Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read NASA 3D Wind Measuring Laser Aims to Improve Forecasts from Air, Space
      3D wind measurements from NASA's Aerosol Wind Profiler instrument flying on board a specially mounted aircraft along the East Coast of the U.S. and across the Great Lakes region on Oct. 15, 2024. Credits: NASA/Scientific Visualization Studio Since last fall, NASA scientists have flown an advanced 3D Doppler wind lidar instrument across the United States to collect nearly 100 hours of data — including a flight through a hurricane. The goal? To demonstrate the unique capability of the Aerosol Wind Profiler (AWP) instrument to gather extremely precise measurements of wind direction, wind speed, and aerosol concentration – all crucial elements for accurate weather forecasting.
      Weather phenomena like severe thunderstorms and hurricanes develop rapidly, so improving predictions requires more accurate wind observations.
      “There is a lack of global wind measurements above Earth’s surface,” explained Kris Bedka, the AWP principal investigator at NASA’s Langley Research Center in Hampton, Virginia. “Winds are measured by commercial aircraft as they fly to their destinations and by weather balloons launched up to twice per day from just 1,300 sites across the globe. From space, winds are estimated by tracking cloud and water vapor movement from satellite images.”
      However, in areas without clouds or where water vapor patterns cannot be easily tracked, there are typically no reliable wind measurements. The AWP instrument seeks to fill these gaps with detailed 3D wind profiles.
      The AWP instrument (foreground) and HALO instrument (background) was integrated onto the floorboard of NASA’s G-III aircraft. Kris Bedka, project principal investigator, sitting in the rear of the plane, monitored the data during a flight on Sept. 26, 2024. NASA/Maurice Cross Mounted to an aircraft with viewing ports underneath it, AWP emits 200 laser energy pulses per second that scatter and reflect off aerosol particles — such as pollution, dust, smoke, sea salt, and clouds — in the air. Aerosol and cloud particle movement causes the laser pulse wavelength to change, a concept known as the Doppler effect.
      The AWP instrument sends these pulses in two directions, oriented 90 degrees apart from each other. Combined, they create a 3D profile of wind vectors, representing both wind speed and direction.
      We are measuring winds at different altitudes in the atmosphere simultaneously with extremely high detail and accuracy.
      Kris bedka
      NASA Research Physical Scientist
      “The Aerosol Wind Profiler is able to measure wind speed and direction, but not just at one given point,” Bedka said. “Instead, we are measuring winds at different altitudes in the atmosphere simultaneously with extremely high detail and accuracy.”
      Vectors help researchers and meteorologists understand the weather, so AWP’s measurements could significantly advance weather modeling and forecasting. For this reason, the instrument was chosen to be part of the National Oceanic and Atmospheric Administration’s (NOAA) Joint Venture Program, which seeks data from new technologies that can fill gaps in current weather forecasting systems. NASA’s Weather Program also saw mutual benefit in NOAA’s investments and provided additional support to increase the return on investment for both agencies.
      On board NASA’s Gulfstream III (G-III) aircraft, AWP was paired with the agency’s High-Altitude Lidar Observatory (HALO) that measures water vapor, aerosols, and cloud properties through a combined differential absorption and high spectral resolution lidar.
      Working together for the first time, AWP measured winds, HALO collected water vapor and aerosol data, and NOAA dropsondes (small instruments dropped from a tube in the bottom of the aircraft) gathered temperature, water vapor, and wind data.
      The AWP and HALO instrument teams observing incoming data on board NASA’s G-III aircraft over Tennessee while heading south to observe Hurricane Helene. Sept. 26, 2024. NASA/Maurice Cross “With our instrument package on board small, affordable-to-operate aircraft, we have a very powerful capability,” said Bedka. “The combination of AWP and HALO is NASA’s next-generation airborne weather remote sensing package, which we hope to also fly aboard satellites to benefit everyone across the globe.”
      The combination of AWP and HALO is NASA's next-generation airborne weather remote sensing package.
      kris bedka
      NASA Research Physical Scientist
      The animation below, based on AWP data, shows the complexity and structure of aerosol layers present in the atmosphere. Current prediction models do not accurately simulate how aerosols are organized throughout the breadth of the atmosphere, said Bedka.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This visualization shows AWP 3D measurements gathered on Oct. 15, 2024, as NASA’s G-III aircraft flew along the East Coast of the U.S. and across the Great Lakes region. Laser light that returns to AWP as backscatter from aerosol particles and clouds allows for measurement of wind direction, speed, and aerosol concentration as seen in the separation of data layers. NASA/Scientific Visualization Studio “When we took off on this particular day, I thought that we would be finding a clear atmosphere with little to no aerosol return because we were flying into what was the first real blast of cool Canadian air of the fall,” described Bedka. “What we found was quite the opposite: an aerosol-rich environment which provided excellent signal to accurately measure winds.” 
      During the Joint Venture flights, Hurricane Helene was making landfall in Florida. The AWP crew of two pilots and five science team members quickly created a flight plan to gather wind measurements along the outer bands of the severe storm.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This video shows monitors tracking the AWP science team’s location in the western outer bands of Hurricane Helene off the coast of Florida with views outside of the aircraft looking at turbulent storm clouds on Sept. 26, 2024. NASA/Kris Bedka “A 3D wind profile can significantly improve weather forecasts, particularly for storms and hurricanes,” said Harshesh Patel, NOAA’s acting Joint Venture Program manager. “NASA Langley specializes in the development of coherent Doppler wind lidar technology and this AWP concept has potential to provide better performance for NOAA’s needs.”
      The flight plan of NASA’s G-III aircraft – outfitted with the Aerosol Wind Profiler – as it gathered data across the Southeastern U.S. and flew through portions of Hurricane Helene on Sept. 26, 2024. The flight plan is overlaid atop a NOAA Geostationary Operational Environmental Satellite-16 (GOES) satellite image from that day. NASA/John Cooney The flights of the AWP lidar are serving as a proving ground for possible integration into a future satellite mission.
      “The need to improve global 3D wind models requires a space-based platform,” added Patel. “Instruments like AWP have specific space-based applications that potentially align with NOAA’s mission to provide critical data for improving weather forecasting.”
      A view of the outer bands of Hurricane Helene off the coast of Florida during NASA’s science flights demonstrating the Aerosol Wind Profiler instrument on Sept. 26, 2024.NASA/Maurice Cross After the NOAA flights, AWP and HALO were sent to central California for the Westcoast & Heartland Hyperspectral Microwave Sensor Intensive Experiment  and the Active Passive profiling Experiment, which was supported by NASA’s Planetary Boundary Layer Decadal Survey Incubation Program and NASA Weather Programs. These missions studied atmospheric processes within the planetary boundary layer, the lowest part of the atmosphere, that drives the weather conditions we experience on the ground. 
      To learn more about lidar instruments at NASA visit:
      NASA Langley Research Center: Generations of Lidar Expertise
      About the Author
      Charles G. Hatfield
      Science Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Apr 28, 2025 LocationNASA Langley Research Center Related Terms
      General Airborne Science Clouds Langley Research Center Explore More
      3 min read Lunar Space Station Module for NASA’s Artemis Campaign to Begin Final Outfitting
      Article 3 days ago 4 min read Navigation Technology
      Article 3 days ago 3 min read NASA Tracks Snowmelt to Improve Water Management
      Article 4 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      USSF and NASA successfully launched the STP-H10 mission carrying six experiments as a part of a resupply mission to the ISS

      View the full article
    • By NASA
      Jeremy Johnson, a research pilot and aviation safety officer, poses in front of a PC-12 aircraft inside the hangar at NASA’s Glenn Research Center in Cleveland on Thursday, April 17, 2025. Johnson flies NASA planes to support important scientific research and testing.Credit: NASA/Sara Lowthian-Hanna Jeremy Johnson laces his black, steel-toed boots and zips up his dark blue flight suit. Having just finished a pre-flight mission briefing with his team, the only thing on his mind is heading to the aircraft hangar and getting a plane in the air.
      As he eases a small white-and-blue propeller aircraft down the hangar’s ramp and onto the runway, he hears five essential words crackle through his headset: “NASA 606, cleared for takeoff.”
      This is a typical morning for Johnson, a research pilot and aviation safety officer at NASA’s Glenn Research Center in Cleveland. Johnson flies NASA planes to support important scientific research and testing, working with researchers to plan and carry out flights that will get them the data they need while ensuring safety.
      Johnson hasn’t always flown in NASA planes. He comes to the agency from the U.S. Air Force, where he flew missions all over the world in C-17 cargo aircraft, piloted unmanned reconnaissance operations out of California, and trained young aviators in Oklahoma on the fundamentals of flying combat missions.

      Jeremy Johnson stands beside a C-17 aircraft before a night training flight in Altus, Oklahoma, in 2020. Before supporting vital flight research at NASA through a SkillBridge fellowship, which gives transitioning service members the opportunity to gain civilian work experience, Johnson served in the U.S. Air Force and flew C-17 airlift missions all over the world.Credit: Courtesy of Jeremy Johnson He’s at Glenn for a four-month Department of Defense SkillBridge fellowship. The program gives transitioning service members an opportunity to gain civilian work experience through training, apprenticeships, or internships during their last 180 days of service before separating from the military.
      “I think SkillBridge has been an amazing tool to help me transition into what it’s like working somewhere that isn’t the military,” Johnson said. “In the Air Force, flying the mission was the mission. At NASA Glenn, the science—the research—is the mission.”
      By flying aircraft outfitted with research hardware or carrying test equipment, Johnson has contributed to two vital projects at NASA so far. One is focused on testing how well laser systems can transmit signals for communication and navigation. The other, part of NASA’s research under Air Mobility Pathfinders, explores how 5G telecommunications infrastructure can help electric air taxis of the future be safely incorporated into the national airspace. This work, and the data that scientists can collect through flights, supports NASA’s research to advance technology and innovate for the benefit of all.
      Jeremy Johnson pilots NASA Glenn Research Center’s PC-12 aircraft during a research flight on Thursday, April 17, 2025.Credit: NASA/Sara Lowthian-Hanna “It’s really exciting to see research hardware come fresh from the lab, and then be strapped onto an aircraft and taken into flight to see if it actually performs in a relevant environment,” Johnson said. “Every flight you do is more than just that flight—it’s one little part of a much bigger, much more ambitious project that’s going on. You remember, this is a small little piece of something that is maybe going to change the frontier of science, the frontier of discovery.”
      Johnson has always had a passion for aviation. In college, he worked as a valet to pay for flying lessons. To hone his skills before Air Force training, one summer he flew across the country in a Cessna with his aunt, a commercial pilot. They flew down the Hudson River as they watched the skyscrapers of New York City whizz by and later to Kitty Hawk, North Carolina, where the Wright brothers made their historic first flight. Johnson even flew skydivers part-time while he was stationed in California.
      Jeremy Johnson in the cockpit of a PC-12 aircraft as it exits the hangar at NASA’s Glenn Research Center in Cleveland before a research flight on Thursday, April 17, 2025.Credit: NASA/Sara Lowthian-Hanna Although he’s spent countless hours flying, he still takes the window seat on commercial flights whenever he can so he can look out the window and marvel at the world below.
      Despite his successes, Johnson’s journey to becoming a pilot wasn’t always smooth. He recalls that as he was about to land after his first solo flight, violent crosswinds blew his plane off the runway and sent him bouncing into the grass. Though he eventually got back behind the stick for another flight, he said that in that moment he wondered whether he had the strength and skills to overcome his self-doubt.
      “I don’t know anyone who flies for a living that had a completely easy path into it,” Johnson said. “To people who are thinking about getting into flying, just forge forward with it. Make people close doors on you, don’t close them on yourself, when it comes to flying or whatever you see yourself doing in the future. I just kept knocking on the door until there was a crack in it.”
      Explore More
      2 min read NASA, Boeing, Consider New Thin-Wing Aircraft Research Focus
      Article 19 hours ago 3 min read Nine Finalists Advance in NASA’s Power to Explore Challenge
      NASA has named nine finalists out of the 45 semifinalist student essays in the Power…
      Article 2 days ago 4 min read NASA Tests Ultralight Antennas to Benefit Future National Airspace
      Article 3 days ago View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s AVIRIS-3 airborne imaging spectrometer was used to map a wildfire near Cas-tleberry, Alabama, on March 19. Within minutes, the image was transmitted to firefighters on the ground, who used it to contain the blaze. NASA/JPL-Caltech, NASA Earth Observatory The map visualizes three wavelengths of infrared light, which are invisible to the human eye. Orange and red areas show cooler-burning areas, while yellow indicates the most intense flames. Burned areas show up as dark red or brown.NASA/JPL-Caltech, NASA Earth Observatory Data from the AVIRIS-3 sensor was recently used to create detailed fire maps in minutes, enabling firefighters in Alabama to limit the spread of wildfires and save buildings.
      A NASA sensor recently brought a new approach to battling wildfire, providing real-time data that helped firefighters in the field contain a blaze in Alabama. Called AVIRIS-3, which is short for Airborne Visible Infrared Imaging Spectrometer 3, the instrument detected a 120-acre fire on March 19 that had not yet been reported to officials.
      As AVIRIS-3 flew aboard a King Air B200 research plane over the fire about 3 miles (5 kilometers) east of Castleberry, Alabama, a scientist on the plane analyzed the data in real time and identified where the blaze was burning most intensely. The information was then sent via satellite internet to fire officials and researchers on the ground, who distributed images showing the fire’s perimeter to firefighters’ phones in the field.
      All told, the process from detection during the flyover to alert on handheld devices took a few minutes. In addition to pinpointing the location and extent of the fire, the data showed firefighters its perimeter, helping them gauge whether it was likely to spread and decide where to add personnel and equipment.
      As firefighters worked to prevent a wildfire near Perdido, Alabama, from reaching nearby buildings, they saw in an infrared fire map from NASA’s AVIRIS-3 sensor that showed the fire’s hot spot was inside its perimeter. With that intelligence, they shifted some resources to fires in nearby Mount Vernon.NASA/JPL-Caltech, NASA Earth Observatory “This is very agile science,” said Robert Green, the AVIRIS program’s principal investigator and a senior research scientist at NASA’s Jet Propulsion Laboratory in Southern California, noting AVIRIS-3 mapped the burn scar left near JPL by the Eaton Fire in January.
      Observing the ground from about 9,000 feet (3,000 meters) in altitude, AVIRIS-3 flew aboard several test flights over Alabama, Mississippi, Florida, and Texas for a NASA 2025 FireSense Airborne Campaign. Researchers flew in the second half of March to prepare for prescribed burn experiments that took place in the Geneva State Forest in Alabama on March 28 and at Fort Stewart-Hunter Army Airfield in Georgia from April 14 to 20. During the March span, the AVIRIS-3 team mapped at least 13 wildfires and prescribed burns, as well as dozens of small hot spots (places where heat is especially intense) — all in real time.
      At one of the Mount Vernon, Alabama, fires, firefighters used AVIRIS-3 maps to determine where to establish fire breaks beyond the northwestern end of the fire. They ultimately cut the blaze off within about 100 feet (30 meters) of four buildings.NASA/JPL-Caltech, NASA Earth Observatory Data from imaging spectrometers like AVIRIS-3 typically takes days or weeks to be processed into highly detailed, multilayer image products used for research. By simplifying the calibration algorithms, researchers were able to process data on a computer aboard the plane in a fraction of the time it otherwise would have taken. Airborne satellite internet connectivity enabled the images to be distributed almost immediately, while the plane was still in flight, rather than after it landed.
      The AVIRIS team generated its first real-time products during a February campaign covering parts of Panama and Costa Rica, and they have continued to improve the process, automating the mapping steps aboard the plane.
      ‘Fan Favorite’
      The AVIRIS-3 sensor belongs to a line of imaging spectrometers built at JPL since 1986. The instruments have been used to study a wide range of phenomena — including fire — by measuring sunlight reflecting from the planet’s surface.
      During the March flights, researchers created three types of maps. One, called the Fire Quicklook, combines brightness measurements at three wavelengths of infrared light, which is invisible to the human eye, to identify the relative intensity of burning. Orange and red areas on the Fire Quicklook map show cooler-burning areas, while yellow indicates the most intense flames. Previously burned areas show up as dark red or brown.
      Another map type, the Fire 2400 nm Quicklook, looks solely at infrared light at a wavelength of 2,400 nanometers. The images are particularly useful for seeing hot spots and the perimeters of fires, which show brightly against a red background.
      A third type of map, called just Quicklook, shows burned areas and smoke.
      The Fire 2400 nm Quicklook was the “fan favorite” among the fire crews, said Ethan Barrett, fire analyst for the Forest Protection Division of the Alabama Forestry Commission. Seeing the outline of a wildfire from above helped Alabama Forestry Commission firefighters determine where to send bulldozers to stop the spread. 
      Additionally, FireSense personnel analyzed the AVIRIS-3 imagery to create digitized perimeters of the fires. This provided firefighters fast, comprehensive intelligence of the situation on the ground.
      That’s what happened with the Castleberry Fire. Having a clear picture of where it was burning most intensely enabled firefighters to focus on where they could make a difference — on the northeastern edge. 
      Then, two days after identifying Castleberry Fire hot spots, the sensor spotted a fire about 4 miles (2.5 kilometers) southwest of Perdido, Alabama. As forestry officials worked to prevent flames from reaching six nearby buildings, they noticed that the fire’s main hot spot was inside the perimeter and contained. With that intelligence, they decided to shift some resources to fires 25 miles (40 kilometers) away near Mount Vernon, Alabama.
      To combat one of the Mount Vernon fires, crews used AVIRIS-3 maps to determine where to establish fire breaks beyond the northwestern end of the fire. They ultimately cut the blaze off within about 100 feet (30 meters) of four buildings. 
      “Fire moves a lot faster than a bulldozer, so we have to try to get around it before it overtakes us. These maps show us the hot spots,” Barrett said. “When I get out of the truck, I can say, ‘OK, here’s the perimeter.’ That puts me light-years ahead.”
      AVIRIS and the Firesense Airborne Campaign are part of NASA’s work to leverage its expertise to combat wildfires using solutions including airborne technologies. The agency also recently demonstrated a prototype from its Advanced Capabilities for Emergency Response Operations project that will provide reliable airspace management for drones and other aircraft operating in the air above wildfires.
      NASA Helps Spot Wine Grape Disease From Skies Above California News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      2025-058
      Share
      Details
      Last Updated Apr 23, 2025 Related Terms
      Earth Science Airborne Science Earth Earth Science Division Electromagnetic Spectrum Wildfires Explore More
      4 min read Entrepreneurs Challenge Winner PRISM is Using AI to Enable Insights from Geospatial Data
      NASA sponsored Entrepreneurs Challenge events in 2020, 2021, and 2023 to invite small business start-ups…
      Article 1 day ago 3 min read Celebrating Earth as Only NASA Can
      Article 2 days ago 3 min read Testing in the Clouds: NASA Flies to Improve Satellite Data
      Article 7 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      Department of the Air Force senior leaders from across the IT and acquisitions community emphasized the importance of investing in critical infrastructure and information systems across Air and Space Force installations.
      View the full article
  • Check out these Videos

×
×
  • Create New...