interest in all STEM areas increases as a direct result of contacts.4
      That research also reported a strong belief among teachers that astronauts provide outstanding examples of role models for their students. While the greatest changes in student interests occurs with primary school age students, the program also creates strong change in the interests of high school students.
      NASA astronaut Edward M. (Mike) Fincke uses the station’s ham radio set during Expedition 9. NASA Patricia Palazzolo was the coordinator for gifted education in the Upper St. Clair School District in Pennsylvania during a 2004 contact with NASA astronaut Mike Fincke. She wrote a report about the event, noting that the positive impact of the program goes far beyond the numbers. “All of my students who have participated … have gone on to phenomenal accomplishments and careers that contribute much to society. Almost all have opted for careers in science, technology, or science-related fields.”
      Ham radio experiences help students make real-world connections among disciplines, teach problem-solving under the pressure of deadlines, hone communication skills, and illustrate the importance of technology.5 For the adults involved, contacts highlight the significance of sharing skills with others and provide an opportunity to model the power of passion, partnership, and persistence.
      AstroPi is an educational program from ESA (European Space Agency) where primary and secondary school students design experiments and write computer code for one of two Raspberry Pi computers on the space station. The computers are equipped with sensors to measure the environment inside the spacecraft, detect how the station moves through space, and pick up the Earth’s magnetic field. One of them has an infrared camera and the other a standard visible-spectrum camera. 
      One student project used the visible camera to observe small-scale gravity waves in different regions in the northern hemisphere.6 Atmospheric gravity waves transport energy and momentum to the upper layers of the atmosphere. These phenomena can be detected by visual patterns such as meteor trails, airglow, and clouds.
      ESA astronaut Samantha Cristoforetti poses with the AstroPi equipped with a visual camera.NASA YouTube Space Lab was a world-wide contest for students ages 14 to 18 to design an experiment about physics or biology using video. Two proposals were selected from 2,000 entries received from around the world. One of those documented the ability of the Phidippus jumping spider to walk on surfaces and make short, direct jumps to capture small flies in microgravity.7
      Other space station facilities that host student-designed projects include CubeSat small satellites, TangoLab, the Nanoracks platform, and Space Studio Kibo, a JAXA (Japan Aerospace Exploration Agency) broadcasting studio.
      NASA is committed to engaging, inspiring, and attracting future explorers and building a diverse future STEM workforce through a broad set of programs and opportunities. The space station is an important part of that commitment.
      John Love, ISS Research Planning Integration Scientist
      Expedition 70

      Search this database of scientific experiments to learn more about those mentioned above. Space Station Research Explorer.

      Citations:
      Wright RL. Remember, We’re Pioneers! The First School Contact with the International Space Station. AMSAT-NA Space Symposium. Arlington, VA. 2004 9pp. Cunningham C. NA1SS, NA1SS, This is KA7SKY Calling…… AMSAT-NA Space Symposium, Arlington, VA. 2004 Bauer F, Taylor D, White R. Educational Outreach and International Collaboration Through ARISS: Amateur Radio on the International Space Station. 2018 SpaceOps Conference, Marseille, France. 2018 28 May – 1 June; 14 pp. DOI: 10.2514/6.2018-2437. Diggens, M., Williams, J., Benedix, G. (2023). No Roadblocks in Low Earth Orbit: The Motivational Role of the Amateur Radio on the International Space Station (ARISS) School Program in STEM Education. Space Education & Strategic Applications. https://doi.org/10.18278/001c.89715 Palazzolo P. Launching Dreams: The Long-term Impact of SAREX and ARISS on Student Achievement. AMSAT-NA Space Symposium, Pittsburgh, PA. 2007 18pp. Magalhaes TE, Silva DE, Silva CE, Dinis AA, Magalhaes JP, Ribeiro TM. Observation of atmospheric gravity waves using a Raspberry Pi camera module on board the International Space Station. Acta Astronautica. 2021 May 1; 182416-423. DOI: 10.1016/j.actaastro.2021.02.022 Hill DE. Jumping spiders in outer space (Araneae: Salticidae). PECKHAMIA. 2016 September 17; 146(1): 7 pp. Facebook logo @ISS @Space_Station@ISS_Research Instagram logo @ISS Linkedin logo @NASA Keep Exploring Discover Related Topics
      Latest News from Space Station Research
      ISS National Laboratory
      Education and Outreach
      International Space Station
      View the full article
    • By NASA
      Teams with Astrobotic install the NASA meatball decal on Astrobotic’s Peregrine lunar lander on Tuesday, Nov. 14, 2023, at the Astrotech Space Operations Facility near the agency’s Kennedy Space Center in Florida.NASA/Isaac Watson NASA will host a What’s on Board media teleconference at 2 p.m. EST Wednesday, Nov. 29, to discuss the science payloads flying aboard the first commercial robotic flight to the lunar surface as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative under the Artemis program.
      Carrying NASA and commercial payloads to the Moon, Astrobotic Technologies will launch its Peregrine lander on ULA’s (United Launch Alliance) Vulcan rocket. Liftoff of the ULA Vulcan rocket is targeted no earlier than Sunday, Dec. 24, from Launch Complex 41 at Cape Canaveral Space Force Station in Florida. The Peregrine lunar lander will touch down on the Moon in early 2024.
      Audio of the call will stream on the agency’s website at:
      https://www.nasa.gov/nasatv
      Briefing participants include:
      Joel Kearns, deputy associate administrator for Exploration, Science Mission Directorate, NASA Headquarters in Washington Ryan Watkins, program scientist, Exploration Science Strategy and Integration Office, NASA Headquarters Chris Culbert, program manager, CLPS, NASA’s Johnson Space Center in Houston John Thornton, CEO, Astrobotic, Pittsburgh To participate by telephone, media must RSVP no later than two hours before the briefing to: ksc-newsroom@mail.nasa.gov.
      NASA awarded a task order for the delivery of scientific payloads to Astrobotic in May 2019. Among the items on its lander, the Peregrine Mission One will carry NASA payloads investigating the lunar exosphere, thermal properties of the lunar regolith, hydrogen abundances in the soil at the landing site, and magnetic fields, as well as radiation environment monitoring. 
      Through Artemis, NASA is working with multiple CLPS vendors to establish a regular cadence of payload deliveries to the Moon to perform experiments, test technologies, and demonstrate capabilities to help NASA explore the lunar surface. This pool of companies may bid on task orders to deliver NASA payloads to the Moon. Task orders include payload integration and operations, launching from Earth, and landing on the surface of the Moon. The indefinite delivery, indefinite quantity CLPS contracts have a cumulative maximum value of $2.6 billion through 2028.
      With CLPS, as well as with human exploration near the lunar South Pole, NASA will establish a long-term cadence of Moon missions in preparation for sending the first astronauts to Mars.
      For more Artemis updates, follow along at:
      https://blogs.nasa.gov/artemis/
      -end-
      Karen Fox / Alise Fisher
      Headquarters, Washington
      202-358-1600 / 202-358-2546
      karen.fox@nasa.gov / alise.m.fisher@nasa.gov
      Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      nilufar.ramji@nasa.gov
      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-501-8425
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Nov 20, 2023 Location NASA Headquarters Related Terms
      Artemis Commercial Lunar Payload Services (CLPS) Commercial Space Humans in Space View the full article
    • By NASA
      Science and Supplies Delivered to the Space Station on This Week @NASA – November 17, 2023
  • Check out these Videos

×
×
  • Create New...