Members Can Post Anonymously On This Site
-
Posts
6,912 -
Joined
-
Last visited
-
Days Won
1
Content Type
Profiles
Forums
Events
Videos
Everything posted by NASA
-
On Nov. 28, 1983, space shuttle Columbia took to the skies for its sixth trip into space on the first dedicated science mission using the Spacelab module provided by the European Space Agency (ESA). The longest shuttle mission at the time also included many other firsts. Aboard Columbia to conduct dozens of science experiments, the first six-person crew of Commander John W. Young, making his record-breaking sixth spaceflight, Pilot Brewster H. Shaw, Mission Specialists Owen K. Garriott and Robert A.R. Parker, and the first two payload specialists, American Byron K. Lichtenberg and German Ulf Merbold representing ESA, the first non-American to fly on a U.S. space mission. During the 10-day Spacelab 1 flight, the international team of astronauts conducted 72 experiments in a wide variety of science disciplines. Left: The STS-9 crew patch. Middle: Official photo of the STS-9 crew of Owen K. Garriott, seated left, Brewster H. Shaw, John W. Young, and Robert A.R. Parker; Byron K. Lichtenberg, standing left, and Ulf Merbold of West Germany representing the European Space Agency. Right: The payload patch for Spacelab 1. In August 1973, NASA and the European Space Research Organization, the forerunner of today’s ESA, agreed on a cooperative plan to build a reusable laboratory called Spacelab to fly in the space shuttle’s cargo bay. In exchange for ESA building the pressurized modules and unpressurized pallets, NASA provided flight opportunities for European astronauts. In December 1977, ESA named physicist Merbold of the Max Planck Institute in West Germany, physicist Wubbo Ockels of The Netherlands, and astrophysicist Claude Nicollier of Switzerland as payload specialist candidates for the first Spacelab mission. In September 1982, ESA selected Merbold as the prime crew member to fly the mission and Ockels as his backup. Nicollier had in the meantime joined NASA’s astronaut class of 1980 as a mission specialist candidate. In 1978, NASA selected biomedical engineer Lichtenberg of the Massachusetts Institute of Technology as its payload specialist with physicist Michael L. Lampton of CalTech as his backup. In April 1982, NASA assigned the orbiter crew of Young, Shaw, Garriott, and Parker. As commander of STS-9, Young made a record-breaking sixth flight into space. The mission’s pilot Shaw, an astronaut from the 1978 class, made his first trip into space. The two mission specialists had a long history with NASA – Garriott, selected as an astronaut in 1965, completed a 59-day stay aboard the Skylab space station in 1973, and Parker, selected in 1967, made his first spaceflight after a 16-year wait. Although the crew included only two veterans, it had the most previous spaceflight experience of any crew up to that time – 84 days between Young’s and Garriott’s earlier missions. Left: Arrival of the Spacelab 1 long module at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Workers place the Spacelab module and pallet into Columbia’s payload bay in KSC’s Orbiter Processing Facility. Right: The Spacelab pallet, top, pressurized long module, and tunnel in Columbia’s payload bay. The pressurized module for the first Spacelab mission arrived at KSC on Dec. 11, 1981, from its manufacturing facility in Bremen, West Germany. Additional components arrived throughout 1982 as workers in KSC’s Operations and Checkout Building integrated the payload racks into the module. The ninth space shuttle mission saw the return of the orbiter Columbia to space, having flown the first five flights of the program. Since it arrived back at KSC after STS-5 on Nov. 22, 1982, engineers in the Orbiter Processing Facility (OPF) modified Columbia to prepare it for the first Spacelab mission. The completed payload, including the pressurized module, the external pallet, and the transfer tunnel, rolled over to the OPF, where workers installed it into Columbia’s payload bay on Aug. 16, 1983. Left: In the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, workers lift space shuttle Columbia to mate it with its external tank (ET) and solid rocket boosters (SRBs) for the first time. Middle: Space shuttle Columbia’s first trip from the VAB to Launch Pad 39A. Right: In the VAB, workers have disassembled the stack and prepare to reposition the ET with its SRBs. Rollover of Columbia to the Vehicle Assembly Building (VAB) took place on Sept. 24, where workers mated it with an external tank (ET) and two solid rocket boosters (SRBs). Following integrated testing, the stack rolled out to Launch Pad 39A four days later for a planned Oct. 29 liftoff. However, on Oct. 14, managers called off that initial launch attempt after discovering that the engine nozzle of the left hand SRB contained the same material that nearly caused a burn through during STS-8. The replacement of the nozzle required a rollback to the VAB. Taking place on Oct. 17, it marked the first rollback of a flight vehicle in the shuttle’s history. Workers in the VAB demated the vehicle and destacked the left hand SRB to replace its nozzle. Columbia temporarily returned to the OPF on Oct. 19, where workers replaced its fuel cells using three borrowed from space shuttle Discovery and also replaced its waste collection system. Columbia returned to the VAB on Nov. 3 for remating with its ET and SRBs and rolled back out to the launch pad on Nov. 8. Left: The STS-9 crew during their preflight press conference at NASA’s Johnson Space Center in Houston. Middle: On launch day at NASA’s Kennedy Space Center in Florida, the STS-9 astronauts leave crew quarters to board the Astrovan for the ride to Launch Pad 39A. Right: In the VIP stands to watch the STS-9 launch, Steven Spielberg, left, and George Lucas. Liftoff of space shuttle Columbia on STS-9 carrying the first Spacelab science module. Ground track of STS-9’s orbit, inclined 57 degrees to the equator, passing over 80 percent of the world’s land masses. On Nov. 28, 1983, Columbia thundered off KSC’s Launch Pad 39A to begin the STS-9 mission. The shuttle entered an orbit inclined 57 degrees to the equator, the highest inclination U.S. spaceflight at the time, allowing the astronauts to observe about 80 percent of the Earth’s landmasses. Mounted inside Columbia’s payload bay, the first Spacelab 18-foot long module provided a shirt-sleeve environment for the astronauts to conduct scientific experiments in a variety of disciplines. During the Spacelab 1 mission, the STS-9 crew carried out 72 experiments in atmospheric and plasma physics, astronomy, solar physics, materials sciences, technology, astrobiology, and Earth observations. For the first time in spaceflight history, the crew divided into two teams working opposite 12-hour shifts, allowing science to be conducted 24 hours a day. The Tracking and Data Relay Satellite, launched the previous April during the STS-6 mission, and now fully operational, enabled transmission of television and significant amounts of science data to the Payload Operations Control Center, located in the Mission Control Center at NASA’s Johnson Space Center in Houston. Left: View of the Spacelab module in the shuttle’s payload bay. Middle: Several STS-9 crew members struggle to open the hatch to the transfer tunnel. Right: Owen K. Garriott, left, Ulf Merbold, and Byron K. Lichtenberg enter the Spacelab for the first time to begin activating the module. Upon reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators. Shortly after, following a few tense minutes during which the astronauts struggled with a balky hatch, they opened it, translated down the transfer tunnel, and entered Spacelab for the first time. Garriott, Lichtenberg, and Merbold activated the module and turned on the first experiments. For the next nine days, the Red Team of Young, Parker, and Merbold, and the Blue Team of Shaw, Garriott, and Lichtenberg performed flawlessly to carry out the experiments. Young and Shaw managed the shuttle’s systems while the mission and payload specialists conducted the bulk of the research. With ample consumables available, Mission Control granted them an extra day in space to complete additional science. One afternoon, the astronauts chatted with U.S. President Ronald W. Reagan in the White House and German Chancellor Helmut Kohl, attending the European Community Summit in Athens, Greece. The two leaders praised the astronauts for their scientific work and the cooperation between the two countries that enabled the flight to take place. Left: Robert A.R. Parker, left, Byron K. Lichtenberg, Owen K. Garriott, and Ulf Merbold at work inside the Spacelab module. Middle: Garriott preparing to draw a blood sample from Lichtenberg for one of the life sciences experiments. Right: Garriott, front, and Lichtenberg at work in the Spacelab module. Left: The rotating dome experiment to study visual vestibular interactions. Middle: Owen K. Garriott prepares to place blood samples in a passive freezer. Right: Inflight photograph of the STS-9 crew. A selection of the STS-9 crew Earth observation photographs. Left: The Manicougan impact crater in Quebec, Canada, with the shuttle’s tail visible at upper right. Middle: Hong Kong. Right: Cape Campbell, New Zealand. On Dec. 8, their last day in space, the crew finished the experiments, closed up the Spacelab module, and strapped themselves into their seats to prepare for their return to Earth. Five hours before the scheduled landing, during thruster firings one of Columbia’s five General Purpose Computers (GPC) failed, followed six minutes later by a second GPC. Mission Control decided to delay the landing until the crew could fix the problem. Young and Shaw brought the second GPC back up but had no luck with the first. Meanwhile, one of Columbia’s Inertial Measurement Units, used for navigation, failed. Finally, after eight hours of troubleshooting, the astronauts fired the shuttle’s Orbital Maneuvering System engines to begin the descent from orbit. Young piloted Columbia to a smooth landing on a lakebed runway at Edwards Air Force Base in California’s Mojave Desert, completing 166 orbits around the Earth in 10 days, 6 hours, and 47 minutes, at the time the longest shuttle flight. Shortly before landing, a hydrazine leak caused two of the orbiter’s three Auxiliary Power Units (APU) to catch fire. The fire burned itself out, causing damage in the APU compartment but otherwise not affecting the landing. The astronauts safely exited the spacecraft without incident. On Dec. 14, NASA ferried Columbia back to KSC to remove the Spacelab module from the payload bay. In January 1984, Columbia returned to its manufacturer, Rockwell International in Palmdale, California, where workers spent the next two years refurbishing NASA’s first orbiter before its next mission, STS-61C, in January 1986. Left: John W. Young in the shuttle commander’s seat prior to entry and landing. Middle: Space shuttle Columbia lands at Edward Air Force Base in California to end the STS-9 mission. Right: The six STS-9 crew members descend the stairs from the orbiter after their successful 10-day scientific mission. Left: Workers at Edwards Air Force Base in California safe space shuttle Columbia after its return from space. Middle: Atop a Shuttle Carrier Aircraft, Columbia begins its cross country journey to NASA’s Kennedy Space Center in Florida. Right: The STS-9 crew during their postflight press conference at NASA’s Johnson Space Center in Houston. The journal Science published preliminary results from Spacelab 1 in their July 13, 1984, issue. The two Spacelab modules flew a total of 16 times, the last one during the STS-90 Neurolab mission in April 1998. The module that flew on STS-9 and eight other missions is displayed at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia, while the other module resides at the Airbus Defence and Space plant in Bremen, Germany, not on public display. The Spacelab long module that flew on STS-9 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia. Enjoy the crew narrate a video about the STS-9 mission. Read Shaw’s, Garriott’s, and Parker’s recollections of the STS-9 mission in their oral histories with the JSC History Office. Share Details Last Updated Nov 28, 2023 Related TermsNASA HistorySpace ShuttleSTS-9 Explore More 9 min read Spacelab 1: A Model for International Cooperation Article 22 hours ago 10 min read Thanksgiving Celebrations in Space Article 6 days ago 12 min read 55 Years Ago: Eight Months Before the Moon Landing Article 2 weeks ago View the full article
-
3 Min Read Webb Telescope: A prominent protostar in Perseus Webb Space Telescope reveals intricate details of the Herbig Haro object 797 (HH 797). This new Picture of the Month from the NASA/ESA/CSA James Webb Space Telescope reveals intricate details of the Herbig Haro object 797 (HH 797). Herbig-Haro objects are luminous regions surrounding newborn stars (known as protostars), and are formed when stellar winds or jets of gas spewing from these newborn stars form shockwaves colliding with nearby gas and dust at high speeds. HH 797, which dominates the lower half of this image, is located close to the young open star cluster IC 348, which is located near the eastern edge of the Perseus dark cloud complex. The bright infrared objects in the upper portion of the image are thought to host two further protostars. This image was captured with Webb’s Near-InfraRed Camera (NIRCam). Infrared imaging is powerful in studying newborn stars and their outflows, because the youngest stars are invariably still embedded within the gas and dust from which they are formed. The infrared emission of the star’s outflows penetrates the obscuring gas and dust, making Herbig-Haro objects ideal for observation with Webb’s sensitive infrared instruments. Molecules excited by the turbulent conditions, including molecular hydrogen and carbon monoxide, emit infrared light that Webb can collect to visualise the structure of the outflows. NIRCam is particularly good at observing the hot (thousands of degree Celsius) molecules that are excited as a result of shocks. Image: Protostar in Perseus The NASA/ESA/CSA James Webb Space Telescope reveals intricate details of the Herbig Haro object 797 (HH 797). Herbig-Haro objects are luminous regions surrounding newborn stars (known as protostars), and are formed when stellar winds or jets of gas spewing from these newborn stars form shockwaves colliding with nearby gas and dust at high speeds. HH 797, which dominates the lower half of this image, is located close to the young open star cluster IC 348, which is located near the eastern edge of the Perseus dark cloud complex. The bright infrared objects in the upper portion of the image are thought to host two further protostars. This image was captured with Webb’s Near-InfraRed Camera (NIRCam).ESA/Webb, NASA & CSA, T. Ray (Dublin Institute for Advanced Studies) Using ground-based observations, researchers have previously found that for cold molecular gas associated with HH 797, most of the red-shifted gas (moving away from us) is found to the south (bottom right), while the blue-shifted gas (moving towards us) is to the north (bottom left). A gradient was also found across the outflow, such that at a given distance from the young central star, the velocity of the gas near the eastern edge of the jet is more red-shifted than that of the gas on the western edge. Astronomers in the past thought this was due to the outflow’s rotation. In this higher resolution Webb image, however, we can see that what was thought to be one outflow is in fact made up of two almost parallel outflows with their own separate series of shocks (which explains the velocity asymmetries). The source, located in the small dark region (bottom right of center), and already known from previous observations, is therefore not a single but a double star. Each star is producing its own dramatic outflow. Other outflows are also seen in this image, including one from the protostar in the top right of center along with its illuminated cavity walls. HH 797 resides directly north of HH 211 (separated by approximately 30 arcseconds), which was the feature of a Webb image release in September 2023. Media Contacts Laura Betz – laura.e.betz@nasa.gov, Rob Gutro– rob.gutro@nasa.gov NASA’s Goddard Space Flight Center, , Greenbelt, Md. Bethany Downer – Bethany.Downer@esawebb.org ESA/Webb Chief Science Communications Officer Downloads Download full resolution images for this article from ESAWebb.org Related Information Star Formation Piercing the Dark Birthplaces of Massive Stars with Webb Webb Mission – https://science.nasa.gov/mission/webb/ Webb News – https://science.nasa.gov/mission/webb/latestnews/ Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/ Related For Kids What Is a Nebula? What Is a Galaxy? What is the Webb Telescope? SpacePlace for Kids En Español Ciencia de la NASA NASA en español Space Place para niños Keep Exploring Related Topics James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Stars Overview Stars are giant balls of hot gas – mostly hydrogen, with some helium and small amounts of other elements.… Galaxies Overview Galaxies consist of stars, planets, and vast clouds of gas and dust, all bound together by gravity. The largest… Universe Explore the universe: Learn about the history of the cosmos, what it’s made of, and so much more. Share Details Last Updated Nov 28, 2023 Editorsteve sabiaContactLaura Betz Related TermsJames Webb Space Telescope (JWST)Goddard Space Flight CenterNebulaeProtostarsStars View the full article
-
7 min read NASA’s Fermi Mission Nets 300 Gamma-Ray Pulsars … and Counting A new catalog produced by a French-led international team of astronomers shows that NASA’s Fermi Gamma-ray Space Telescope has discovered 294 gamma-ray-emitting pulsars, while another 34 suspects await confirmation. This is 27 times the number known before the mission launched in 2008. This visualization shows 294 gamma-ray pulsars, first plotted on an image of the entire starry sky as seen from Earth and then transitioning to a view from above our galaxy. The symbols show different types of pulsars. Young pulsars blink in real time except for the Crab, which pulses slower than in real time because its rate is only slightly lower than the video’s frame rate. Millisecond pulsars remain steady, pulsing too quickly to see. The Crab, Vela, and Geminga were among the 11 gamma-ray pulsars known before Fermi launched. Other notable objects are also highlighted. Distances are shown in light-years (abbreviated ly). Download high-resolution video and images from NASA’s Scientific Visualization Studio. Credit: NASA’s Goddard Space Flight Center “Pulsars touch on a wide range of astrophysics research, from cosmic rays and stellar evolution to the search for gravitational waves and dark matter,” said study coordinator David Smith, research director at the Bordeaux Astrophysics Laboratory in Gironde, France, which is part of CNRS (the French National Center for Scientific Research). “This new catalog compiles full information on all known gamma-ray pulsars in an effort to promote new avenues of exploration.” The catalog was published on Monday, Nov. 27, in The Astrophysical Journal Supplement. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Narrow beams of energy emerge from hot spots on the surface of a neutron star in this artist’s concept. When one of these beams sweeps past Earth, astronomers detect a pulse of light. Credit: NASA’s Goddard Space Flight Center Conceptual Image Lab Pulsars are a type of neutron star, the city-sized leftover of a massive sun that has exploded as a supernova. Neutron stars, containing more mass than our Sun in a ball less than 17 miles wide, represent the densest matter astronomers can study directly. They possess strong magnetic fields, produce streams of energetic particles, and spin quickly – 716 times a second for the fastest known. Pulsars, in addition, emit narrow beams of energy that swing lighthouse-like through space as the objects rotate. When one of these beams sweeps past Earth, astronomers detect a pulse of emission. The new catalog represents the work of 170 scientists across the globe. A dozen radio telescopes carry out regular monitoring of thousands of pulsars, and radio astronomers search for new pulsars within gamma-ray sources discovered by Fermi. Other researchers have teased out gamma-ray pulsars that have no radio counterparts through millions of hours of computer calculation, a process called a blind search. More than 15 years after its launch, Fermi remains an incredible discovery machine, and pulsars and their neutron star kin are leading the way. Elizabeth Hays Fermi Project Scientist Of the 3,400 pulsars known, most of them observed via radio waves and located within our Milky Way galaxy, only about 10% also pulse in gamma rays, the highest-energy form of light. Visible light has energies between 2 and 3 electron volts. Fermi’s Large Area Telescope can detect gamma rays with billions of times this energy, and other facilities have observed emission thousands of times greater still from the nearby Vela pulsar, the brightest persistent source in the sky for Fermi. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video This movie shows the Vela pulsar in gamma rays detected by the Large Area Telescope aboard NASA’s Fermi observatory. A single pulsar cycle is repeated. Bluer colors indicate gamma rays with higher energies. Credit: NASA/DOE/Fermi LAT Collaboration The Vela pulsar and its famous sibling in the Crab Nebula are young, solitary objects, formed about 11,000 and 970 years ago, respectively. Their emissions arise as their magnetic fields spin through space, but this also gradually slows their rotation. The younger Crab pulsar spins nearly 30 times a second, while Vela clocks in about a third as fast. The Old and the Restless Paradoxically, though, pulsars that are thousands of times older spin much faster. One example of these so-called millisecond pulsars (MSPs) is J1824-2452A. It whirls around 328 times a second and, with an age of about 30 million years, ranks among the youngest MSPs known. Thanks to a great combination of gamma-ray brightness and smooth spin slowdown, the MSP J1231-1411 is an ideal “timer” for use in gravitational wave searches. By monitoring a collection of stable MSPs, astronomers hope to link timing changes to passing low-frequency gravitational waves – ripples in space-time – that cannot be detected by current gravitational observatories. It was discovered in one of the first radio searches targeting Fermi gamma-ray sources not associated with any known counterpart at other wavelengths, a technique that turned out to be exceptionally successful. “Before Fermi, we didn’t know if MSPs would be visible at high energies, but it turns out they mostly radiate in gamma rays and now make up fully half of our catalog,” said co-author Lucas Guillemot, an associate astronomer at the Laboratory of Physics and Chemistry of the Environment and Space and the University of Orleans, France. Along Come the Spiders The presence of MSPs in binary systems offers a clue to understanding the age-spin paradox. Left to itself, a pulsar’s emissions slow it down, and with slower spin its emissions dim. But if closely paired with a normal star, the pulsar can pull a stream of matter from its companion that, over time, can spin up the pulsar. “Spider” systems offer a glimpse of what happens next. They’re classified as redbacks or black widows – named for spiders known for consuming their mates. Black widows have light companions (less than about 5% of the Sun’s mass), while redbacks have heavier partners. As the pulsar spins up, its emissions and particle outflows become so invigorated that – through processes still poorly understood – it heats and slowly evaporates its companion. The most energetic spiders may fully evaporate their partners, leaving only an isolated MSP behind. J1555-2908 is a black widow with a surprise – its gravitational web may have ensnared a passing planet. An analysis of 12 years of Fermi data reveals long-term spin variations much larger than those seen in other MSPs. “We think a model incorporating the planet as a third body in a wide orbit around the pulsar and its companion describes the changes a little better than other explanations, but we need a few more years of Fermi observations to confirm it,” said co-author Colin Clark, a research group leader at the Max Planck Institute for Gravitational Physics in Hannover, Germany. Other curious binaries include the so-called transitional pulsars, such as J1023+0038, the first identified. An erratic stream of gas flowing from the companion to the neutron star may surge, suddenly forming a disk around the pulsar that can persist for years. The disk shines brightly in optical light, X-rays, and gamma rays, but pulses become undetectable. When the disk again vanishes, so does the high-energy light and the pulses return. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video This artist’s concept illustrates a possible model for the transitional pulsar J1023. When astronomers can detect pulses in radio (green), the pulsar’s energetic outflow holds back its companion’s gas stream. Sometimes the stream surges, creating a bright disk around the pulsar that can persist for years. The disk shines brightly in X-rays, and gas reaching the neutron star produces jets that emit gamma rays (magenta), obscuring the pulses until the disk eventually dissipates. Credit: NASA’s Goddard Space Flight Center Some pulsars don’t require a partner to switch things up. J2021+4026, a young, isolated pulsar located about 4,900 light-years away, underwent a puzzling “mode change” in 2011, dimming its gamma rays over about a week and then, years later, slowly returning to its original brightness. Similar behavior had been seen in some radio pulsars, but this was a first in gamma rays. Astronomers suspect the event may have been triggered by crustal cracks that temporarily changed the pulsar‘s magnetic field. Farther afield, Fermi discovered the first gamma-ray pulsar in another galaxy, the neighboring Large Magellanic Cloud, in 2015. And in 2021, astronomers announced the discovery of a giant gamma-ray flare from a different type of neutron star (called a magnetar) located in the Sculptor galaxy, about 11.4 million light-years away. “More than 15 years after its launch, Fermi remains an incredible discovery machine, and pulsars and their neutron star kin are leading the way,” said Elizabeth Hays, the mission’s project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Explore the Fermi gamma-ray pulsar catalog on WorldWide Telescope Max Planck Institute release By Francis Reddy NASA’s Goddard Space Flight Center, Greenbelt, Md. Media contact: Claire Andreoli claire.andreoli@nasa.gov NASA’s Goddard Space Flight Center, Greenbelt, Md. (301) 286-1940 Share Details Last Updated Nov 28, 2023 Editor Francis Reddy Location Goddard Space Flight Center Related Terms Astrophysics Binary Stars Fermi Gamma-Ray Space Telescope Gamma Rays Goddard Space Flight Center Neutron Stars Pulsars Stars The Universe Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
-
SSE-Cassini Home Cassini Top 10 Images of 2011 Cassini Overview Mission About the Mission The Grand Finale The Team Top 10s Saturn Tour FAQ Science Overview Rings Titan Enceladus Moons Magnetosphere Multimedia All Multimedia Audio Featured Raw Images Graphics Hall of Fame Images Videos 1 min read Cassini Top 10 Images of 2011 Where were you during the storm? In 2011, NASA’s Cassini spacecraft circled Saturn for a front-row view of the huge storm there. One of those looks made the mission scientists’ list of Top 10 images of 2011. What else made the list? Check it out. Groovy Enceladus Churning Psychedelia Hiding Little Brother Quintet of Moons A Day in the Life Catching Its Tail Helene, Close up Enceladus ‘Footprint’ on Saturn Saturn’s Radio Period Crossover Equatorial Titan Clouds Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
-
SSE-Cassini Home Cassini Top 10 Images of 2012 Cassini Overview Mission About the Mission The Grand Finale The Team Top 10s Saturn Tour FAQ Science Overview Rings Titan Enceladus Moons Magnetosphere Multimedia All Multimedia Audio Featured Raw Images Graphics Hall of Fame Images Videos 1 min read Cassini Top 10 Images of 2012 As the Cassini spacecraft roams the Saturnian system, each year it opens new windows on an amazing corner of our solar system. Images of mighty Saturn, its majestic rings, and the dynamic moons continue to stun us, offering ever-changing vistas that are truly inspiring. This collection of 10 best images was selected by the scientists on the mission. You can imagine their pride. A Splendor Seldom Seen Vortex at Saturn’s North Pole Tiny Tethys Gray Egg Obscured by Rings Colorful Colossuses and Changing Hues Titan’s Colorful South Polar Vortex Classic Trails or Mini-Jets Enceladus Plume (Raw image) Closest Dione Flyby Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
-
SSE-Cassini Home Cassini Top 10 Images of 2013 Cassini Overview Mission About the Mission The Grand Finale The Team Top 10s Saturn Tour FAQ Science Overview Rings Titan Enceladus Moons Magnetosphere Multimedia All Multimedia Audio Featured Raw Images Graphics Hall of Fame Images Videos 1 min read Cassini Top 10 Images of 2013 We’ve shared 150 press images through 40 news releases and special features during 2013. As the Cassini science team members look forward to a great 2014 and beyond, here’s a look back at their top ten 10 images of the year. ‘Tis the Season Fire and Ice Titan’s North — Unannotated The Day the Earth Smiled Jewel of the Solar System Titan’s Northern Lakes: Salt Flats? (Annotated version) Marvelous Mini-Jet The Day the Earth Smiled: Sneak Preview (annotated) Spring at the North Pole The Rose Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
-
SSE-Cassini Home Cassini 10 Years at Saturn Top… Cassini Overview Mission About the Mission The Grand Finale The Team Top 10s Saturn Tour FAQ Science Overview Rings Titan Enceladus Moons Magnetosphere Multimedia All Multimedia Audio Featured Raw Images Graphics Hall of Fame Images Videos 1 min read Cassini 10 Years at Saturn Top Images The Cassini team is proud to celebrate 10 years since arriving at Saurn with this collection of images selected by members of the team. Enceladus North Pole Montage Peering Through Titan’s Haze Water World Created with GIMP Enceladus Up-Close Saturnian Snowman A Fractured Pole Imminent Approach to Dione Red Arcs on Tethys Spongy Surface Serene Saturn Simulations of the Tendrils Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
-
SSE-Cassini Home Cassini Top 10 Images of 2014 Cassini Overview Mission About the Mission The Grand Finale The Team Top 10s Saturn Tour FAQ Science Overview Rings Titan Enceladus Moons Magnetosphere Multimedia All Multimedia Audio Featured Raw Images Graphics Hall of Fame Images Videos 1 min read Cassini Top 10 Images of 2014 As the Cassini science team members look forward to a great 2015 and beyond, here’s a look back at their top 10 images of 2014. Translucent Rings Color Map of Mimas (2014) Circling Saturn Specular Spectacular Mysterious Changing Feature in Ligeia Mare — Unannotated The Odd Trio Shepherd and Flock Encroaching Shadow Arrival and Departure at Phoebe Blue Orb on the Horizon Keep Exploring Discover More Topics From NASA Science Missions Solar System Exploration Skywatching Eclipses View the full article
-
SSE-Cassini Home Cassini Top 10 Images – 2015 Cassini Overview Mission About the Mission The Grand Finale The Team Top 10s Saturn Tour FAQ Science Overview Rings Titan Enceladus Moons Magnetosphere Multimedia All Multimedia Audio Featured Raw Images Graphics Hall of Fame Images Videos 1 min read Cassini Top 10 Images – 2015 As the Cassini science team members look forward to a great 2016 and beyond, here’s a look back at their top 10 images of 2015. Enceladus North Pole Montage Peering Through Titan’s Haze Water World Created with GIMP Enceladus Up-Close Saturnian Snowman A Fractured Pole Imminent Approach to Dione Red Arcs on Tethys Spongy Surface Serene Saturn Simulations of the Tendrils Keep Exploring Discover More Topics From NASA Science Missions Solar System Exploration Skywatching Eclipses View the full article
-
NASA Administrator Bill Nelson delivers remarks before the ribbon cutting ceremony to open NASA’s Earth Information Center, Wednesday, June 21, 2023, at the Mary W. Jackson NASA Headquarters building in Washington. The Earth Information Center is new immersive experience that combines live data sets with cutting-edge data visualization and storytelling to allow visitors to see how our planet is changing. NASA/Joel Kowsky NASA Administrator Bill Nelson and other agency leaders will participate in the 28th United Nations Climate Change Conference of the Parties (COP28) beginning Thursday, Nov. 30, through Tuesday, Dec. 12, in Dubai, United Arab Emirates. This global conference brings together countries committed to addressing climate change, which is a key priority for the Biden-Harris Administration and NASA. For the first time, a NASA administrator will attend, joining an expected 70,000 participants, world leaders, and representatives from nearly 200 countries. Throughout the conference, parties will review the implementation of the United Nations Framework Convention on Climate Change, the Kyoto Protocol and, also for the first time, provide a comprehensive assessment of progress since adopting the Paris Agreement. In addition to Nelson, NASA participants in the conference include: Kate Calvin, NASA’s chief scientist and senior climate advisor Susie Perez Quinn, NASA’s chief of staff Karen St. Germain, director, NASA Earth Science Division Nadya Vinogradova Shiffer, program scientist, ocean physics, NASA Earth Science Division Laura Rogers, associate program manager, ecological conservation, NASA Langley Research Center Wenying Su, senior research scientist, climate science, NASA Langley Research Center Ben Hamlington, research scientist, sea level and ice, NASA Jet Propulsion Laboratory During the conference, Nelson will participate in the first Space Agency Leaders’ Summit, which aims to demonstrate a collective commitment toward strengthening global climate initiatives and promoting sustainable space operations. Throughout the conference, NASA leaders also will participate in additional events and presentations at the NASA Hyperwall, a main attraction at the U.S. Center showing how the agency’s climate science and research helps model and predict ocean health, heat waves, wildfires, hurricanes, floods, and droughts, among its other Earth-related research. NASA will provide a hyperwall presentation every day, some with interagency partners, between Sunday, Dec. 3, and Monday, Dec. 11. Climate adaptation and mitigation efforts require robust climate observations and research. NASA’s unique vantage point from space provides critical information to advance understanding of our changing planet. With more than two dozen satellites and instruments in orbit, NASA’s climate data – which is openly and freely available to anyone – provides insight on how the planet is changing and measure key climate indicators, such as greenhouse gas emissions, rising sea level and clouds, and precipitation. A full schedule of U.S. Center events at COP28 is available at: https://www.state.gov/u-s-center-at-cop28-schedule/ -end- Faith McKie Headquarters, Washington 202-262-8342 faith.d.mckie@nasa.gov Share Details Last Updated Nov 27, 2023 LocationNASA Headquarters Related TermsClimate ChangeBill NelsonEarth View the full article
-
3 min read NASA to Showcase Earth Science Data at COP28 This illustration shows the international Surface Water and Ocean Topography (SWOT) satellite in orbit over Earth. SWOT’s main instrument, KaRIn, helps survey the water on more than 90% of Earth’s surface. Credit: NASA/JPL-Caltech. NASA/JPL-Caltech With 26 Earth-observing satellite missions, as well as instruments flying on planes and the space station, NASA has a global vantage point for studying our planet’s oceans, land, ice, and atmosphere and deciphering how changes in one drive change in others. The agency will share that knowledge and data at the 28th U.N. Climate Change Conference of the Parties (COP28), which brings international parties together to accelerate action toward the goals of the Paris Agreement and the U.N. Framework Convention on Climate Change. COP28 will be held at the Expo City in Dubai, United Arab Emirates from Thursday, Nov. 30 to Tuesday, Dec. 12. All U.S. events at COP28 are open to the local press and will be live-streamed on the U.S. Center at COP28 website and the U.S. Center YouTube channel. NASA takes a full-picture approach to understanding all areas of our home planet using our vast satellite fleet and the data collected from their observations. The agency’s data is open-source and available for the public and scientists to study. NASA is showcasing the data at COP28 to share the different ways it can be used globally. The agency’s complete collection of Earth data can be found here. The scientific research and understanding developed from NASA’s Earth observations are made into predictive models. Those models can be used to develop applications and actionable science to inform individuals including civic leaders and planners, resource managers, emergency managers, and communities looking to mitigate and adapt to climate change. These satellites and models are augmented by the observations made from the International Space Station. The inclined, low Earth orbit from the station provides variable views and lighting over more than 90 percent of the inhabited surface of the Earth, a useful complement to sensor systems on satellites in higher-altitude polar orbits. Closer to the surface, NASA’s aviation research is focused on advancing technologies for more efficient airplane flight, including hybrid-electric propulsion, advanced materials, artificial intelligence, and machine learning. Technological advances in these areas have the potential to reduce human impacts on climate and air quality. Hyperwall At the U.S. Center at COP28, in-person visitors can see the NASA Hyperwall where NASA scientists will provide live presentations showing how the agency’s work supports the Biden-Harris Administration’s agenda to encourage a governmentwide approach to climate change. During the hyperwall talks, NASA leaders, scientists and interagency partners will discuss the agency’s end-to-end research about our planet. This includes designing new instruments, satellites, and systems to collect and freely distribute the most complete and precise data possible about Earth’s land, ocean, and atmospheric system. A full schedule of NASA’s hyperwall talks is available. Katherine Rohloff Headquarters, Washington 202-358-1600 katherine.a.rohloff@nasa.gov Share Details Last Updated Nov 27, 2023 Editor Contact Related Terms Climate Change Earth Keep Exploring Discover More Topics From NASA Earth Your home. Our Mission. And the one planet that NASA studies more than any other. Climate Change NASA is a global leader in studying Earth’s changing climate. Explore Earth Science Earth Science Data View the full article
-
The spectacular aurora borealis, or the “northern lights,” over Canada is sighted from the space station near the highest point of its orbital path. The station’s main solar arrays are seen in the left foreground.NASA The aurora borealis adds a bit of flair to our home planet in this image taken from the International Space Station on Sept. 15, 2017. This phenomenon happens because the Sun bathes Earth in a steady stream of energetic particles, magnetic fields and radiation that can stimulate our atmosphere and light up the night sky. When this happens in the Southern Hemisphere, it is called aurora australis. See how you can help track auroras around the world with the Aurorasaurus project. All you need is a cell phone or laptop. Image Credit: NASA View the full article
-
9 Min Read Spacelab 1: A Model for International Cooperation Astronaut John W. Young (left), STS-9 crew commander; and Ulf Merbold, payload specialist, enjoy a meal in the middeck of the Earth-orbiting Space Shuttle Columbia. Merbold is a physicist from the Federal Republic of Germany, representing the European Space Agency (ESA) on this 10-day flight. Credits: NASA Forty years ago, in 1983, the Space Shuttle Columbia flew its first international spaceflight, STS-9. The mission included—for the first time—the European Space Agency’s Spacelab pressurized module and featured more than 70 experiments from American, Canadian, European, and Japanese scientists. Europeans were particularly proud of this “remarkable step” because “NASA, the most famous space agency on the globe,” included the laboratory on an early Shuttle mission. NASA was equally thrilled with the Spacelab and called the effort “history’s largest and most comprehensive multinational space project.” The Spacelab became a unifying force for all the participating nations, scientists, and astronauts. As explained by one of the mission’s payload specialists, Ulf Merbold, while the principal investigators for the onboard experiments might be British or French, “there is no French science, and no British science [on this flight]. Science in itself is international.” Scientists flying on the mission, and those who had experiments on board, were working cooperatively for the benefit of humanity. As then Vice-President George H. W. Bush explained, “The knowledge Spacelab will bring back from its many missions will belong to all mankind.”1 The knowledge Spacelab will bring back from its many missions will belong to all mankind. George H. W. Bush U.S. Vice President (1981–1989) Training for the flight required international cooperation on an entirely new scale for the American space program. Today it is not unusual to hear about an astronaut training for spaceflight at many different locations and facilities across the globe. NASA’s astronauts have grown accustomed to training outside of the United States for months at a time before flying onboard the International Space Station, but that was not the experience for most of NASA’s flight crews in the agency’s early spaceflight programs. Mission training mainly took place in Houston at the Manned Spacecraft Center (now Johnson Space Center) and in Florida at the Cape. The Apollo-era featured only one international flight, the Apollo-Soyuz Test Project (ASTP), with astronauts training in the two participating nations: the USSR and the United States. Pictured from the left are astronaut Owen K. Garriott, Vice President George Bush, and Ulf Merbold of West Germany, inside Spacelab in the Operations and Checkout Building at Kennedy Space Center. This European-built orbital laboratory was formally dedicated on February 5, 1982. Merbold was one of the payload specialists on the first Spacelab flight STS-9, that launched November 28, 1983. Spacelab was a reusable laboratory that allowed scientists to perform various experiments in microgravity while orbiting Earth. Designed by the European Space Agency (ESA) and mounted in NASA’s Space Shuttle cargo bay, Spacelab flew on missions from 1983 to 1997.NASA It also rarely makes news these days when someone who is not a professional astronaut or cosmonaut flies in space. In the past, flying in space was a professional occupation. This all changed with the development of the Space Shuttle and Spacelab, which birthed a new space traveler: the payload specialist. The individuals selected for these positions were not career astronauts. The payload specialists were experts on a specific payload or an experiment, and during the early years of the Space Shuttle program came from a wide variety of backgrounds: the Air Force, Congress, industry, and even the field of education. The principal investigators for this science-based mission selected the payload specialists who flew in space and operated their experiments. Spacelab 1 was unique in providing the first opportunity for a non-American, a European, to fly onboard a NASA spacecraft. In the summer of 1978, NASA chose scientist-astronauts Owen K. Garriott and Robert A. R. Parker as mission specialists for the Spacelab 1 crew. Garriott, who had been selected as an astronaut in 1965, had flown on America’s first space station as a member of the Skylab 3 crew, a team that exceeded all expectations of flight planners and principal investigators. Parker had also applied to be a scientist-astronaut and was selected in 1967. His class jokingly called themselves the “XS-11” [pronounced excess-eleven], because they had been told there was no room for them in the corps and they would not fly in space, not immediately anyway. Parker worked on Skylab as the program scientist, but once the program ended, he accepted a new title: chief of the Astronaut Office Science and Applications Directorate, where he spent the next few years working on Spacelab matters. It was perfect timing for the astronaut to turn his attention to this international program. Once Skylab ended in 1974, representatives of Europe’s Space Research Organization (ESRO) and members of ERNO, the Spacelab contractor, started traveling to Houston and Huntsville to give the two NASA centers updates on the development of the Spacelab and to hold discussions on the module. In a 1974 press conference, ESRO’s Heinz Stoewer emphasized the “very intense cooperation,” he witnessed “with our friends here in the United States in making this program come true.”2 Around the same time, as Spacelab was being built, the European Space Agency (ESA) began considering who might fly on that first flight. Three days before Christmas in 1977, ESA released the names of their four payload specialist candidates: Wubbo Ockels, Ulf Merbold, Franco Malerba, and Claude Nicollier. Two Americans, Byron K. Lichtenberg and Michael L. Lampton, were selected in the summer of 1978 as potential payload specialists.3 The Spacelab 1 payload crew, which operated the module and the mission’s experiments in the payload bay of the Orbiter, included two mission specialists, Garriott and Parker, and two payload specialists, one from the United States and another from the European Space Agency. The payload crew and their backups began training many years before the Space Shuttle Columbia launched into space on STS-9. (The original launch date of December 1980 kept slipping so the crew ended up training for five years.)4 Training in Europe began in earnest in 1978, while training in the United States and Canada began in 1979.5 Merbold was eventually selected to fly on the mission along with Lichtenberg. The entire payload crew spent so much of their time travelling to Europe that John W. Young, who was then chief of the Astronaut Office, called their flight assignment and European training, which involved travel to exotic locations like Rome, Italy, “a magnificent boondoggle. In my next life,” he declared, “I’ll be an MS [mission specialist] on S Lab [Spacelab].”6 Spacelab-1 prime and back-up science crew members: Mission Specialists Robert Parker and Owen Garriott, with Payload Specialist-1 Ulf Merbold, backup Payload Specialist-2 Michael Lampton, backup Payload Specialist-1 Wubbo Ockels and Payload Specialist-2 Byron Lichtenberg. NASA Lichtenberg recalled the science crew, the prime and backup payload specialists and mission specialists, traveled the globe “like itinerant graduate students … to study at the laboratories of the principal investigators and their colleagues.” In these laboratories, universities, and at research centers across Europe, Canada, and Japan, they learned about the equipment and experiments, including how to repair the hardware if something broke or failed in flight. Lichtenberg felt like he was earning multiple advanced degrees in the fields of astronomy and solar physics, space plasma physics, atmospheric physics, Earth observations, life sciences, and materials science. The benefits of training were numerous, but perhaps the most important were the personal and professional relationships that were built with the investigators from across the world and with his crewmates.7 For the payload specialists, building relationships within the astronaut corps proved to be more complicated. Merbold recalled traveling to the Marshall Space Flight Center in Alabama and receiving a warm welcome. “But in Houston you could feel that not everyone was happy that Europe was involved. Some also resented the new concept of the payload specialist ‘astronaut scientist,’ who was not under their control like the pilots. We were perceived to be intruders in an area that was reserved for ‘real’ astronauts.” As an example, the European astronauts could not use the astronaut gym or take part in T-38 flight training. Over time, attitudes changed, and Garriott credited STS-9 Mission Commander John Young with the shift, and so did Merbold. As the crew was preparing to fly, the former moonwalker took Merbold on a T-38 ride, and when the payload specialist asked if he could fly the plane, Young willingly offered him the opportunity. After that flight, Merbold recalled that he “enjoyed John Young’s unqualified support.”8 Friendships blossomed on the six man-crew. Parker called Pilot Brewster H. Shaw and Commander Young “two of [his] best friends to this day.”9 For Merbold, the flight cemented a significant bond between the STS-9 astronauts. He had “no brothers, no sisters,” he was an only child, but the Columbia crew became his family. “My brothers are those guys with whom I trained and flew,” he said.10 Young and Merbold had an especially close bond. Garriott saw that relationship up close on the Shuttle, and later told an oral historian, “Young had no better friend on board our flight than Ulf Merbold.” The two remained close until Young’s death.11 Four of the STS-9 crewmembers enjoying a rare moment of collective fun inside the Spacelab module onboard the Columbia. Left to right are Byron K. Lichtenberg, Ulf Merbold, Robert A. R. Parker, and Owen K. Garriott. The “card table” here is the scientific airlock hatch, and the “cards” are the targets used in the Awareness of Position experiment. NASA Following landing, Flight Crew Operations Directorate Chief George W.S. Abbey told the crew that the science community was “very pleased.”12 The first international spaceflight since ASTP brought scientists, astronauts, and space agencies from across the globe together, laying the foundation for bringing Europe into human spaceflight operations and kicking off a different approach to training and performing science in space. As Spacelab 1 Mission Manager Henry G. Craft and Richard A. Marmann explained, the program “exemplified what can be accomplished when scientists and engineers from all over the world join forces, communicating and cooperating to further advance scientific intelligence.”13 Eventually, the international cooperation Craft and Marmann witnessed led to today’s highly successful International Space Station Program. Notes Walter Froehlich, Spacelab: An International Short-Stay Orbiting Laboratory (Washington, DC: NASA, 1983); St. Louis Post-Dispatch, November 28, 1983. JSC News Release, “Mission Specialists for Spacelab 1 Named at JSC,” 78-34, August 1, 1978; Robert A.R. Parker, interview by author, October 23, 2002, transcript, JSC Oral History Project; “Europeans To Fly Aboard Shuttle,” Roundup, March 29, 1974, 1. “Four European Candidates Chosen for First Spacelab Flight,” ESA Bulletin (February 1978), no. 12: 62; “Two US scientists selected Spacelab payload specialists,” Roundup, June 9, 1978, 4. In the crew report, Parker counted his time monitoring the Spacelab, so he concluded that the mission specialists trained even longer, from 5 to 9 years. “Spacelab Scientists Tour USA,” Space News Roundup, January 12, 1979, 1. Harry G. Craft, Jr. to George W.S. Abbey, February 25, 1982, Spacelab 1 Payload Crew Experiment Training Requirements, Robert A.R. Parker Papers II, Box 28, JSC History Collection, University of Houston-Clear Lake. Byron Lichtenberg, “A New Breed of Space Traveller [sic],” New Scientist, August 1984, 9. ESA, “Ulf Merbold: STS-9 Payload Specialist,” November 26, 2013; ESA, “Ulf Merbold: remembering John Young [1930-2018],” August 22, 2018. Parker interview. ESA Explores, “Time and Space: ESA’s first astronaut,” podcast, November 25, 2020. Owen K. Garriott, interview by Kevin M. Rusnak, November 6, 2000, transcript, JSC Oral History Project; ESA, “Ulf Merbold: remembering John Young.” Garriott interview. Henry G. Craft, Jr., and Richard A. Marmann, “Spacelab Program’s Scientific Benefits to Mankind,” Acta Astronautica 34 (1994): 304. Explore More 7 min read Marshall-Managed Spacelab Paved Critical Path to Space Station Article 10 years ago 4 min read 35 Years Ago, STS-9: The First Spacelab Science Mission Article 5 years ago 8 min read Teresa Vanhooser: Spacelab Taught Us How to Do Science in an Orbital Lab Article 10 years ago About the AuthorJennifer Ross-NazzalNASA Human Spaceflight HistorianJennifer Ross-Nazzal is the NASA Human Spaceflight Historian. She is the author of Winning the West for Women: The Life of Suffragist Emma Smith DeVoe and Making Space for Women: Stories from Trailblazing Women of NASA's Johnson Space Center. Share Details Last Updated Nov 27, 2023 Related TermsNASA HistoryBrewster H. Shaw Jr.Byron K. LichtenbergJohn W. YoungOwen K. GarriottRobert A. R. ParkerSTS-9 View the full article
-
El astronauta de la NASA Frank Rubio, quien batió récords con su reciente misión, es el presentador de un video con el primer tour narrado en español del hogar de la humanidad en el espacio: la Estación Espacial Internacional. Rubio da la bienvenida al público a bordo de este laboratorio científico en microgravedad para compartir una mirada tras bastidores a la vida y el trabajo en el espacio. El astronauta grabó el tour durante su misión de 371 días en la estación espacial, la cual constituyó el vuelo espacial individual más largo realizado por un estadounidense. El video con el recorrido por la estación está disponible en el servicio de transmisión NASA+ de la agencia, en la aplicación de la NASA, en NASA Television, y en el canal de YouTube en español y el sitio web de la agencia. Habitada de forma ininterrumpida desde hace más de 23 años, la estación espacial es una plataforma científica única donde los miembros de la tripulación realizan experimentos en diferentes disciplinas de investigación, incluyendo las ciencias de la Tierra y el espacio, la biología, la fisiología humana, las ciencias físicas y demostraciones tecnológicas que no podrían llevarse a cabo en la Tierra. La tripulación que vive a bordo de la estación sirve como las manos de miles de investigadores en tierra quienes realizan más de 3.300 experimentos en microgravedad. Durante su misión récord, Rubio dedicó muchas horas a contribuir a las actividades científicas a bordo del laboratorio orbital, llevando a cabo desde estudios sobre la salud humana hasta investigaciones con plantas. Rubio regresó a la Tierra en septiembre de 2023, después de haber completado unas 5.936 órbitas alrededor de la Tierra y un viaje de más de 253 millones de kilómetros (157 millones de millas) durante su primer vuelo espacial, una distancia más o menos equivalente a 328 viajes de ida y vuelta a la Luna. Recibe las últimas noticias, imágenes y artículos de la NASA sobre la estación espacial a través de sus cuentas en inglés de Instagram, Facebook y X o sus cuentas en español de Instagram, Facebook y X de la agencia. Mantente al día sobre la Estación Espacial Internacional, sus investigaciones y su tripulación en el sitio web en inglés: https://www.nasa.gov/station -fin- María José Viñas Sede, Washington 240-458-0248 maria-jose.vinasgarcia@nasa.gov Chelsey Ballarte Centro Espacial Johnson, Houston 281-483-5111 chelsey.n.ballarte@nasa.gov View the full article
-
Record-breaking NASA astronaut Frank Rubio provides the first Spanish-language video tour of humanity’s home in space – the International Space Station. Rubio welcomes the public aboard the microgravity science laboratory in a behind-the-scenes look at living and working in space recorded during his 371-day mission aboard the space station, the longest single spaceflight in history by an American. The station tour is available to watch on the agency’s NASA+ streaming platform, NASA app, NASA Television, YouTube, and the agency’s website. Continuously inhabited for more than 23 years, the space station is a scientific platform where crew members conduct experiments across multiple disciplines of research, including Earth and space science, biology, human physiology, physical sciences, and technology demonstrations that could not be performed on Earth. The crew living aboard the station are the hands of thousands of researchers on the ground conducting more than 3,300 experiments in microgravity. During his record-breaking mission, Rubio spent many hours contributing to scientific activities aboard the orbiting laboratory, conducting everything from human health studies to plant research. Rubio returned to Earth in September, having completed approximately 5,936 orbits of the Earth and a journey of more than 157 million miles during his first spaceflight, roughly the equivalent of 328 trips to the Moon and back. Get the latest NASA space station news, images and features on Instagram, Facebook, and X. Keep up with the International Space Station, its research, and crew at: https://www.nasa.gov/station -end- María José Viñas Headquarters, Washington 240-458-0248 maria-jose.vinasgarcia@nasa.gov Chelsey Ballarte Johnson Space Center, Houston 281-483-5111 chelsey.n.ballarte@nasa.gov View the full article
-
4 min read NASA Scientific Balloons Ready for Flights Over Antarctica A scientific balloon payload is being prepared for launch in McMurdo Station, Antarctica. NASA’s Wallops Flight Facility NASA kicks off its annual Antarctic Long Duration Balloon Campaign around Dec. 1, which includes three scientific balloon flights planned for launch from the long-duration balloon (LDB) Camp near McMurdo Station, Antarctica. NASA’s stadium-sized, zero-pressure balloons will support a total of five missions on the long-duration flights with one mission vying to break NASA’s heavy-lift, long-duration balloon flight record, which stands at 55 days, 1 hour, and 34 minutes. “The annual Antarctic long-duration balloon campaign is the program’s flagship event for long-duration missions,” said Andrew Hamilton, acting chief of NASA’s Balloon Program Office (BPO). “The environment and stratospheric wind conditions provide a unique and valuable opportunity to fly missions in a near-space environment for days or weeks at a time. The BPO team is excited to provide support to all our missions this year.” Headlining this year’s campaign is the Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory (GUSTO) mission. This Astrophysics mission is managed by NASA’s Explorers Program Office at Goddard Space Flight Center. The mission is led by principal investigator Christopher Walker from the University of Arizona with support from the Johns Hopkins University Applied Physics Laboratory. GUSTO will aim for 55-plus days in flight above the southernmost hemisphere’s skies to map a large part of the Milky Way galaxy, including the galactic center, and the nearby Large Magellanic Cloud. The GUSTO telescope is equipped with very sensitive detectors for carbon, oxygen, and nitrogen emission lines. Measuring these emission lines will give the GUSTO team deep insight into the full lifecycle of the interstellar medium, the cosmic material found between stars. GUSTO’s science observations will be performed from Antarctica to allow for enough observation time aloft, access to astronomical objects, and solar power provided by the austral summer in the polar region. Additional missions set to fly during the Antarctic LDB campaign include: Anti-Electron Sub-Orbital Payload (AESOP-Lite): The mission, led by a team from the University of Delaware and University of California Santa Cruz, will measure cosmic-ray electrons and positrons. These electron measurements will be compared to Voyager I and II, which reached interstellar space and have been measuring cosmic ray electrons since 2012 and 2018, respectively. AESOP-Lite will fly on a 60 million cubic feet balloon, a test flight set to qualify the balloon for reaching altitudes greater than 150,000 feet, which is higher than NASA’s current stratospheric inventory. Long durAtion evalUation solaR hand LAunch (LAURA): This engineering test flight, led by NASA’s Columbia Scientific Balloon Facility, will utilize solar panels to extend the science capability of the hand launch platform from a few days in flight to long-duration flights. Hand-launched balloons are about 40 times smaller in volume than the heavy-lift balloons and have limited time aloft due to the amount and weight of batteries used for powering the science and balloon instruments. Anihala (Antarctic Infrasound Hand Launch): This piggyback payload on the AESOP-Lite launch, a cooperative mission between the Swedish Institute of Space Physics and Sandia National Lab, aims to measure natural background sound in the stratosphere over a continent where human-generated sound is largely absent. Zero-pressure balloons feature open ducts that allow gas to escape and prevent an increase in pressure from inside the balloon. Gas expansion occurs as it heats during the balloon’s rise above Earth’s surface or by temperature increases from a rising Sun. These balloons, which typically have a shorter flight duration due to the loss of gas from the cycle of day to night, can only fly long-duration missions during the constant daylight of summer in polar regions, where the balloon stays in constant sunlight. NASA’s Wallops Flight Facility in Virginia manages the agency’s scientific balloon flight program with 10 to 15 flights each year from launch sites worldwide. Peraton, which operates NASA’s Columbia Scientific Balloon Facility (CSBF) in Texas, provides mission planning, engineering services, and field operations for NASA’s scientific balloon program. The CSBF team has launched more than 1,700 scientific balloons over some 40 years of operations. NASA’s balloons are fabricated by Aerostar. The NASA Scientific Balloon Program is funded by the NASA Headquarters Science Mission Directorate Astrophysics Division. For mission tracking, click here. For more information on NASA’s Scientific Balloon Program, visit: https://www.nasa.gov/scientificballoons. Share Details Last Updated Nov 27, 2023 Editor Olivia F. Littleton Contact Olivia F. Littletonolivia.f.littleton@nasa.gov Location Wallops Flight Facility Related Terms Astrophysics DivisionScientific BalloonsWallops Flight Facility Explore More 1 min read NASA Wallops Supports Hypersonic Rocket Launches Article 1 week ago 3 min read Hubble Images Galaxy with an Explosive Past This image from NASA’s Hubble Space Telescope features the spiral galaxy NGC 941, which lies about 55… Article 1 week ago 4 min read NASA’s Hubble Measures the Size of the Nearest Transiting Earth-Sized Planet NASA’s Hubble Space Telescope has measured the size of the nearest Earth-sized exoplanet that passes… Article 2 weeks ago View the full article
-
NASA Administrator Bill Nelson gives remarks after Indian Ambassador to the United States Taranjit Sandhu signed the Artemis Accords, Wednesday, June 21, 2023, at the Willard InterContinental Hotel in Washington.NASA/Bill Ingalls NASA Administrator Bill Nelson will travel to India and the United Arab Emirates (UAE) for a series of meetings beginning Monday, Nov. 27, with key government officials. Nelson also will meet with space officials in both countries to deepen bilateral cooperation across a broad range of innovation and research-related areas, especially in human exploration and Earth science. The visit to India fulfills a commitment through the United States and India initiative on Critical and Emerging Technology spearheaded by President Joe Biden. Nelson will visit several locations in India, including the Bengaluru-based facilities where the NISAR spacecraft, a joint Earth-observing mission between NASA and the Indian Space Research Organization (ISRO), is undergoing testing and integration for launch in 2024. NISAR is short for NASA ISRO Synthetic Aperture Radar. As the first satellite mission between NASA and ISRO, NISAR is a revolutionary Earth-observing instrument, the first in the Earth System Observatory, that will measure Earth’s changing ecosystems, dynamic surfaces, and ice masses providing information about biomass, natural hazards, sea level rise, and groundwater, key information to guide efforts related to climate change, hazard mitigation, agriculture, and more. While in the UAE, Nelson will participate in the 2023 United Nations Climate Change Conference, highlighting NASA’s role as a global leader in providing decisionmakers with critical Earth-science data. It will be the first time a NASA administrator will have attended the conference. Students in each country also will have the opportunity to meet with Nelson to discuss science, technology, engineering, and mathematics (STEM) education and their roles as members of the Artemis Generation. For more information about NASA’s international partnerships, visit: https://www.nasa.gov/oiir -end- Jackie McGuinness Headquarters, Washington 202-358-1600 jackie.mcguinness@nasa.gov Share Details Last Updated Nov 24, 2023 Location NASA Headquarters Related Terms MissionsNISAR (NASA-ISRO Synthetic Aperture Radar) View the full article
-
1 min read SaSa Learning Activities Students of the 2022 SaSa class stand in a cockpit, learning from a NASA airman as part of a training module. Module 1 The first module starts with a two-week introductory summer workshop at the University of Maryland, Baltimore County (UMBC) and Howard University Beltsville Campus research facility in Beltsville, Maryland Immediately after the workshop, there is a one-week, hands-on training on remote sensing/satellite application to disaster monitoring (ex. smoke from forest fires, volcanic plumes, desert dust storms, chemical spills, tornadoes and hurricanes, etc.) using the Direct Broadcast System Antenna Receiving and Data Analyses System at Hampton University. Module 2 Students participate in a three-week field deployment based out of the NASA Wallops Flight Facility, where participants will be involved in all aspects of a scientific field campaign; from detailed planning for achieving mission objectives to flying on NASA aircraft and assisting in instrument operation and field validation at selected sites. Module 3 The final module is focused on processing and analyzing the collected field data and presenting early results to peers, mentors, and other stakeholders based at UMBC. Participants are provided academic advisement and mentorship support until graduation, to help improve student retention and assure timely progress to graduation. Share Details Last Updated Nov 22, 2023 Related Terms General Explore More 7 min read Science on Station: November 2023 Article 10 hours ago 2 min read SaSa NASA Partners Article 1 day ago 2 min read Connect with NASA at FAN EXPO San Francisco 2023 Article 1 day ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
The Color of Space: Episode 1 - Charlie Bolden
-
6 min read NASA Uses Two Worlds to Test Future Mars Helicopter Designs This video combines two perspectives of the 59th flight of NASA’s Ingenuity Mars Helicopter. Video on the left was captured by the Mastcam-Z on NASA’s Perseverance Mars rover; the black-and-white video on the right was taken by Ingenuity’s downward-pointing Navcam. The flight occurred Sept 16. NASA/JPL-Caltech/ASU/MSSS Engineers will go beyond the ends of the Earth to find more performance for future Mars helicopters. For the first time in history, two planets have been home to testing future aircraft designs. On this world, a new rotor that could be used with next-generation Mars helicopters was recently tested at NASA’s Jet Propulsion Laboratory in Southern California, spinning at near-supersonic speeds (0.95 Mach). Meanwhile, the agency’s Ingenuity Mars Helicopter has achieved new altitude and airspeed records on the Red Planet in the name of experimental flight testing. “Our next-generation Mars helicopter testing has literally had the best of both worlds,” said Teddy Tzanetos, Ingenuity’s project manager and manager for the Mars Sample Recovery Helicopters. “Here on Earth, you have all the instrumentation and hands-on immediacy you could hope for while testing new aircraft components. On Mars, you have the real off-world conditions you could never truly re-create here on Earth.” That includes a whisper-thin atmosphere and significantly less gravity than on Earth. The next-generation carbon fiber rotor blades being tested on Earth are almost 4 inches (more than 10 centimeters) longer than Ingenuity’s, with greater strength and a different design. NASA thinks these blades could enable bigger, more capable Mars helicopters. The challenge is, as the blade tips approach supersonic speeds, vibration-causing turbulence can quickly get out of hand. To find a space big enough to create a Martian atmosphere on Earth, engineers looked to JPL’s 25-foot wide, 85-foot-tall (8-meter-by-26-meter) space simulator – a place where Surveyor, Voyager, and Cassini got their first taste of space-like environments. For three weeks in September, a team monitored sensors, meters, and cameras as the blades endured run after run at ever-higher speeds and greater pitch angles. A dual rotor system for the next generation of Mars helicopters is tested in the 25-Foot Space Simulator at NASA’s Jet Propulsion Laboratory on Sept.15. Longer and stronger than those used on the Ingenuity Mars Helicopter, the carbon-fiber blades reached near-supersonic speeds during testing. NASA/JPL-Caltech “We spun our blades up to 3,500 rpm, which is 750 revolutions per minute faster than the Ingenuity blades have gone,” said Tyler Del Sesto, Sample Recovery Helicopter deputy test conductor at JPL. “These more efficient blades are now more than a hypothetical exercise. They are ready to fly.” At around the same time, and about 100 million miles (161 million kilometers) away, Ingenuity was being commanded to try things the Mars Helicopter team never imagined they would get to do. Fourth Rock Flight Testing Ingenuity was originally slated to fly no more than five times. With its first flight entering the mission logbook more than two-and-a-half years ago, the helicopter has exceeded its planned 30-day mission by 32 times and has flown 66 times. Every time Ingenuity goes airborne, it covers new ground, offering a perspective no previous planetary mission could achieve. But lately, Team Ingenuity has been taking their solar-powered rotorcraft out for a spin like never before. “Over the past nine months, we have doubled our max airspeed and altitude, increased our rate of vertical and horizontal acceleration, and even learned to land slower,” said Travis Brown, Ingenuity’s chief engineer at JPL. “The envelope expansion provides invaluable data that can be used by mission designers for future Mars helicopters.” Limited by available energy and motor-temperature considerations, Ingenuity flights usually last around two to three minutes. Although the helicopter can cover more ground in a single flight by flying faster, flying too fast can confuse the onboard navigation system. The system uses a camera that recognizes rocks and other surface features as they move through its field of view. If those features whiz by too fast, the system can lose its way. So, to achieve a higher maximum ground speed, the team sends commands for Ingenuity to fly at higher altitudes (instructions are sent to the helicopter before each flight), which keeps features in view longer. Flight 61 established a new altitude record of 78.7 feet (24 meters) as it checked out Martian wind patterns. With Flight 62 Ingenuity set a speed record of 22.3 mph (10 meters per second) – and scouted a location for the Perseverance rover’s science team. The team has also been experimenting with Ingenuity’s landing speed. The helicopter was designed to contact the surface at a relatively brisk 2.2 mph (1 mps) so its onboard sensors could easily confirm touchdown and shut down the rotors before it could bounce back into the air. A helicopter that lands more slowly could be designed with lighter landing gear. So, on Flights 57, 58, and 59 they gave it a whirl, demonstrating Ingenuity could land at speeds 25% slower than the helicopter was originally designed to land at. All this Martian Chuck Yeager-ing is not over. In December, after solar conjunction, Ingenuity is expected to perform two high-speed flights during which it will execute a special set of pitch-and-roll angles designed to measure its performance. “The data will be extremely useful in fine-tuning our aero-mechanical models of how rotorcraft behave on Mars,” said Brown. “On Earth, such testing is usually performed in the first few flights. But that’s not where we’re flying. You have to be a little more careful when you’re operating that far away from the nearest repair shop, because you don’t get any do-overs.” More About Ingenuity Ingenuity began its life at Mars as a technology demonstration. It first flew on April 19, 2021, hovering 10 feet (3 meters) for 30 seconds. Four more flights in as many weeks added 499 seconds and saw the helicopter flying horizontally over the surface for 1,171 feet (357 meters). After proving flight was possible on Mars, Ingenuity entered an operations demonstration phase in May 2021 to show how aerial scouting could benefit future exploration of Mars and other worlds. The Ingenuity Mars Helicopter was built by JPL, which also manages the project for NASA Headquarters. It is supported by NASA’s Science Mission Directorate. NASA’s Ames Research Center in California’s Silicon Valley and NASA’s Langley Research Center in Hampton, Virginia, provided significant flight performance analysis and technical assistance during Ingenuity’s development. AeroVironment Inc., Qualcomm, and SolAero also provided design assistance and major vehicle components. Lockheed Space designed and manufactured the Mars Helicopter Delivery System. At NASA Headquarters, Dave Lavery is the program executive for the Ingenuity Mars Helicopter. News Media Contacts DC Agle Jet Propulsion Laboratory, Pasadena, Calif. 818-393-9011 agle@jpl.nasa.gov Alana Johnson/ Karen Fox NASA Headquarters, Washington 202-358-1501 / 301-286-6284 alana.r.johnson@nasa.gov / karen.c.fox@nasa.gov 2023-173 Share Details Last Updated Nov 22, 2023 Related Terms Ingenuity (Helicopter)Mars 2020Mars Sample Return (MSR) Explore More 2 min read NASA’s Mars Fleet Will Still Conduct Science While Lying Low Article 2 weeks ago 3 min read NASA’s Perseverance Captures Dust-Filled Martian Whirlwind Article 2 months ago 4 min read Historic Wind Tunnel Facility Testing NASA’s Mars Ascent Vehicle Rocket Article 2 months ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
19 Min Read The Marshall Star for November 22, 2023 Artemis II Astronauts View SLS Core Stage at Michoud Artemis II NASA astronauts Reid Wiseman and Christina Koch of NASA, and CSA (Canadian Space Agency) astronaut Jeremy Hansen viewed the core stage for the SLS (Space Launch System) rocket at the agency’s Michoud Assembly Facility on Nov. 16. The three astronauts, along with NASA’s Victor Glover, will launch atop the rocket stage to venture around the Moon on Artemis II, the first crewed flight for Artemis. From left, Artemis II NASA astronaut Reid Wiseman, CSA (Canadian Space Agency) astronaut Jeremy Hansen, NASA astronaut Christina Koch, and Boeing’s Amanda Gertjejansen view the core stage for the SLS (Space Launch System) rocket at the agency’s Michoud Assembly Facility on Nov. 16.NASA / Michael DeMocker The SLS core stage, towering at 212 feet, is the backbone of the Moon rocket and includes two massive propellant tanks that collectively hold 733,000 gallons of propellant to help power the stage’s four RS-25 engines. NASA, Boeing, the core stage lead contractor, along with Aerojet Rocketdyne, an L3Harris Technologies company and the RS-25 engines lead contractor, are in the midst of conducting final integrated testing on the fully assembled rocket stage. At launch and during ascent to space, the Artemis astronauts inside NASA’s Orion spacecraft will feel the power of the rocket’s four RS-25 engines producing more than 2 million pounds of thrust for a full eight minutes. The mega rocket’s twin solid rocket boosters, which flank either side of the core stage, will each add an additional 3.6 million pounds of thrust for two minutes. Artemis II NASA astronauts Reid Wiseman and Christina Koch of NASA, and CSA (Canadian Space Agency) astronaut Jeremy Hansen view the core stage for the SLS (Space Launch System) rocket at the agency’s Michoud Assembly Facility in New Orleans on Nov. 16. NASA / Michael DeMocker The astronauts’ visit to Michoud coincided with the first anniversary of the launch of Artemis I. The uncrewed flight test of SLS and Orion was the first in a series of increasingly complex missions for Artemis as the agency works to return humans to the lunar surface and develop a long-term presence there for discovery and exploration. NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission. › Back to Top Mission Success is in Our Hands: Jeramie Broadway Mission Success is in Our Hands is a safety initiative collaboration between NASA’s Marshall Space Flight Center and Jacobs. As part of the initiative, eight Marshall team members are featured in new testimonial banners placed around the center. This is the first in a Marshall Star series profiling team members featured in the testimonial banners. Jeramie Broadway is the center strategy lead for the Office of the Center Director. Jeramie Broadway is center strategy lead at NASA’s Marshall Space Flight Center.NASA/Charles Beason Before assuming this role, Broadway was senior technical assistant to the Marshall associate director, technical, from September 2021 to October 2022. In that capacity, he supported the development, coordination, and implementation of Marshall strategic planning and partnering within NASA and across industry and academia. Prior to that detail, he was the assistant manager of Marshall’s Partnerships and Formulation Office, providing strategic planning and business development support and creating new partnering and new mission opportunities for the center. Broadway, a Dallas, Texas, native who joined NASA full-time in 2008, began his career in Marshall’s Materials and Processes Laboratory, supporting and leading production operations for the Ares I and Space Launch System program. Over the years, he served as project engineer or deputy project manager for a variety of work, including the Nuclear Cryogenic Propulsion Stage Project, for which he led development of advanced, high-temperature nuclear fuel materials. He was assistant chief engineer for launch vehicles for NASA’s Commercial Crew Program and assistant chief engineer for NASA’s Technology Demonstration Mission Program, managed for the agency at Marshall. Question: What are some of your key responsibilities? Broadway: Leading and implementing the center director’s strategic vision, leveraging, and integrating the strategic business units across the Marshall Center, one of NASA’s largest field installations, with nearly 7,000 on-site and near-site civil service and contractor employees and an annual budget of approximately $4 billion. Working closely in coordination and collaboration with every center organization to ensure Marshall’s planning, workflow, and business tactics align with the agency’s strategic priorities. Question: How does your work support the safety and success of NASA and Marshall missions? Broadway: My work as the center strategy lead is focused on the success and viability for the Marshall of the future. I work to pursue and capture programs, projects, and opportunities for Marshall to maintain ourselves as an engineering center of excellence. We work hard capturing opportunities to develop the skills, capabilities, and expertise to safely deliver on the vision and mission of the agency. Question: What does the Mission Success Is In Our Hands initiative mean to you? Broadway: Mission success is the responsibility of every single person at Marshall Space Flight Center, regardless of grade, position, or civil servant or support contractor. Everyone has a vital role in the success of Marshall and our ability to deliver on our mission. We all have the ability to lean forward, break down barriers, and strive for a culture that that says ‘yes, and…’. Question: How can we work together better to achieve mission success? Broadway: In this pursuits culture, it will take all of us to achieve the goals and objectives set forward by the agency and center leadership. We have a vibrant future with many opportunities coming our way and it will take all of us to make that vision a reality. It will take both our mission execution and our mission support organizations to get us there. › Back to Top Marshall Makes Impact at University of Alabama’s 8th Annual Space Days By Celine Smith Team members from NASA’s Marshall Space Flight Center participated in the 8th annual Space Days at UA (University of Alabama) on Nov 14-16, where more than 500 students met with experts from NASA and aerospace companies to learn more about the space industry. During the three-day program, Marshall team members conducted outreach presentations and updates about the Artemis missions, HLS (Human Landing System), and other NASA programs, as well as how students can get involved in NASA’s internship program. NASA astronaut Bob Hines delivers a presentation entitled, “An Astronaut’s Journey,” during the 8th annual Space Days at the UA on Nov. 16.Matthew Wood Kicking off the event was Aaron Houin, an engineer on the aerospace vehicle design and mission analysis team at Marshall. Houin delivered a detailed presentation on orbital mechanics and vehicle properties. Houin is no stranger to the classroom, as he is currently earning his doctorate at UA’s Astrodynamics and Space Research Laboratory and was eager to give back to his alma mater. “Having been in their position studying the same theories, I emphasized how their coursework directly applies to physics-based modeling and trajectory design,” Houin said. “I’m hopeful sharing my experiences of transitioning from the classroom to the workplace will help others find similar success.” The Marshall team also conducted an hour-long panel discussion and Q&A segment allowing students to learn more about the fields of aerospace and aeronautic research. Panelists included Christy Gattis, cross-program integration lead, and Kent Criswell, lead systems engineer, both representing the HLS team, as well as Tim Smith, senior mission manager of the TDM (Technology Demonstration Missions) program. From left, Tim Smith, senior mission manager of the Technology Demonstration Missions Program, joins Human Landing System team members Christy Gattis, cross-program integration lead, and Kent Criswell, lead systems engineer, in speaking with attendees following a NASA panel discussion at the University of Alabama Space Days on Nov. 16.NASA/Christopher Blair During the panel discussion, attendees were treated with a surprise guest speaker as Eric Vanderslice, stages structures sub element lead with SLS (Space Launch System), connected virtually from the Michoud Assembly Facility. Vanderslice shared insight about “America’s Rocket Factory” and progress for the agency’s Artemis II missions, including the recent installation of all four RS-25 engines onto the 212-ft-tall SLS core stage. UA students also received a Tech Talk presentation focused on the SCaN (Space Communications and Navigation) program and related internship opportunities from team members from NASA’s Glenn Research Center and NASA Headquarters. Panelists included Dawn Brooks, program specialist at NASA Headquarters; Timothy Gallagher, senior project lead, and Molly Kearns, digital media specialist, all three representing SCaN’s Policy and Strategic Communications office. And in true “One NASA” collaboration, joining the Glenn contingency for this Tech Talk was once again, Tim Smith, providing related updates on the Deep Space Optical Communications and the Laser Communications Relay Demonstration experiments. Holly Ellis, communication specialist, and Tim Smith, senior mission manager, both of the Technology Demonstration Missions Program, speak with students during Space Days at the University of Alabama on Nov. 15. NASA/Christopher Blair The annual Space Days event concluded with NASA astronaut Bob Hines delivering a special presentation entitled, “An Astronaut’s Journey” to nearly 100 students, staff and industry partners. Hines completed his first spaceflight as a mission specialist for NASA’s SpaceX Crew-4 mission, serving as flight engineer of Expedition 67/68 aboard the International Space Station. Space Days is hosted by the UA College of Engineering and their staff shared how crucial it is to have support from aerospace industry partners willing to visit campus and meet students. Key partners exhibiting and presenting included Lockheed Martin, United Launch Alliance, Alabama Space Grant Consortium, and others. “By the time our students attend a career fair, apply for an internship, or pursue cooperative education, they will have learned about these companies in a smaller setting and begin to consider the many pathways to success,” said Tru Livaudais, director of external affairs for UA College of Engineering. “This event offers all UA students – regardless of majors and specialties – a chance to explore future career possibilities and how to be a part of the cutting-edge research and opportunities in the space industry.” Smith, a Media Fusion employee, supports the Marshall Office of Communications. › Back to Top NASA Telescope Data Becomes Music You Can Play For millennia, musicians have looked to the heavens for inspiration. Now a new collaboration is enabling actual data from NASA telescopes to be used as the basis for original music that can be played by humans. Since 2020, the “sonification” project at NASA’s Chandra X-ray Center has translated the digital data taken by telescopes into notes and sounds. This process allows the listener to experience the data through the sense of hearing instead of seeing it as images, a more common way to present astronomical data. The Galactic Center sonification, using data from NASA’s Chandra, Hubble, and Spitzer space telescopes, has been translated into a new composition with sheet music and score. Working with a composer, this soundscape can be played by musicians. The full score and sheet music for individual instruments is available at: https://chandra.si.edu/sound/symphony.htmlComposition: NASA/CXC/SAO/Sophie Kastner A new phase of the sonification project takes the data into different territory. Working with composer Sophie Kastner, the team has developed versions of the data that can be played by musicians. “It’s like a writing a fictional story that is largely based on real facts,” said Kastner. “We are taking the data from space that has been translated into sound and putting a new and human twist on it.” This pilot program focuses on data from a small region at the center of our Milky Way galaxy where a supermassive black hole resides. NASA’s Chandra X-ray Observatory, Hubble Space Telescope, and retired Spitzer Space Telescope have all studied this area, which spans about 400 light-years across. “We’ve been working with these data, taken in X-ray, visible, and infrared light, for years,” said Kimberly Arcand, Chandra visualization and emerging technology scientist. “Translating these data into sound was a big step, and now with Sophie we are again trying something completely new for us.” In the data sonification process, computers use algorithms to mathematically map the digital data from these telescopes to sounds that humans can perceive. Human musicians, however, have different capabilities than computers. Kastner chose to focus on small sections of the image in order to make the data more playable for people. This also allowed her to create spotlights on certain parts of the image that are easily overlooked when the full sonification is played. “I like to think of it as creating short vignettes of the data, and approaching it almost as if I was writing a film score for the image,” said Kastner. “I wanted to draw listener’s attention to smaller events in the greater data set.” A musical ensemble performs soundscape that composer Sophie Katsner created using data sonifications from NASA’s Chandra, Hubble and Spitzer space telescopes. Based in Montreal, Ensemble Éclat is dedicated to the performance of contemporary classical music and promoting the works of emerging composers. (NASA/CXC/A. Jubett & Priam David) The result of this trial project is a new composition based upon and influenced by real data from NASA telescopes, but with a human take. “In some ways, this is just another way for humans to interact with the night sky just as they have throughout recorded history,” says Arcand. “We are using different tools but the concept of being inspired by the heavens to make art remains the same.” Kastner hopes to expand this pilot composition project to other objects in Chandra’s data sonification collection. She is also looking to bring in other musical collaborators who are interested in using the data in their pieces. Sophie Kastner’s Galactic Center piece is entitled “Where Parallel Lines Converge.” If you are a musician who wants to try playing this sonification at home, check out the sheet music at: https://chandra.si.edu/sound/symphony.html. The piece was recorded by Montreal based Ensemble Éclat conducted by Charles-Eric LaFontaine on July 19, 2023, at McGill University. NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts. Read more from NASA’s Chandra X-ray Observatory. › Back to Top Dietitian Rachel Brown Speaker for Nov. 28 Marshall Association Event Rachel Brown, registered dietitian and certified diabetes care and education specialist, will be the guest speaker for the Marshall Association Speaker Series on Nov. 28. The event will be 12-1 p.m. The event is free to attend and open to everyone via Teams. NASA Marshall Space Flight Center team members can attend in Building 4221, Conference Room 1103. The meeting topic follows this year’s theme of Breaking Boundaries. Rachel Brown, registered dietitian and certified diabetes care and education specialist, will be the guest speaker for the Marshall Association Speaker Series on Nov. 28. NASA A mom of two and a Huntsville resident since 2016, Brown is the owner of Rocket City Dietitian social media channels, where she focuses on promoting local food, fun, and fitness available in the Rocket City. She has a monthly TV segment on TN Valley Living promoting the local food scene and is a regular contributor to Huntsville Magazine, We Are Huntsville, and VisitHuntsville.org. Email the Marshall Association for questions about the event. For more information on the Marshall Association and how to join, team members can visit their page on Inside Marshall. › Back to Top Cube Quest Concludes: Wins, Lessons Learned from Centennial Challenge By Savannah Bullard Artemis I launched from NASA’s Kennedy Space Center on Nov. 16, 2022, penning a new era of space exploration and inching the agency closer to sending the first woman and first person of color to the lunar surface. Aboard the Space Launch System (SLS) rocket were 10 small satellites, no bigger than shoeboxes, whose goal was to detach and capably perform operations near and beyond the Moon. One of those satellites was a product of the Cube Quest Challenge, a NASA-led prize competition that asked citizen innovators to design, build, and deliver flight-qualified satellites called CubeSats that could perform its mission independently of the Artemis I mission. Small satellites, called CubeSats, are shown secured inside NASA’s Orion stage adapter at NASA’s Kennedy Space Center on Aug. 5, 2021. One of these CubeSats belonged to Team Miles, one of the three finalists in the Cube Quest Centennial Challenge. The ring-shaped stage adapter was connected to the Space Launch System’s Interim Cryogenic Propulsion Stage, with the Orion spacecraft secured on top. The CubeSats’ mission was to detach from the stage adapter, then fly near and beyond the Moon to conduct a variety of science experiments and technology demonstrations to expand our knowledge of the lunar surface during the Artemis I mission.NASA/Cory Huston Cube Quest is the agency’s first in-space public prize competition. Opened in 2015, the challenge began with four ground-based tournaments, which awarded almost $500,000 in prizes. Three finalists emerged from the ground competition with a ticket to hitch a ride aboard the SLS as a secondary payload – and win the rest of the competition’s $5 million prize purse, NASA’s largest-ever prize offering to date – in 2022. Of the three finalists, Team Miles was the sole team to make the trip on Artemis I successfully. Shortly after a successful deployment in space, controllers detected downlink signals and processed them to confirm whether the CubeSat was operational. This remains the latest update for the Team Miles CubeSat. “We’re still celebrating the many wins that were borne out of Cube Quest,” said Centennial Challenges Program Manager Denise Morris. “The intent of the challenge was to reward citizen inventors who successfully advance the CubeSat technologies needed for operations on the Moon and beyond, and I believe we accomplished this.” Innovation rarely comes without error, but according to Challenge Manager Naveen Vetcha, who supports Centennial Challenges through Jacobs Space Exploration Group, even after everything goes as expected, there is no guarantee that scientists will reach their desired outcomes. “Given the magnitude of what we can and do accomplish every day at NASA, it comes with the territory that not every test, proposal, or idea will come out with 100 percent success,” Vetcha said. “We have set ambitious goals, and challenging ourselves to change what’s possible will inevitably end with examples of not meeting our stretch goals. But, with each failure comes more opportunities and lessons to carry forward. In the end, our competitors created technologies that will enable affordable deep space CubeSats, which, to me, is a big win.” Although Team Miles may have made it furthest in the Cube Quest Challenge, having launched its CubeSat as a secondary payload aboard Artemis I, the team continues to participate in the challenge long after launch. “From Team Miles, Miles Space LLC was created and is still in business,” said Jan McKenna, Team Miles’ project manager and safety lead. “Miles Space is developing and selling the propulsion system designed for our craft to commercial aerospace companies, and we’ve expanded to be able to create hardware for communications along with our CubeSat developments.” The next steps for Miles Space LLC include seeing through their active patent applications, establishing relationships with potential clients, and continuing to hunt for a connection with their flying CubeSat. Another finalist team, Cislunar Explorers, is currently focused on using their lessons learned to benefit the global small satellite community. “I utilized the contacts I made through Cube Quest and the other Artemis Secondary Payloads for my thesis research,” said Aaron Zucherman, Cislunar Explorers’ project manager. “This has enabled me to find partnerships and consulting work with other universities and companies where I have shared my experiences learning the best ways to build interplanetary CubeSats.” This challenge featured teams from diverse educational and commercial backgrounds. Several team members credited the challenge as a catalyst in their graduate thesis or Ph.D. research, but one young innovator says Cube Quest completely redirected his entire career trajectory. Project Selene team lead, Braden Oh, competed with his peers at La Cañada High School in La Cañada, California. Oh’s team eventually caught the attention of Kerri Cahoy at the Massachusetts Institute of Technology, and the designs were similar enough that Cahoy invited the two teams to merge. The exposure gained through this partnership was a powerful inspiration for Oh and his peers. “I originally intended to apply to college as a computer science major, but my experiences in Cube Quest inspired me to study engineering instead,” Oh said. “I saw similar stories unfold for a number of my teammates; one eventually graduated from MIT and another now works for NASA.” Cube Quest is managed out of NASA’s Ames Research Center. The competition is a part of NASA’s Centennial Challenges, which is housed at the agency’s Marshall Space Flight Center. Centennial Challenges is a part of NASA’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. Bullard, a Manufacturing Technical Solutions Inc. employee, supports the Marshall Office of Communications. › Back to Top The Heat is On! NASA’s ‘Flawless’ Heat Shield Demo Passes the Test A little more than a year ago, a NASA flight test article came screaming back from space at more than 18,000 mph, reaching temperatures of nearly 2,700 degrees Fahrenheit before gently splashing down in the Pacific Ocean. At that moment, it became the largest blunt body – a type of reentry vehicle that creates a heat-deflecting shockwave – ever to reenter Earth’s atmosphere. The Low-Earth Orbit Flight Test of an Inflatable Decelerator, or LOFTID, launched Nov. 10, 2022, aboard a ULA (United Launch Alliance) Atlas V rocket and successfully demonstrated an inflatable heat shield. Also known as a Hypersonic Inflatable Aerodynamic Decelerator, or HIAD, aeroshell, this technology could allow larger spacecraft to safely descend through the atmospheres of celestial bodies like Mars, Venus, and even Saturn’s moon, Titan. The Low-Earth Orbit Flight Test of an Inflatable Decelerator, or LOFTID, spacecraft is pictured after its atmospheric re-entry test in November 2022.NASA/Greg Swanson “Large-diameter aeroshells allow us to deliver critical support hardware, and potentially even crew, to the surface of planets with atmospheres,” said Trudy Kortes, director of Technology Demonstrations at NASA Headquarters. “This capability is crucial for the nation’s ambition of expanding human and robotic exploration across our solar system.” NASA has been developing HIAD technologies for over a decade, including two smaller scale suborbital flight tests before LOFTID. In addition to this successful tech demo, NASA is investigating future applications, including partnering with commercial companies to develop technologies for small satellite reentry, aerocapture, and cislunar payloads. “This was a keystone event for us, and the short answer is: It was highly successful,” said LOFTID Project Manager Joe Del Corso. “Our assessment of LOFTID concluded with the promise of what this technology may do to empower the exploration of deep space.” Due to the success of the LOFTID tech demo, NASA announced under its Tipping Point program that it would partner with ULA to develop and deliver the “next size up,” a larger 12-meter HIAD aeroshell for recovering the company’s Vulcan engines from low Earth orbit for reuse. The LOFTID team recently held a post-flight analysis assessment of the flight test at NASA’s Langley Research Center. Their verdict? Upon recovery, the team discovered LOFTID appeared pristine, with minimal damage, meaning its performance was, as Del Corso puts it, “Just flawless.” View some interesting visual highlights from LOFTID’s flight test. LOFTID splashed down in the Pacific Ocean several hundred miles off the east coast of Hawaii and only about eight miles from the recovery ship’s bow – almost exactly as modeled. A crew got on a small boat and retrieved and hoisted LOFTID onto the recovery ship. “The LOFTID mission was important because it proved the cutting-edge HIAD design functioned successfully at an appropriate scale and in a relevant environment,” said Tawnya Laughinghouse, manager of the TDM (Technology Demonstrations Missions) program office at NASA’s Marshall Space Flight Center. Marshall supported the Langley-led LOFTID project, providing avionics flight hardware, including the data acquisition system, the inertial measurement unit, and six camera pods. Marshall engineers also performed thermal and fluids analyses and modeling in support of the LOFTID re-entry vehicle inflation system and aeroshell designs. The LOFTID demonstration was a public private-partnership with ULA funded by STMD and managed by the Technology Demonstration Mission Program, executed by NASA Langley with contributions from across NASA centers. Multiple U.S. small businesses contributed to the hardware. NASA’s Launch Services Program was responsible for NASA’s oversight of launch operations. › Back to Top View the full article
-
4 min read La Movilidad Aérea Avanzada Ayuda al Transporte de Mercancías La NASA está especialmente calificada para ayudar a revolucionar el sector del transporte de carga con Movilidad Aérea Avanzada para encontrar soluciones que faciliten el transporte de paquetes de forma más rápida y ecológica, utilizando grandes aviones para el transporte de carga y pequeños drones para la entrega de paquetes, como se ve en esta imagen conceptual.NASA / Kyle Jenkins Lee esta historia en inglés aquí. Hoy podemos recibir paquetes más rápido que antes gracias a los pedidos en línea y los servicios de entrega rápida. La demanda de este tipo de entrega rápida sigue aumentando y se necesitan nuevos medios de transporte de carga para mantener el ritmo. La NASA está especialmente cualificada para ayudar a revolucionar el sector del transporte de carga con Movilidad Aérea Avanzada (AAM por sus siglas en inglés) para encontrar soluciones que faciliten el transporte de paquetes de forma más rápida y ecológica, utilizando grandes aviones para el transporte de carga y pequeños drones para la entrega de paquetes. Ahora mismo, la NASA está colaborando con Elroy Air y Reliable Robotics, que están diseñando prototipos de aviones de reparto de carga con Movilidad Aérea Avanzada. El objetivo de la asociación es aprender más sobre estas aeronaves a medida que se construyen y prueban. “Vemos que el transporte de carga no tiene las mismas dificultades que el transporte de humanos, así que es una buena manera de generar experiencia y confianza en estas nuevas operaciones de aviación antes de que se extiendan al transporte de personas”, explica Kurt Swieringa, director adjunto de tecnología del proyecto de exploración de la gestión del tráfico aéreo (Air Traffic Management eXploration ATM-X). La NASA está investigando cómo se van a integrar estas nuevas aeronaves en el medio aeroportuario existente y en el espacio aéreo estadounidense en su conjunto. La idea es utilizar muchos aviones para transportar grandes cantidades de carga y paquetes modo bajo demanda. El sistema actual de gestión del tráfico aéreo no puede gestionar la escala de operaciones que prevé la misión AAM de la NASA, así que será necesario recurrir más a las comunicaciones digitales y a la autonomía para integrar con seguridad estas nuevas operaciones en el espacio aéreo. La Movilidad Aérea Avanzada se centrará en encontrar soluciones seguras para transportar más paquetes por el aire y en investigar las áreas de gestión del tráfico aéreo, automatización, diseño de aeronaves y garantía de seguridad que es necesario combinar para hacer realidad estas operaciones. Las agencias gubernamentales, la industria y el público deberán combinar sus esfuerzos para integrar de forma segura esta nueva clase de aeronaves. La visión de la NASA es diseñar nuevos sistemas de transporte aéreo seguros, accesibles y económicos junto con socios de la industria y la comunidad y la Administración Federal de Aviación. Estas nuevas capacidades permitirían a los pasajeros y los cargamentos viajar a modo bajo demanda en aviones innovadores y automatizados por toda la ciudad, entre ciudades vecinas o a otros lugares a los que hoy en día se suele acceder en coche. La visión de la NASA para la Movilidad Aérea Avanzada, o AAM por sus siglas en inglés, es trazar un nuevo sistema de transporte aéreo seguro, accesible y económico junto con socios de la industria, socios comunitarios y la Administración Federal de Aviación (FAA por sus siglas en inglés). En este episodio del Manual de Movilidad Aérea Avanzada de la NASA, hablamos del futuro del transporte de mercancías y de cómo la investigación AAM de la NASA está contribuyendo a su desarrollo. Artículo Traducido por: Elena Aguirre Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 2 min read Connect with NASA at FAN EXPO San Francisco 2023 Article 23 hours ago 2 min read NASA One Step Closer to Fueling Space Missions with Plutonium-238 Article 1 day ago 5 min read The Heat is On! NASA’s “Flawless” Heat Shield Demo Passes the Test Article 5 days ago Keep Exploring Discover More Topics From NASA Missions Humans In Space NASA en español Explora el universo y descubre tu planeta natal con nosotros, en tu idioma. Explore NASA’s History Share Details Last Updated Nov 22, 2023 Editor Lillian Gipson Contact Jim Bankejim.banke@nasa.gov Related Terms AeronáuticaAmes Research CenterArmstrong Flight Research CenterDrones & YouGlenn Research CenterLangley Research CenterNASA en español View the full article
-
NASA / Mike Hopkins NASA astronauts Michael Hopkins (left) and Rick Mastracchio, show off their Thanksgiving meal in the Unity node of the International Space Station on Nov. 28, 2013. The meal included smoked turkey, green beans, and stuffing. This year, holiday treats including turkey, pumpkin spice cappuccino, and cranberry sauce were sent to the orbital laboratory through NASA’s SpaceX CRS-29 launch. Watch astronauts currently on the space station share a Thanksgiving message. Image Credit: NASA/Mike Hopkins View the full article
-
The Thanksgiving holiday typically brings families and friends together in a celebration of common gratitude for all the good things that have happened during the previous year. People celebrate the holiday in various ways, with parades, football marathons, and attending religious services, but food remains the over-arching theme. For astronauts embarked on long-duration space missions, separation from family and friends is inevitable and they rely on fellow crew members to share in the tradition and enjoy the culinary traditions as much as possible. In this most unusual of years when the pandemic may alter typical Thanksgiving gatherings, it seems appropriate to review how astronauts over the years have celebrated the holiday during their time in space. Enjoy the stories and photographs from orbital Thanksgiving celebrations over the years. Thanksgiving 1973. Left: Skylab 4 astronauts Gerald P. Carr, Edward G. Gibson, and William R. Pogue, the first crew to celebrate Thanksgiving in space. Right: Gibson, left, Pogue, and Carr demonstrate eating aboard Skylab. Skylab 4 astronauts Gerald P. Carr, Edward G. Gibson, and William R. Pogue were the first crew to celebrate Thanksgiving in space on Nov. 22, 1973. On that day, their seventh of an 84-day mission, Gibson and Pogue completed a 6-hour and 33-minute spacewalk, while Carr remained in the Multiple Docking Adaptor with no access to food. All three made up for missing lunch by consuming two meals at dinner time, although neither included special items for Thanksgiving. Thanksgiving 1985. Left: STS-61B payload specialists Charles D. Walker, left, and Rodolfo Neri Vela of Mexico enjoy the first Thanksgiving aboard a space shuttle in Atlantis’ middeck. Middle: The STS-61B crew enjoying their Thanksgiving dinner while floating in Atlantis’ middeck. Right: Mexican payload specialist Neri Vela, who introduced tortillas to space menus. Twelve years passed before the next orbital Thanksgiving celebration. On Nov. 28, 1985, the seven-member crew of STS-61B, NASA astronauts Brewster H. Shaw, Bryan D. O’Connor, Jerry L. Ross, Mary L. Cleave, and Sherwood C. “Woody” Spring, and payload specialists Charles D. Walker from the United States and Rodolfo Neri Vela from Mexico, feasted on shrimp cocktail, irradiated turkey, and cranberry sauce aboard the space shuttle Atlantis. Neri Vela introduced tortillas to space menus, and they have remained favorites among astronauts ever since. Unlike regular bread, tortillas do not create crumbs, a potential hazard in weightlessness, and have multiple uses for any meal of the day. The crew of STS-33, NASA astronauts Frederick D. Gregory, John E. Blaha, Manley L. “Sonny” Carter, F. Story Musgrave, and Kathryn C. Thornton, celebrated Thanksgiving aboard space shuttle Discovery in 1989. Gregory and Musgrave celebrated their second Thanksgiving in space two years later, joined by fellow STS-44 NASA astronauts Terrence T. “Tom” Henricks, James S. Voss, Mario Runco, and Thomas J. Hennen aboard space shuttle Atlantis. Thanksgiving 1996. Left: STS-80 astronauts Tamara E. Jernigan, left, Kent V. Rominger, and Thomas D. Jones enjoy Thanksgiving dinner in Columbia’s middeck. Right: The STS-80 crew during aboard Columbia exchanging Thanksgiving greetings with John E. Blaha aboard the Mir space station. In 1996, Blaha celebrated his second Thanksgiving in space with Russian cosmonauts Valeri G. Korzun and Aleksandr Y. Kaleri aboard the space station Mir. Blaha watched the beautiful Earth through the Mir windows rather than his usual viewing fare of football. The STS-80 crew of NASA astronauts Kenneth D. Cockrell, Kent V. Rominger, Tamara E. Jernigan, Thomas D. Jones, and Musgrave, now on his third turkey day holiday in orbit, celebrated Thanksgiving aboard space shuttle Columbia. Although the eight crew members were in different spacecraft in different orbits, they exchanged holiday greetings via space-to-space radio. This marked the largest number of people in space on Thanksgiving Day up to that time. One year later, NASA astronaut David A. Wolf celebrated Thanksgiving with his Russian crewmates Anatoli Y. Solovev, who translated the holiday into Russian as den blagodarenia, and Pavel V. Vinogradov aboard Mir. They enjoyed smoked turkey, freeze-dried mashed potatoes, peas, and milk. Also in orbit at the time was the crew of STS-87, NASA astronauts Kevin R. Kregel, Steven W. Lindsey, Kalpana Chawla, and Winston E. Scott, Takao Doi of the Japan Aerospace Exploration Agency, and Leonid K. Kadenyuk of Ukraine, aboard Columbia. The nine crew members aboard the two spacecraft broke the one-year-old record for the largest number of people in space at one time for Thanksgiving, also setting the record for the most nations represented, four. Thanksgiving 2001, Expedition 3 crewmembers enjoying Thanksgiving dinner aboard the space station. Left: NASA astronaut Frank L. Culbertson, left, and Vladimir N. Dezhurov of Roscosmos. Middle: Dezhurov, left, and Mikhail V. Tyurin of Roscosmos. Right: Tyurin, left, and Culbertson. The Expedition 1 crew of NASA astronaut William M. Shepherd, and Yuri P. Gidzenko and Sergei K. Krikalev of Roscosmos celebrated the first Thanksgiving aboard the International Space Station on Nov. 23, 2000, three weeks after their arrival aboard the facility. The crew took time out of their busy schedule to enjoy ham and smoked turkey and send words of thanks to people on the ground who provided excellent support to their flight. Crews have celebrated Thanksgiving in space every November since then. In 2001, Expedition 3 crew members NASA astronaut Frank L. Culbertson, and Vladimir N. Dezhurov and Mikhail V. Tyurin of Roscosmos enjoyed the first real Thanksgiving aboard the space station, complete with a cardboard turkey as decoration. The following year’s orbital Thanksgiving celebration included the largest number of people to that time, the combined 10 crewmembers of Expedition 5, STS-113, and Expedition 6. After a busy day that included the first Thanksgiving Day spacewalk aboard the space station, the crews settled down to a dinner of smoked turkey, mashed potatoes, and green beans with mushrooms. Blueberry-cherry cobbler rounded out the meal. Thanksgiving 2008. Left: The Thanksgiving dinner reheating in space shuttle Endeavour’s food warmer. Right: The crews of Expedition 18 and STS-126 share a meal in the space shuttle middeck. Expedition 18 crew members NASA astronauts E. Michael Fincke and Gregory E. Chamitoff and Yuri V. Lonchakov representing Roscosmos, welcomed the STS-126 crew of NASA astronauts Christopher J. Ferguson, Eric A. Boe, Heidemarie M. Stefanyshyn-Piper, Donald R. Pettit, Stephen G. Bowen, R. Shane Kimbrough, and Sandra H. Magnus during Thanksgiving in 2008. They dined in the space shuttle Endeavour’s middeck on smoked turkey, candied yams, green beans and mushrooms, cornbread dressing and a cranapple dessert. Thanksgiving 2009. Left: Crew members from Expedition 21 and STS-129 share an early Thanksgiving meal. Right: The Thanksgiving dinner for the Expedition 21 and STS-129 crews. The following year saw the largest and an internationally diverse group celebrating Thanksgiving in space. The six Expedition 21 crew members, NASA astronauts Jeffrey N. Williams and Nicole P. Stott, Roman Y. Romanenko and Maksim V. Suraev of Roscosmos, Frank L. DeWinne of the European Space Agency, and Robert B. Thirsk of the Canadian Space Agency hosted the six members of the STS-129 crew, NASA astronauts Charles O. Hobaugh, Barry E. Wilmore, Michael J. Foreman, Robert L. Satcher, Randolph J. Bresnik, and Leland D. Melvin. The twelve assembled crew members represented the United States, Russia, Belgium, and Canada. The celebration took place two days early, since the shuttle undocked from the space station on Thanksgiving Day. Thanksgiving 2010. Left: Expedition 25 commander and NASA astronaut Scott J. Kelly awaits his crewmates at the Thanksgiving dinner table. Right: The Expedition 25 crew of Oleg I. Skripochka of Roscosmos, left, Kelly, NASA astronaut Douglas H. Wheeler, Aleksandr Y. Kaleri and Fyodor N. Yurchikhin of Roscosmos, and NASA astronaut Shannon Walker sending Thanksgiving greetings to the ground before digging into their dinner. Thanksgiving 2013. Left: Expedition 38 NASA astronauts Michael S. Hopkins, left, and Richard A. Mastracchio showing off food items destined for the Thanksgiving Day dinner. Right: Close-up of the Thanksgiving dinner items, including turkey, ham, macaroni and cheese, green beans and mushrooms, and dressing. Thanksgiving 2014. Left: Eager for Thanksgiving, Expedition 42 commander and NASA astronaut Barry E. “Butch” Wilmore sets out his meal several days in advance. Right: Expedition 42 crew members Wilmore, left, Samantha Cristoforetti of the European Space Agency, Aleksandr M. Samokutyayev and Anton N. Shkaplerov of Roscosmos, NASA astronaut Terry W. Virts, and Elena O. Serova of Roscosmos enjoy the Thanksgiving Day dinner. Thanksgiving 2015. Left: Expedition 45 crew members Mikhail B. Korniyenko, left, Oleg D. Kononenko, and Sergei A. Volkov of Roscosmos, NASA astronaut Kjell N. Lindgren, Kimiya Yui of the Japan Aerospace Exploration Agency, and NASA astronaut Scott J. Kelly pose before the Thanksgiving dinner table. Right: Kelly, left, and Lindgren show off the Thanksgiving dinner items. Thanksgiving 2016. Left: Expedition 50 crew members Oleg V. Novitsky, left, Sergei N. Ryzhikov, and Andrei I. Borisenko of Roscosmos, Thomas G. Pesquet of the European Space Agency, and NASA astronauts R. Shane Kimbrough and Peggy A. Whitson pose before the Thanksgiving dinner table. Right: The Expedition 50 crew tucks into the feast. Thanksgiving 2017. Left: The Thanksgiving table is set. Middle: The Expedition 53 crew of Paolo A. Nespoli of the European Space Agency, left, NASA astronauts Joseph M. Acaba and Mark T. Vande Hei, Sergei N. Ryazansky and Aleksandr A. Misurkin of Roscosmos, and NASA astronaut Randolph J. Bresnik patiently awaits the start of the dinner. Right: The Expedition 53 crew digs in. Thanksgiving 2019. Left: The turkey is in the oven, or more precisely the smoked turkey packages are in the Galley Food Warmer. Right: Expedition 61 crew members NASA astronaut Christina H. Koch, left, Aleksandr A. Skvortsov of Roscosmos, NASA astronaut Jessica U. Meir, Oleg I. Skripochka of Roscosmos, NASA astronaut Andrew R. Morgan, and Luca S. Parmitano of the European Space Agency celebrate Thanksgiving aboard the space station. Thanksgiving 2020. Left: Expedition 64 NASA astronaut Kathleen H. “Kate” Rubins prepares the Thanksgiving dinner. Right: The Expedition 64 crew of NASA astronaut Michael S. Hopkins, Soichi Noguchi of the Japan Aerospace Exploration Agency, Sergei V. Kud-Sverchkov and Sergei N. Ryzhikov of Roscosmos, and NASA astronauts K. Meghan McArthur, Victor J. Glover, and Rubins enjoying the Thanksgiving meal including frozen treats for dessert. Thanksgiving 2021. Left: Thanksgiving dinner cooking in the “oven” aboard the space station. Right: Expedition 66 crew members NASA astronauts Raja J. Chari, left, Kayla S. Barron, Mark T. Vande Hei, Thomas H. Marshburn, Russian cosmonauts Anton N. Shkaplerov and Pyotr V. Dubrov (partially visible), and European Space Agency astronaut Matthias J. Maurer (taking the photo) enjoy the Thanksgiving feast. Thanksgiving 2022. Expedition 68 crew members NASA astronauts Nicole A. Mann, left, Josh A. Cassada, and Francisco “Frank” C. Rubio, and Koichi Wakata of the Japan Aerospace Exploration Agency send Thanksgiving Day greetings. Thanksgiving 2023. Expedition 70 crew members Andreas E. Mogensen, of the European Space Agency, front left, NASA astronauts Loral A. O’Hara and Jasmin Moghbeli, and Satoshi Furukawa of the Japan Aerospace Exploration Agency beam down their Thanksgiving message to everyone on the ground. We hope you enjoyed these stories, photographs, and videos from Thanksgivings celebrated in space. We would like to wish everyone here on the ground and the seven-member crew of Expedition 70 aboard the space station a very happy Thanksgiving! Share Details Last Updated Nov 22, 2023 Related Terms NASA History Explore More 12 min read 55 Years Ago: Eight Months Before the Moon Landing Article 6 days ago 12 min read 50 Years Ago: Launch of Skylab 4, The Final Mission to Skylab Article 6 days ago 7 min read 65 Years Ago: NASA Formally Establishes The Space Task Group Article 2 weeks ago View the full article