Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Continuing the Quest for Clays
      NASA’s Mars Perseverance rover acquired this image showing the target “Jigging Cove,” named by Make-A-Wish participant Madeline, located in the center of the image. Perseverance used its Left Mastcam-Z camera, one of a pair of cameras located high on the rover’s mast, to capture the image on June 27, 2025 (Sol 1547, or Martian day 1,547 of the Mars 2020 mission) at the local mean solar time of 11:26:04. NASA/JPL-Caltech/ASU Written by Eleanor Moreland, Ph.D. Student Collaborator at Rice University
      For the past month and a half, Perseverance has been exploring the Krokodillen plateau in search of clay-bearing rocks. An earlier blog discussed that these rocks could hold clues to Mars’ watery past, and Perseverance has been exploring multiple potential locations to find a suitable target to sample. When a coring target could not be found at the previous outcrop, the Science Team decided to return to the “Main Topsail” locality. In a single drive to this area, Perseverance drove 411.7 meters (1,350.7 feet, or just over a quarter mile) — the longest driving distance ever accomplished by a robotic vehicle on another planet. Go, Percy, go! 
      Back in the region near “Main Topsail” and “Salmon Point,” the team attempted to abrade and sample the clay-bearing rocks at a few different targets. These rocks, however, are proving very breakable and difficult to sample and abrade. Perseverance has experienced challenging fine-grained rocks before, such as during the fan front campaign inside Jezero crater. In that scenario and this one, the Science and Engineering teams work together diligently to find the highest priority targets and find rocks that could withstand the abrasion and coring processes. In this case, the team has decided to return to the site of a previous abrasion, “Strong Island,” to sample the rock we have already abraded and analyzed. This abrasion showed the strong clay signature the team is looking to sample, and we will make another coring attempt this week. 
      NASA’s Mars Perseverance rover acquired this image of the target “Gallants,” named by Make-A-Wish participant Joshua, located in the lower left quadrant of the image. Perseverance used its onboard Left Navigation Camera (Navcam), which is located high on the rover’s mast and aids in driving, to capture the image on July 1, 2025 (Sol 1551 or Martian day 1,551 of the Mars 2020 mission), at the local mean solar time of 13:10:08. NASA/JPL-Caltech This past week, the Perseverance team hosted two very special visitors, Madeline and Joshua, and had the unique honor of fulfilling their wishes through the Make-A-Wish foundation. During their visits to JPL, Madeline and Joshua were named honorary Mars 2020 Operations Team Members. They visited the test rovers in the JPL Mars Yard, watched data arrive from the rover with the Perseverance operations team, and attended a rover planning meeting, collaborating with the science and engineering team members on campus. Madeline and Joshua will forever be connected to the Mars 2020 mission, as each selected the name of one of our planning targets. Madeline’s target, “Jigging Cove,” was a target for Mastcam-Z and SuperCam “all techniques” analysis, including LIBS, VISIR, and RMI. Joshua’s selection, “Gallants,” will be used for the next coring target. Carrying forward the resilience shown by Madeline and Joshua, Perseverance will attempt to sample this clay-rich bedrock before continuing the investigation along the Jezero crater rim. 
      Share








      Details
      Last Updated Jul 08, 2025 Related Terms
      Blogs Explore More
      2 min read Curiosity Blog, Sols 4589 – 4592: Setting up to explore Volcán Peña Blanca


      Article


      21 hours ago
      2 min read Curiosity Blog, Sol 4588: Ridges and troughs


      Article


      22 hours ago
      2 min read Curiosity Blog, Sols 4586-4587: Straight Drive, Strategic Science


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By European Space Agency
      Video: 00:04:30 Explore the immense power of water as ESA’s Mars Express takes us on a flight over curving channels, streamlined islands and muddled ‘chaotic terrain’ on Mars, soaking up rover landing sites along the way.
      This beautiful flight around the Oxia Palus region of Mars covers a total area of approximately 890 000 km2, more than twice the size of Germany. Central to the tour is one of Mars’s largest outflow channels, Ares Vallis. It stretches for more than 1700 km2 and cascades down from the planet’s southern highlands to enter the lower-lying plains of Chryse Planitia.
      Billions of years ago, water surged through Ares Vallis, neighbouring Tiu Vallis, and numerous other smaller channels, creating many of the features observed in this region today.
      Enjoy the flight!
      After enjoying a spectacular global view of Mars we focus in on the area marked by the white rectangle. Our flight starts over the landing site of NASA’s Pathfinder mission, whose Sojourner rover explored the floodplains of Ares Vallis for 12 weeks in 1997. 
      Continuing to the south, we pass over two large craters named Masursky and Sagan. The partially eroded crater rim of Masursky in particular suggests that water once flowed through it, from nearby Tiu Vallis.
      The Masurky Crater is filled with jumbled blocks, and you can see many more as we turn north to Hydaspis Chaos. This ‘chaotic terrain’ is typical of regions influenced by massive outflow channels. Its distinctive muddled appearance is thought to arise when subsurface water is suddenly released from underground to the surface. The resulting loss of support from below causes the surface to slump and break into blocks of various sizes and shapes.
      Just beyond this chaotic array of blocks is Galilaei crater, which has a highly eroded rim and a gorge carved between the crater and neighbouring channel. It is likely that the crater once contained a lake, which flooded out into the surroundings. Continuing on, we see streamlined islands and terraced river banks, the teardrop-shaped island ‘tails’ pointing in the downstream direction of the water flow at the time.
      Crossing over Ares Vallis again, the flight brings us to the smoother terrain of Oxia Planum and the planned landing site for ESA’s ExoMars Rosalind Franklin rover. The primary goal of the mission is to search for signs of past or present life on Mars, and as such, this once water-flooded region is an ideal location.
      Zooming out, the flight ends with a stunning bird’s-eye view of Ares Vallis and its fascinating  water-enriched neighbourhood. 
      Disclaimer: This video is not representative of how Mars Express flies over the surface of Mars. See processing notes below.
      How the movie was made
      This film was created using the Mars Express High Resolution Stereo Camera Mars Chart (HMC30) data, an image mosaic made from single orbit observations of the High Resolution Stereo Camera (HRSC). The mosaic, centred at 12°N/330°E, is combined with topography information from the digital terrain model to generate a three-dimensional landscape. 
      For every second of the movie, 50 separate frames are rendered following a predefined camera path in the scene. A three-fold vertical exaggeration has been applied. Atmospheric effects such as clouds and haze have been added to conceal the limits of the terrain model. The haze starts building up at a distance of 300 km. 
      The HRSC camera on Mars Express is operated by the German Aerospace Center (DLR). The systematic processing of the camera data took place at the DLR Institute for Planetary Research in Berlin-Adlershof. The working group of Planetary Science and Remote Sensing at Freie Universität Berlin used the data to create the film.
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4366–4367: One of Those Days on Mars (Sulfate-Bearing Unit to the West of Upper Gediz Vallis)
      NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera on Nov. 14, 2024 — sol 4363, or Martian day 4,363 of the Mars Science Laboratory mission – at 02:55:34 UTC. NASA/JPL-Caltech Earth planning date: Friday, Nov. 15, 2024
      The Monday plan and drive had executed successfully, so the team had high hopes for APXS and MAHLI data on several enticing targets in the rover’s workspace. Alas, it was not to be: The challenging terrain had resulted in an awkwardly perched wheel at the end of the drive, so we couldn’t risk deploying the arm from this position. Maybe next drive!
      We did plan a busy weekend of non-arm science activities regardless. Due to a “soliday” the weekend has two sols instead of three, but we had enough power available to fit in more than three hours of observations. The two LIBS observations in the plan will measure the composition of the flat, reddish material in the workspace that is fractured in a polygonal pattern (“Bloody Canyon”) and a nearby rock coating in which the composition is suspected to change with depth (“Burnt Camp Creek”). One idea is that the reddish material could be the early stage version of the thicker dark coatings we’ve been seeing.
      A large Mastcam mosaic (“Yosemite”) was planned to capture the very interesting view to the rover’s north. Nearby and below the rover is the layer of rocks in which the “Mineral King” site was drilled on the opposite side of the channel back in March. This is a stratum of sulfate-bearing rock that appears dark-toned from orbit and we’re interested to know how consistent its features are from one side of the channel to the other. Higher up, the Yosemite mosaic also captures some deformation features that may reveal past water activity, and some terrain associated with the Gediz Vallis ridge. So there’s a lot of science packed into one mosaic!
      Two long-distance RMI mosaics were planned; one is to image back into the channel, where there may be evidence of a late-stage debris flow at the base of the ridge. The second looks “forward” from the rover’s perspective instead, into the wind-shaped yardang unit above us that will hopefully be explored close-up in the rover’s future. This yardang mosaic is intended to form one part of a stereo observation.
      The modern environment on Mars will also be observed with dust devil surveys on both sols, line-of-sight and tau observations to measure atmospheric opacity (often increased by dust in the atmosphere), and zenith and suprahorizon movies with Navcam to look for clouds. There will also be standard passive observations of the rover’s environment by REMS and DAN.
      We’ll continue driving westward and upward, rounding the Texoli butte to keep climbing through the sulfate-bearing unit. It’s not always easy driving but there’s a lot more science to do!
      Written by Lucy Lim, Participating Scientist at NASA’s Goddard Space Flight Center
      Share








      Details
      Last Updated Nov 18, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4362-4363: Plates and Polygons


      Article


      6 days ago
      3 min read Peculiar Pale Pebbles
      During its recent exploration of the crater rim, Perseverance diverted to explore a strange, scattered…


      Article


      6 days ago
      2 min read Sols 4359-4361: The Perfect Road Trip Destination For Any Rover!


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity NavigationCuriosity HomeMission Overview Where is Curiosity? Mission Updates ScienceOverview Instruments Highlights Exploration Goals News and Features MultimediaCuriosity Raw Images Images Videos Audio More Resources Mars MissionsMars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar SystemThe Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4321-4322: Sailing Out of Gediz Vallis
      This image was taken by Front Hazard Avoidance Camera (Front Hazcam) aboard NASA’s Mars rover Curiosity on Sol 4319 — Martian day 4,319 of the Mars Science Laboratory mission — on Sept. 29, 2024 at 21:31:07 UTC. NASA/JPL-Caltech Earth planning date: Monday, Sept. 30, 2024
      For the past few plans, Curiosity has been wrapping up its science campaign within Gediz Vallis. Over the weekend, the rover completed analyses on white stones encountered while departing the channel, before continuing along the western margin of Gediz Vallis. As we exit the channel, a metaphorical red buoy to our left, uncharted terrain lay ahead.
      Today’s two-sol plan commenced with APXS and MAHLI completing a thorough sounding of the target “Flat Note Lake,” the seemingly brighter rock in the left-middle of the image just below a darker cobble and on the margin of swell-like sand ripples. Curiosity also focused ChemCam’s telescope on several key beacons in the landscape. The first target, “Cactus Point,” received a number of laser shots from ChemCam, akin to signaling with a lighthouse to assess its elemental message back to the ship. ChemCam’s RMI captured high-definition mosaics of key formations including rugged yardangs, formations that would not take too kindly to contact with a vessel’s hull. Mastcam complemented these observations with its own survey of the local area, capturing targets that included “Tombstone Ridge,” “Balloon Dome,” “Pinnacle Ridge,” “Clyde Spires,” “Confusion Lake” and “Pilot Peak” in addition to Cactus Point. A lengthy DAN passive measurement was completed in parallel, akin to a depth sounder probing the terrain beneath our hull.  With the scientific reconnaissance of the first sol complete, Curiosity tested its metaphorical rigging in the form of trying out some Feed-Extended Sample Transfer arm activities in parallel with a telecommunications window before setting course out of the channel. This is similar to the test we did sols 4311-4313, and will hopefully help us become more efficient in the future.
      The second sol of the plan was primarily focused on gathering environmental data and performing post-departure imaging in preparation for Wednesday’s plan, analogous to a ship trimming its sails and adjusting the helm as it exits a sheltered cove. ChemCam completed a calibration activity, fine-tuning its sextant in preparation for its next round of observations. Environmental monitoring and a SAM activity rounded out the second sol of the plan. 
      Written by Scott VanBommel, Planetary Scientist at Washington University
      Share
      Details
      Last Updated Oct 02, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4318-4320: One Last Weekend in the Channel
      Article 3 days ago 4 min read Sols 4316-4317: Hunting for Sulfur
      Article 5 days ago 3 min read Sols 4314-4315: Wait, What Was That Back There?
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Mars
      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
      All Mars Resources
      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
      Rover Basics
      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
      Mars Exploration: Science Goals
      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4302-4303: West Side of Upper Gediz Vallis, From Tungsten Hills to the Next Rocky Waypoint
      This photo taken by NASA’s Mars rover Curiosity of ‘Balloon Dome’ covers a low dome-like structure formed by the light-toned slab-like rocks. This image was taken by Left Navigation Camera aboard Curiosity on Sol 4301 — Martian day 4,301 of the Mars Science Laboratory mission — on Sept. 11, 2024, at 09:14:42 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Sept. 11, 2024
      The rover is on its way from the Tungsten Hills site to the next priority site for Gediz Vallis channel exploration, in which we plan to get in close enough for arm science to one of the numerous large dark-toned “float” blocks in the channel and also to one of the light-toned slabs.  We have seen some dark blocks in the channel that seem to be related to the Stimson formation material that the rover encountered earlier in the mission, but some seem like they could be something different. We don’t think any of them originated in the channel so they have to come from somewhere higher up that the rover hasn’t been, and we’re interested in how they were transported down into the channel.
      We aren’t there yet, but the 4302-4303 plan’s activities include some important longer-range characterization of the dark-toned and light-toned materials via imaging. Context for the future close-up science on the dark-toned blocks will be provided by the Mastcam mosaics named “Bakeoven Meadow” and “Balloon Dome.”  The broad Balloon Dome mosaic also covers a low dome-like structure formed by the light-toned slab-like rocks (pictured).  Smaller mosaics will cover a pair of targets that include contacts where other types of light-toned and dark-toned material occur next to each other in the same block: “Rattlesnake Creek” which appears to be in place, and “Casa Diablo Hot Springs,” which is a float.
      The rover’s arm workspace provided an opportunity for present-day aeolian science on the sandy-looking ripple, Sandy Meadow. Mastcam stereo imaging will document the shape of the ripple, while a suite of high-resolution MAHLI images will tell us something about the particle size of the grains in it.  The modern environment will also be monitored via a suprahorizon observation, a dust devil survey, and imaging of the rover deck to look for dust movement.
      The workspace included small examples of the dark float blocks, so the composition of one of them will be measured by both APXS and ChemCam LIBS as targets “Lucy’s Foot Pass” and “Colt Lake” respectively.
      In the meantime, the Mastcam Boneyard Meadow mosaic will provide a look back at the Tungsten Hills dark rippled block along its bedding plane to try to narrow down the origin of the ripples and the potential roles of water vs. wind in their formation.
      Communication remains a challenge for the rover in this location. During planning, the rover’s drive was shifted from the second sol to the first sol in order to increase the downlink data volume available for the post-drive imaging, thereby enabling better planning at the science waypoint we expect to reach in the weekend plan. However, maintaining communications will require the rover to end its drive in a narrow range of orientations, which could make approaching our next science target a bit tricky.  We’ll find out on Friday!
      Written by: Lucy Lim, Planetary Scientist at NASA Goddard Space Flight Center
      Edited by: Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Sep 13, 2024 Related Terms
      Blogs Explore More
      2 min read Margin’ up the Crater Rim!


      Article


      3 days ago
      3 min read Sols 4300-4301: Rippled Pages


      Article


      3 days ago
      2 min read Sols 4297-4299: This Way to Tungsten Hills


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...