Jump to content

Seven US Companies Collaborate with NASA to Advance Space Capabilities


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Getty Images NASA has selected two more university student teams to help address real-world aviation challenges, through projects aimed at using drones for hurricane relief and improved protection of air traffic systems from cyber threats. 
      The research awards were made through NASA’s University Student Research Challenge (USRC), which provides student-led teams with opportunities to contribute their novel ideas to advance NASA’s Aeronautics research priorities.   
      As part of USRC, students participate in real-world aspects of innovative aeronautics research both in and out of the laboratory.  
      “USRC continues to be a way for students to push the boundary on exploring the possibilities of tomorrow’s aviation industry.” said Steven Holz, who manages the USRC award process. “For some, this is their first opportunity to engage with NASA. For others, they may be taking their ideas from our Gateways to Blue Skies competition and bringing them closer to reality.” 
      In the case of one of the new awardees, North Carolina State University in Raleigh applied for their USRC award after refining a concept that made them a finalist in NASA’s 2024 Gateways to Blue Skies competition.  
      Each team of students selected for a USRC award receives a NASA grant up to $80,000 and is tasked with raising additional funds through student-led crowdfunding. This process helps students develop skills in entrepreneurship and public communication. 
      The new university teams and research topics are: 
      North Carolina State University in Raleigh 
      “Reconnaissance and Emergency Aircraft for Critical Hurricane Relief” will develop and deploy advanced Unmanned Aircraft Systems (UAS) designed to locate, communicate with, and deliver critical supplies to stranded individuals in the wake of natural disasters. 
      The team includes Tobias Hullette (team lead), Jose Vizcarrondo, Rishi Ghosh, Caleb Gobel, Lucas Nicol, Ajay Pandya, Paul Randolph, and Hadie Sabbah, with faculty mentor Felix Ewere. 
      Texas A&M University, in College Station 
      “Context-Aware Cybersecurity for UAS Traffic Management” will develop, test, and pursue the implementation of an aviation-context-aware network authentication system for the holistic management of cybersecurity threats to enable future drone traffic control systems.  
      The team includes Vishwam Raval (team lead), Nick Truong, Oscar Leon, Kevin Lei, Garett Haynes, Michael Ades, Sarah Lee, and Aidan Spira, with faculty mentor Sandip Roy. 
      Complete details on USRC awardees and solicitations, such as what to include in a proposal and how to submit it, are available on the NASA Aeronautics Research Mission Directorate solicitation page. 
      About the Author
      John Gould
      Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      9 min read ARMD Research Solicitations (Updated May 1)
      Article 2 weeks ago 4 min read Air Force Pilot, SkillBridge Fellow Helps NASA Research Soar
      Article 3 weeks ago 2 min read NASA, Boeing, Consider New Thin-Wing Aircraft Research Focus
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated May 15, 2025 EditorJim BankeContactSteven Holzsteven.m.holz@nasa.gov Related Terms
      University Student Research Challenge Aeronautics Flight Innovation Transformative Aeronautics Concepts Program University Innovation View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Sunlight reflects off the ocean surface near Norfolk, Virginia, in this 1991 space shuttle image, highlighting swirling patterns created by features such as internal waves, which are produced when the tide moves over underwater features. Data from the international SWOT mission is revealing the role of smaller-scale waves and eddies.NASA The international mission collects two-dimensional views of smaller waves and currents that are bringing into focus the ocean’s role in supporting life on Earth.
      Small things matter, at least when it comes to ocean features like waves and eddies. A recent NASA-led analysis using data from the SWOT (Surface Water and Ocean Topography) satellite found that ocean features as small as a mile across potentially have a larger impact on the movement of nutrients and heat in marine ecosystems than previously thought.
      Too small to see well with previous satellites but too large to see in their entirety with ship-based instruments, these relatively small ocean features fall into a category known as the submesoscale. The SWOT satellite, a joint effort between NASA and the French space agency CNES (Centre National d’Études Spatiales), can observe these features and is demonstrating just how important they are, driving much of the vertical transport of things like nutrients, carbon, energy, and heat within the ocean. They also influence the exchange of gases and energy between the ocean and atmosphere.
      “The role that submesoscale features play in ocean dynamics is what makes them important,” said Matthew Archer, an oceanographer at NASA’s Jet Propulsion Laboratory in Southern California. Some of these features are called out in the animation below, which was created using SWOT sea surface height data.

      This animation shows small ocean features — including internal waves and eddies — derived from SWOT observations in the Indian, Atlantic, and Pacific oceans, as well as the Mediterranean Sea. White and lighter blue represent higher ocean surface heights compared to darker blue areas. The purple colors shown in one location represent ocean current speeds.
      NASA’s Scientific Visualization Studio “Vertical currents move heat between the atmosphere and ocean, and in submesoscale eddies, can actually bring up heat from the deep ocean to the surface, warming the atmosphere,” added Archer, who is a coauthor on the submesoscale analysis published in April in the journal Nature. Vertical circulation can also bring up nutrients from the deep sea, supplying marine food webs in surface waters like a steady stream of food trucks supplying festivalgoers.
      “Not only can we see the surface of the ocean at 10 times the resolution of before, we can also infer how water and materials are moving at depth,” said Nadya Vinogradova Shiffer, SWOT program scientist at NASA Headquarters in Washington.
      Fundamental Force
      Researchers have known about these smaller eddies, or circular currents, and waves for decades. From space, Apollo astronauts first spotted sunlight glinting off small-scale eddies about 50 years ago. And through the years, satellites have captured images of submesoscale ocean features, providing limited information such as their presence and size. Ship-based sensors or instruments dropped into the ocean have yielded a more detailed view of submesoscale features, but only for relatively small areas of the ocean and for short periods of time.
      The SWOT satellite measures the height of water on nearly all of Earth’s surface, including the ocean and freshwater bodies, at least once every 21 days. The satellite gives researchers a multidimensional view of water levels, which they can use to calculate, for instance, the slope of a wave or eddy. This in turn yields information on the amount of pressure, or force, being applied to the water in the feature. From there, researchers can figure out how fast a current is moving, what’s driving it and —combined with other types of information — how much energy, heat, or nutrients those currents are transporting.  
      “Force is the fundamental quantity driving fluid motion,” said study coauthor Jinbo Wang, an oceanographer at Texas A&M University in College Station. Once that quantity is known, a researcher can better understand how the ocean interacts with the atmosphere, as well as how changes in one affect the other.
      Prime Numbers
      Not only was SWOT able to spot a submesoscale eddy in an offshoot of the Kuroshio Current — a major current in the western Pacific Ocean that flows past the southeast coast of Japan — but researchers were also able to estimate the speed of the vertical circulation within that eddy. When SWOT observed the feature, the vertical circulation was likely 20 to 45 feet (6 to 14 meters) per day.
      This is a comparatively small amount for vertical transport. However, the ability to make those calculations for eddies around the world, made possible by SWOT, will improve researchers’ understanding of how much energy, heat, and nutrients move between surface waters and the deep sea.
      Researchers can do similar calculations for such submesoscale features as an internal solitary wave — a wave driven by forces like the tide sloshing over an underwater plateau. The SWOT satellite spotted an internal wave in the Andaman Sea, located in the northeastern part of the Indian Ocean off Myanmar. Archer and colleagues calculated that the energy contained in that solitary wave was at least twice the amount of energy in a typical internal tide in that region.
      This kind of information from SWOT helps researchers refine their models of ocean circulation. A lot of ocean models were trained to show large features, like eddies hundreds of miles across, said Lee Fu, SWOT project scientist at JPL and a study coauthor. “Now they have to learn to model these smaller scale features. That’s what SWOT data is helping with.”
      Researchers have already started to incorporate SWOT ocean data into some models, including NASA’s ECCO (Estimating the Circulation and Climate of the Ocean). It may take some time until SWOT data is fully a part of models like ECCO. But once it is, the information will help researchers better understand how the ocean ecosystem will react to a changing world.
      More About SWOT
      The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. Managed for NASA by Caltech in Pasadena, California, JPL leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
      To learn more about SWOT, visit:
      https://swot.jpl.nasa.gov
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-491-1943 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2025-070
      Share
      Details
      Last Updated May 15, 2025 Related Terms
      SWOT (Surface Water and Ocean Topography) Jet Propulsion Laboratory Oceanography Oceans Explore More
      6 min read NASA’s Magellan Mission Reveals Possible Tectonic Activity on Venus
      Article 23 hours ago 6 min read NASA Studies Reveal Hidden Secrets About Interiors of Moon, Vesta
      Article 1 day ago 5 min read NASA’s Europa Clipper Captures Mars in Infrared
      Article 3 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Space Cloud Watch Needs Your Photos of Night-Shining Clouds 
      Noctilucent Clouds observed from Bozeman, MT on 16 July 2009 at 4:29 MDT. The Space Cloud Watch project needs more photos like this one to diagnose changes in our atmosphere! Photo credit: Dr. Joseph A Shaw Noctilucent or night-shining clouds are rare, high-altitude clouds that glow with a blue silvery hue at dusk or dawn when the sun shines on them from below the horizon. These ice clouds typically occur near the north and south poles but are increasingly being reported at mid- and low latitudes. Observing them helps scientists better understand how human activities may affect our atmosphere.
      Now, the Space Cloud Watch project is asking you to report your own observations of noctilucent clouds and upload your own photographs. Combined with satellite data and model simulations, your data can help us figure out why these noctilucent clouds are suddenly appearing at mid-low latitudes, where temperatures are usually too warm for them to form.
       “I find these clouds fascinating and can’t wait to see the amazing pictures,” said project lead Dr. Chihoko Cullens from the University of Colorado, Boulder Laboratory for Atmospheric and Space Physics. 
      Did you see or photograph any night-shining clouds? Upload them here. Later, the science team will transfer them to a site on the Zooniverse platform where you or other volunteers can help examine them and identify wave structures in the cloud images.
      If you love clouds, NASA has more citizen science projects for you. Try Cloudspotting on Mars, Cloudspotting on Mars: Shapes, or GLOBE Observer Clouds!
      Share








      Details
      Last Updated May 15, 2025 Related Terms
      Citizen Science Heliophysics Explore More
      4 min read Eclipses, Auroras, and the Spark of Becoming: NASA Inspires Future Scientists


      Article


      20 hours ago
      6 min read What NASA Is Learning from the Biggest Geomagnetic Storm in 20 Years


      Article


      6 days ago
      2 min read Amateur Radio Scientists Shine at the 2025 HamSCI Workshop


      Article


      2 weeks ago
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Christine Braden values new experiences that broaden her perspective; a mindset that has guided her 26-year career at NASA’s Johnson Space Center in Houston, where she currently serves as a senior systems engineer in the Commercial Low Earth Orbit Development Program. In her role, Braden works with engineering teams to develop commercial space stations that will prioritize the safety of astronauts while maximizing cost-effectiveness and the scientific research capabilities onboard. 

      Managed by NASA’s Space Operations Mission Directorate, the program supports the development of commercially owned and operated space stations in low Earth orbit from which the agency, along with other customers, can purchase services and stimulate the growth of commercial activities in space. Designing and developing these space stations is the first step of NASA’s two-phase approach, enabling the agency to certify stations and procure services as one of many customers.

      With a bachelor’s degree in Technical Management from Embry-Riddle Aeronautical University, Braden brings a strong engineering foundation to her work. However, her role unique because it allows her to merge technical expertise with her creative instincts. 

      “My team must think outside the box to define new ways that ensure that the commercial providers’ technical integrations, requirements, development, and operations are designed to the highest degree possible,” said Braden.

      Recently, she proposed a certification and systems engineering architecture that redefines how companies will interface with NASA and each other in an evolving landscape. Braden’s hybrid approach strikes a balance, allowing companies to innovate while favoring shared assurance and accountability. It also gives NASA situational awareness of the companies’ design, tests, mission, and operational approaches. As a result of her efforts, Braden was recognized with an “On the Spot” award.

      Christine Braden receives an “On the Spot” award from Angela Hart, program manager for NASA’s Commercial Low Earth Orbit Development Program, in March 2024.NASA/Helen Arase Vargas
      Looking ahead, Braden envisions a world where commercial space stations are a hub for science and technology, spacecraft are more efficient, spaceflight is more accessible, humans are back on the Moon, and Mars is the next frontier. In reflecting on these agency-wide goals, Braden finds that working with passionate team members makes her day-to-day work truly special and enjoyable.

      “I am a part of a small, close-knit team that works together to make these advancements in space exploration happen for the world,” said Braden. “Working at NASA is a once-in-a-lifetime opportunity that not only defines my working life going forward but also provides me with an experience I can share with some truly amazing people.” 
      Working at NASA is a once-in-a-lifetime opportunity that not only defines my working life going forward but also provides me with an experience I can share with some truly amazing people.
      Christine Braden
      Senior Systems Engineer, Commercial Low Earth Orbit Development Program

      Outside of work, Braden is inspired by her faith, which encourages her to see things from new perspectives and try to understand people from all walks of life. Additionally, Braden is a lifelong learner who loves listening to podcasts, watching documentaries, and reading web articles. She is eager to learn everything from music and dance to plants and animals. 

      “When I look through scientific websites where new planets and galaxies are discovered, it makes me think of ways humanity may expand itself to the stars, and ways that we can preserve the life we have here on Earth,” said Braden.

      On the topic of preservation, one of Braden’s many hobbies is antique restoration. “It reminds me of my dad and grandfather restoring homes together during my childhood and gives me hope that I can inspire my children as they watch me follow in our family’s footsteps,” said Braden. Her other hobbies include gardening and family activities such as puzzles, board games, watching television, playing video games, hunting, and traveling.

      As a driven individual known for her creativity and curiosity, Braden’s fresh ideas and spirit are key in guiding the agency’s progress into new frontiers. 

      NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the hub of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support.

      To learn more about NASA’s Space Operation Mission Directorate, visit: 
      https://www.nasa.gov/directorates/space-operations
      Share
      Details
      Last Updated May 15, 2025 Related Terms
      Space Operations Mission Directorate Explore More
      4 min read NASA Enables SPHEREx Data Return Through Commercial Partnership
      Article 1 week ago 4 min read Meet the Space Ops Team: Becky Brocato
      Article 4 weeks ago 3 min read Meet the Space Ops Team: Anum Ashraf
      Article 2 months ago Keep Exploring Discover Related Topics
      Humans In Space
      International Space Station
      Commercial Space
      NASA Directorates
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Will the Sun ever burn out?

      Well, the Sun, just like the stars we see at night, is a star. It’s a giant ball of super hot hydrogen.

      Gravity squeezes it in and it creates energy, which is what makes the Sun shine. Eventually, it will use up all of that hydrogen. But in the process, it’s creating helium. So it will then use the helium. And it will continue to use larger and larger elements until it can’t do this anymore.

      And when that happens, it will start to expand into a red giant about the size of the inner planets. Then it will shrink back down into a very strange star called a white dwarf — super hot, but not very bright and about the size of the Earth.

      But our Sun has a pretty long lifetime. It’s halfway through its 10-billion-year lifetime.

      So the Sun will never really burn out, but it will change and be a very, very different dim kind of star when it reaches the end of its normal life.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated May 15, 2025 Related Terms
      Science Mission Directorate Heliophysics Heliophysics Division The Solar System The Sun The Sun & Solar Physics Explore More
      4 min read Eclipses, Auroras, and the Spark of Becoming: NASA Inspires Future Scientists
      In the heart of Alaska’s winter, where the night sky stretches endlessly and the aurora…
      Article 16 hours ago 6 min read NASA Observes First Visible-light Auroras at Mars
      On March 15, 2024, near the peak of the current solar cycle, the Sun produced…
      Article 19 hours ago 6 min read NASA’s Magellan Mission Reveals Possible Tectonic Activity on Venus
      Article 19 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...