Members Can Post Anonymously On This Site
Firestorm of Star Birth in the Active Galaxy Centaurus A
-
Similar Topics
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Universe Uncovered Hubble’s Partners in Science AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Astronaut Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
Hubble Homes in on Galaxy’s Star Formation
This NASA/ESA Hubble Space Telescope image features the asymmetric spiral galaxy Messier 96. ESA/Hubble & NASA, F. Belfiore, D. Calzetti This NASA/ESA Hubble Space Telescope image features a galaxy whose asymmetric appearance may be the result of a galactic tug of war. Located 35 million light-years away in the constellation Leo, the spiral galaxy Messier 96 is the brightest of the galaxies in its group. The gravitational pull of its galactic neighbors may be responsible for Messier 96’s uneven distribution of gas and dust, asymmetric spiral arms, and off-center galactic core.
This asymmetric appearance is on full display in the new Hubble image that incorporates data from observations made in ultraviolet, near infrared, and visible/optical light. Earlier Hubble images of Messier 96 were released in 2015 and 2018. Each successive image added new data, building up a beautiful and scientifically valuable view of the galaxy.
The 2015 image combined two wavelengths of optical light with one near infrared wavelength. The optical light revealed the galaxy’s uneven form of dust and gas spread asymmetrically throughout its weak spiral arms and its off-center core, while the infrared light revealed the heat of stars forming in clouds shaded pink in the image.
The 2018 image added two more optical wavelengths of light along with one wavelength of ultraviolet light that pinpointed areas where high-energy, young stars are forming.
This latest version offers us a new perspective on Messier 96’s star formation. It includes the addition of light that reveals regions of ionized hydrogen (H-alpha) and nitrogen (NII). This data helps astronomers determine the environment within the galaxy and the conditions in which stars are forming. The ionized hydrogen traces ongoing star formation, revealing regions where hot, young stars are ionizing the gas. The ionized nitrogen helps astronomers determine the rate of star formation and the properties of gas between stars, while the combination of the two ionized gasses helps researchers determine if the galaxy is a starburst galaxy or one with an active galactic nucleus.
The bubbles of pink gas in this image surround hot, young, massive stars, illuminating a ring of star formation in the galaxy’s outskirts. These young stars are still embedded within the clouds of gas from which they were born. Astronomers will use the new data in this image to study how stars are form within giant dusty gas clouds, how dust filters starlight, and how stars affect their environments.
Explore More:
Learn more about why astronomers study light in detail
Explore the different wavelengths of light Hubble sees
Explore the Night Sky: Messier 96
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Aug 29, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies Stars The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble Science Highlights
Hubble’s 35th Anniversary
Hubble’s Night Sky Challenge
View the full article
-
By NASA
This graphic features data from NASA’s Chandra X-ray Observatory of the Cassiopeia A (Cas A) supernova remnant that reveals that the star’s interior violently rearranged itself mere hours before it exploded. The main panel of this graphic is Chandra data that shows the location of different elements in the remains of the explosion: silicon (represented in red), sulfur (yellow), calcium (green) and iron (purple). The blue color reveals the highest-energy X-ray emission detected by Chandra in Cas A and an expanding blast wave. The inset reveals regions with wide ranges of relative abundances of silicon and neon. This data, plus computer modeling, reveal new insight into how massive stars like Cas A end their lives.X-ray: NASA/CXC/Meiji Univ./T. Sato et al.; Image Processing: NASA/CXC/SAO/N. Wolk The inside of a star turned on itself before it spectacularly exploded, according to a new study from NASA’s Chandra X-ray Observatory. Today, this shattered star, known as the Cassiopeia A supernova remnant, is one of the best-known, well-studied objects in the sky.
Over three hundred years ago, however, it was a giant star on the brink of self-destruction. The new Chandra study reveals that just hours before it exploded, the star’s interior violently rearranged itself. This last-minute shuffling of its stellar belly has profound implications for understanding how massive stars explode and how their remains behave afterwards.
Cassiopeia A (Cas A for short) was one of the first objects the telescope looked at after its launch in 1999, and astronomers have repeatedly returned to observe it.
“It seems like each time we closely look at Chandra data of Cas A, we learn something new and exciting,” said Toshiki Sato of Meiji University in Japan who led the study. “Now we’ve taken that invaluable X-ray data, combined it with powerful computer models, and found something extraordinary.”
As massive stars age, increasingly heavy elements form in their interiors by nuclear reactions, creating onion-like layers of different elements. Their outer layer is mostly made of hydrogen, followed by layers of helium, carbon and progressively heavier elements – extending all the way down to the center of the star.
Once iron starts forming in the core of the star, the game changes. As soon as the iron core grows beyond a certain mass (about 1.4 times the mass of the Sun), it can no longer support its own weight and collapses. The outer part of the star falls onto the collapsing core, and rebounds as a core-collapse supernova.
The new research with Chandra data reveals a change that happened deep within the star at the very last moments of its life. After more than a million years, Cas A underwent major changes in its final hours before exploding.
“Our research shows that just before the star in Cas A collapsed, part of an inner layer with large amounts of silicon traveled outwards and broke into a neighboring layer with lots of neon,” said co-author Kai Matsunaga of Kyoto University in Japan. “This is a violent event where the barrier between these two layers disappears.”
This upheaval not only caused material rich in silicon to travel outwards; it also forced material rich in neon to travel inwards. The team found clear traces of these outward silicon flows and inward neon flows in the remains of Cas A’s supernova remnant. Small regions rich in silicon but poor in neon are located near regions rich in neon and poor in silicon.
The survival of these regions not only provides critical evidence for the star’s upheaval, but also shows that complete mixing of the silicon and neon with other elements did not occur immediately before or after the explosion. This lack of mixing is predicted by detailed computer models of massive stars near the ends of their lives.
There are several significant implications for this inner turmoil inside of the doomed star. First, it may directly explain the lopsided rather than symmetrical shape of the Cas A remnant in three dimensions. Second, a lopsided explosion and debris field may have given a powerful kick to the remaining core of the star, now a neutron star, explaining the high observed speed of this object.
Finally, the strong turbulent flows created by the star’s internal changes may have promoted the development of the supernova blast wave, facilitating the star’s explosion.
“Perhaps the most important effect of this change in the star’s structure is that it may have helped trigger the explosion itself,” said co-author Hiroyuki Uchida, also of Kyoto University. “Such final internal activity of a star may change its fate—whether it will shine as a supernova or not.”
These results have been published in the latest issue of The Astrophysical Journal and are available online.
To learn more about Chandra, visit:
https://science.nasa.gov/chandra
Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release features a composite image of Cassiopeia A, a donut-shaped supernova remnant located about 11,000 light-years from Earth. Included in the image is an inset closeup, which highlights a region with relative abundances of silicon and neon.
Over three hundred years ago, Cassiopeia A, or Cas A, was a star on the brink of self-destruction. In composition it resembled an onion with layers rich in different elements such as hydrogen, helium, carbon, silicon, sulfur, calcium, and neon, wrapped around an iron core. When that iron core grew beyond a certain mass, the star could no longer support its own weight. The outer layers fell into the collapsing core, then rebounded as a supernova. This explosion created the donut-like shape shown in the composite image. The shape is somewhat irregular, with the thinner quadrant of the donut to the upper left of the off-center hole.
In the body of the donut, the remains of the star’s elements create a mottled cloud of colors, marbled with red and blue veins. Here, sulfur is represented by yellow, calcium by green, and iron by purple. The red veins are silicon, and the blue veins, which also line the outer edge of the donut-shape, are the highest energy X-rays detected by Chandra and show the explosion’s blast wave.
The inset uses a different color code and highlights a colorful, mottled region at the thinner, upper left quadrant of Cas A. Here, rich pockets of silicon and neon are identified in the red and blue veins, respectively. New evidence from Chandra indicates that in the hours before the star’s collapse, part of a silicon-rich layer traveled outwards, and broke into a neighboring neon-rich layer. This violent breakdown of layers created strong turbulent flows and may have promoted the development of the supernova’s blast wave, facilitating the star’s explosion. Additionally, upheaval in the interior of the star may have produced a lopsided explosion, resulting in the irregular shape, with an off-center hole (and a thinner bite of donut!) at our upper left.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
corinne.m.beckinger@nasa.gov
Share
Details
Last Updated Aug 28, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
Chandra X-Ray Observatory General Marshall Astrophysics Marshall Space Flight Center Supernova Remnants Supernovae The Universe Explore More
6 min read Meet NASA’s Artemis II Moon Mission Masterminds
Article 22 hours ago 4 min read Washington State Student Wins 2025 NASA Art Contest
Article 3 days ago 5 min read Astronomers Map Stellar ‘Polka Dots’ Using NASA’s TESS, Kepler
Scientists have devised a new method for mapping the spottiness of distant stars by using…
Article 3 days ago View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
Hubble Observes Noteworthy Nearby Spiral Galaxy
This NASA/ESA Hubble Space Telescope image features the nearby spiral galaxy NGC 2835. ESA/Hubble & NASA, R. Chandar, J. Lee and the PHANGS-HST team This NASA/ESA Hubble Space Telescope image offers a new view of the nearby spiral galaxy NGC 2835, which lies 35 million light-years away in the constellation Hydra (the Water Snake). The galaxy’s spiral arms are dotted with young blue stars sweeping around an oval-shaped center where older stars reside.
This image differs from previously released images from Hubble and the NASA/ESA/CSA James Webb Space Telescope because it incorporates new data from Hubble that captures a specific wavelength of red light called H-alpha. The regions that are bright in H-alpha emission are visible along NGC 2835’s spiral arms, where dozens of bright pink nebulae appear like flowers in bloom. Astronomers are interested in H-alpha light because it signals the presence of several different types of nebulae that arise during different stages of a star’s life. Newborn, massive stars create nebulae called H II regions that are particularly brilliant sources of H-alpha light, while dying stars can leave behind supernova remnants or planetary nebulae that can also be identified by their H-alpha emission.
By using Hubble’s sensitive instruments to survey 19 nearby galaxies, researchers aim to identify more than 50,000 nebulae. These observations will help to explain how stars affect their birth neighborhoods through intense starlight and winds.
Text Credit: ESA/Hubble
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Share
Details
Last Updated Aug 21, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble Astronauts
Hubble e-Books
Hubble’s Night Sky Challenge
View the full article
-
By NASA
Explore This Section Earth Earth Observer Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam Announcements More Archives Conference Schedules Style Guide 21 min read
A Decade of Global Water Cycle Monitoring: NASA Soil Moisture Active Passive Mission
Introduction
The NASA Soil Moisture Active Passive (SMAP) mission, launched in 2015, has over 10 years of global L-band radiometry observations. The low frequency [1.4 GHz frequency or 21 cm (8 in) wavelength] measurements provide information on the state of land surfaces in all weather conditions – regardless of solar illumination. A principal objective of the SMAP mission is to provide estimates of surface soil moisture and its frozen or thawed status. Over the land surface, soil moisture links the water, energy, and carbon cycles. These three cycles are the main drivers of regional climate and regulate the functioning of ecosystems.
The achievement of 10 years in orbit is a fitting time to reflect on what SMAP has accomplished. After briefly discussing the innovative measurement approach and the instrument payload (e.g., a radiometer and a regrettably short-lived L-band radar), a significant section of this article is devoted to describing the mission’s major scientific achievements and how the data from SMAP have been used to serve society (e.g., applied sciences) – including SMAP’s pathfinding role as Early Adopters. This content is followed by a discussion of how SMAP has dealt with issues related to radio frequency interference in the L-Band region, a discussion of the SMAP data products suite, future plans for the SMAP active–passive algorithm, and a possible follow-on L-band global radiometry mission being developed by the European Union’s Copernicus Programme that would allow for data continuity beyond SMAP. This summary for The Earth Observer is excerpted from a longer and more comprehensive paper that, as of this article’s posting, is being prepared for publication in the Proceedings of the Institute of Electrical and Electronics Engineers (IEEE).
SMAP Measurement Approach and Instruments
The SMAP primary and operating instrument is the L-band radiometer, which collects precise surface brightness temperature data. The radiometer includes advanced radio frequency interference (RFI) detection and mitigation hardware and software. The radiometer measures vertical and horizontal polarization observations along with the third and fourth Stokes parameters (T3 and T4) of the microwave radiation upwelling from the Earth. The reflector boom and assembly, which includes a 6 m (20 ft) deployable light mesh reflector, is spun at 14.6 revolutions-per-minute, which creates a 1000 km (621 mi) swath as the SMAP satellite makes its Sun-synchronous orbit of the Earth – see Figure 1. This approach allows coverage of the entire globe in two to three days with an eight-day exact repeat. The radiometer instrument is calibrated monthly by pointing it to the deep sky.
Figure 1. An artist’s rendering of the SMAP Observatory showing both the radiometer and radar. Figure credit: NASA/Jet Propulsion Laboratory/California Institute of Technology The original SMAP instrument design included a companion L-band radar, which operated from April through early July 2015, acquiring observations of co- and cross-polarized radar backscatter at a spatial resolution of about 1 km (0.6 mi) with a temporal revisit of about three days over land. This data collection revealed the dependence of L-band radar signals on soil moisture, vegetation water content, and freeze thaw state. The radar transmitter failed on July 7, 2015. Shortly thereafter, the radar receiver channels were repurposed to record the reflected signals from the Global Navigation Satellite System (GNSS) constellation in August 2015, making SMAP the first full-polarimetric GNSS reflectometer in space for the investigation of land surface and cryosphere.
Scientific Achievements from a Decade of SMAP Data
A decade of SMAP soil moisture observations have led to a plethora of scientific achievements. The data have been used to quantify the linkages of the three main metabolic cycles (e.g., carbon, water, and energy) on land. They have also been used to improve drought assessments and flood prediction as well as the accuracy of numerical weather prediction (NWP) models. They are also used to measure liquid water and thickness of ice sheets, and sea surface salinity. The subsections that follow describe how SMAP data are being put to use in myriad ways that benefit society.
Quantifying Processes that Link the Terrestrial Water, Energy, and Carbon Cycles
The primary SMAP science goal is to develop observational benchmarks of how the water, energy, and carbon cycles link together over land. Soil moisture is the variable state of the land branch of the water cycle. It links the water cycle to the energy cycle through limiting latent heat flux – the change in energy as heat exchanges when water undergoes a phase change, such as evapotranspiration at the land–atmosphere interface. Soil moisture also links the water and carbon cycles, which is evident through plant photosynthesis. SMAP global observations of soil moisture fields, in conjunction with remote sensing of elements of the energy and carbon cycles, can reveal how these three cycles are linked in the real world as a benchmark for weather and Earth system models.
Photosynthesis is down-regulated by both the deficit in water availability and the lack of an adequate amount of photosynthetically active radiation. Global maps reveal how soil moisture and light regulate photosynthesis – see Figure 2. These benchmark observational results can be used to assess how Earth system models link to the three main metabolic cycles of the climate system.
Figure 2. Observed regulation of photosynthesis by water availability [left] and light availability [right]. Blue denotes greater limitation. Photosynthesis rates for both maps determined using solar-induced fluorescence (SIF) measurements (mW/m2 nm sr) from the Tropospheric Ozone Monitoring Instrument (TROPOMI) on the European Union’s Copernicus Sentinel-5P mission. Water availability was determined using soil moisture (SM) measurements from the Soil Moisture Active Passive (SMAP) mission. Light availability was determined using measurements of photosynthetically active radiation (PAR) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra and Aqua platforms. The resulting maps show the model slope (mW/m2/nm/sr) of the estimated SIF-SM relationship in the water-limited regime [left] and the model slope (10-3/nm/sr) of estimated SIF-PAR relationship in the light-limited regime [right]. Figure credit: Jonard et al (2022) in Biogeosciences Development of Improved Flood Prediction and Drought Monitoring Capability
SMAP products have also been widely used in applied sciences and natural hazard decision-support systems. SMAP’s observation-based soil moisture estimates offer transformative information for managing water-related natural hazards, such as monitoring agricultural drought – defined as a persistent deficit in soil moisture – and flood volumes – defined as the landscape’s water absorption capacity during precipitation events. The SMAP project produces a parallel, near-real-time data stream that is accessed by a number of federal and state agencies in decision-support systems related to drought monitoring, food security, and landscape inundation and trafficability.
Enhancing Weather and Climate Forecasting Skill
SMAP’s enhancement of numerical weather prediction, model skill, and reduction of climate model projection uncertainties is based on the premise of the contribution of solar energy to weather and climate dynamics. Soil moisture has a strong influence on how available solar energy is partitioned into components (e.g., sensible heat flux versus latent heat flux) over land. The influence propagates through the atmospheric boundary layer and ultimately influences the evolution of weather.
To give an example, land surface processes can affect the evolution of the U.S. Great Plains low-level jets (GPLLJs). These jets drive mesoscale convective weather systems. Previous studies have shown that GPLLJs are sensitive to regional soil moisture gradients. Assimilation of SMAP soil moisture data improves forecasts of weakly synoptically forced or uncoupled GPLLJs compared to forecasts of cyclone-induced coupled GPLLJs. For example, the NASA Unified Weather Research and Forecasting Model, with 75 GPLLJs at 9 km (5.6 mi) resolution both with and without SMAP soil moisture data assimilation [SMAP data assimilation (DA) and no-DA respectively], shows how the windspeed mean absolute difference between SMAP DA and no-DA increase approximately linearly over the course of the simulation with maximum differences at 850 hPa (or mb) for the jet entrance and core – see Figure 3.
Figure 3. The impact of adding soil moisture data [SMAP data assimilation (DA) minus no-DA] to a model simulation from theNASA Unified Weather Research and Forecasting Model (NU-WRF)) of the Great Plains Low Level Jet (GPLLJ). The results show the mean over 75 independent GPLLJ events. The plots correspond to wind speed difference with height (y-axis) and time (hours on x-axis). The panels are for jet entrance [left], jet core [middle] and jet exit [right]. Soil moisture data assimilation enhances the intensity of the simulated GPLLJ. The stippling corresponds to 99% statistical confidence. Figure credit: Ferguson (2020) in Monthly Weather Review Measuring Liquid Water Content and Thickness of Ice Sheets
The mass loss of Greenland and Antarctica ice sheets contributes to sea-level rise – which is one of the most impactful and immediate damaging consequences of climate change. The melt rates over the last few years have raised alarm across the globe and impact countries with coastal communities. The cryosphere community has raised a call-to-action to use every observing system and model available to monitor the patterns and rates of land ice melt.
Surface melt affects the ice cap mass loss in many ways: the direct melt outflow from the ablation zone of the Greenland ice sheet, the structural change of the percolation zone of the Greenland ice sheet, changes in the melt water retention and outflow boundaries, changes in the structure of the Antarctic ice shelves, and destabilization of the buttressing of the glacier outflow through various processes (e.g., hydrofracturing and calving). The long-term climate and mass balance models rely on accurate representation of snow, firn, and ice processes to project the future sea level.
The SMAP L-band radiometer has relatively long wavelength [21 cm (8 in)] observations compared to other Earth-observing instruments. It enables the measurement of liquid water content (LWC) in the ice sheets and shelves as it receives the radiation from the deep layers of the snow/firn/ice column. Relatively high LWC values absorb the emission only partially, making the measurement sensitive to different liquid water amounts (LWA) in the entire column. Figure 4 shows the cumulative LWA for 2015–2023 based on SMAP measurements.
Figure 4. Total annual sum of SMAP daily liquid water amount (LWA) for 2015–2023. The black solid line on each map represents grid edges, and the grey color mask inside the ice sheet indicates melt detections by decreasing brightness temperature. Figure Credit: Andreas Colliander [Finnish Meteorological Institute]. The SMAP L-band radiometer has also been used to derive the thickness of thin sea ice [Soil Moisture and Ocean Salinity (SMOS) mission have been recalibrated to SMAP, using the same fixed incidence angle. The data show strong agreement and demonstrate clear benefits of a combined dataset. The L-band thin ice thickness retrievals provide a useful complement to higher-resolution profiles of thicker ice obtained from satellite altimeters (e.g. ESA’s CryoSat-2 and NASA’s Ice, Clouds and land Elevation Satellite–2 missions).
Extending and Expanding the Aquarius Sea Surface Salinity Record
The joint NASA/Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D (Aquarius), which operated from 2011–2015, used an L-band radiometer and an L-band scatterometer to make unprecedented monthly maps of global sea surface salinity at 150-km (93-mi) resolution. The SMAP L-band radiometer has not only extended the sea surface salinity record in the post-Aquarius period, it has also increased the spatial resolution and temporal frequency of these measurements because of its larger reflector and wider swath. The increased resolution and revisit allow new and unprecedented perspectives into mixing and freshwater events, coastal plume tracking, and other more local oceanic features.
Providing New Perspectives on Global Ecology and Plant Water Stress
The L-band vegetation optical depth (VOD) – which is related to water content in vegetation – has been retrieved simultaneously with soil moisture using SMAP’s dual-polarized brightness temperatures and is being used to better understand global ecology. Water in above-ground vegetative tissue attenuates and thus depolarizes surface microwave emission, and VOD quantifies this effect. SMAP can provide global observations of VOD in all weather conditions with a two to three day temporal frequency. Changes in VOD indicate either plant rehydration or growth. Ecologists benefit from this new ecosystem observational data, which augments optical and near-infrared vegetation indices [e.g., leaf area index (LAI)] and has a higher temporal frequency that is not affected by clouds and does not saturate as rapidly for dense vegetation.
Examples of how the data have been used include deciphering the conditions when vegetation uptakes soil water only for rehydration (i.e., VOD increase with no LAI change) compared to plant growth (i.e., increase in both VOD and LAI). The applications of VOD are increasing and the ecology community views this product as a valuable additional perspective on soil–plant water relations.
At the moment, this measurement has no ground-based equivalent. Therefore, field experiments with airborne instruments and ground sampling teams are needed to firmly establish the product as a new observational capability for global ecology.
Applied Science Collaboration: SMAP Observations Serving Society
The SMAP project has worked with the NASA Earth Science Division Applied Sciences Program (now known as Earth Science to Action) and the natural hazards monitoring and forecasting communities for pre- and post-launch implementation of SMAP products in their operations. In some operational applications, for which long-term data continuity is a requirement, the SMAP data are still used for assessment of current conditions, as well as research and development.
The Original Early Adopters
Prior to its launch, the SMAP mission established a program to explore and facilitate applied and operational uses of SMAP mission data products in decision-making activities for societal benefit. To help accomplish these objectives, SMAP was the first NASA mission to create a formal Applications Program and an Early Adopter (EA) program, which eventually became a requirement for all future NASA Earth Science directed satellite missions. SMAP’s EA program increases the awareness of mission products, broadens the user community, increases collaboration with potential users, improves knowledge of SMAP data product capabilities, and expedites the distribution and uses of mission products after launch.
SMAP Data in Action
Several project accomplishments have been achieved primarily through an active continuous engagement with EAs and operational agencies working towards national interests. SMAP soil moisture data have been used by the U.S. Department of Agriculture (USDA) for domestic and international crop yield applications. For example the USDA’s National Agricultural Statistics Service (NASS) conducts a weekly survey of crop progress, crop condition, and soil moisture condition for U.S. cropland. NASS surveys and publishes state-level soil moisture conditions in the NASS Crop Progress Report.
The traditional field soil moisture survey is a large-scale, labor-intensive data collection effort that relies heavily on responses from farmers, agricultural extension agents and/or other domain experts for field observations. One weakness of these observations is that they are based on subjective assessments rather than quantitative measures and can lead to spatial inconsistency based on the human responses from the respective counties. Moreover, the NASS Crop Progress Reports do not provide specific geolocation information for the assessed soil moisture conditions – which are extremely useful metadata to provide to data users. NASS implemented the use of SMAP observations in their weekly reports during the growing period (March–November). SMAP maps estimated root-zone soil moisture for the week of November 14–20, 2022, over NASS Pacific (California and Nevada) and Delta (Arkansas, Mississippi and Louisiana) regional domains—see Figure 5.
Figure 5. SMAP-based soil moisture estimates for California, Nevada, Arkansas, Mississippi, and Louisiana, used by the U.S. Department of Agriculture’s (USDA) National Agricultural Statistics Service (NASS) in their weekly report covering November 14–20, 2022. These data are available for selected states at the NASS website linked in the text. Figure Credit: NASS SMAP Radio Frequency Interference Detection and Mitigation
Although SMAP operates within the protected frequency allocation of 1400–1427 MHz, the radiometer has been impacted by radio frequency interference over the mission lifetime. Unauthorized in-band transmitters as well as out-of-band emissions from transmitters operating adjacent to the allocated spectrum have been observed in SMAP measurements since its launch. The previously launched SMOS and Aquarius radiometers provide evidence of global RFI at L-band. Consequently, SMAP was designed to incorporate a novel onboard digital detector on the back end to enable detection and filtering of RFI. The radiometer produces science data in time and frequency, enabling the use of multiple RFI detection methods in the ground processing software.
On-orbit data demonstrate that the RFI detection and filtering performs well and improves the quality of SMAP brightness temperature measurements. The algorithms are most effective at filtering RFI that is sparse in time and frequency, with minimal impact on the noise equivalent delta temperature (NEDT) – a measure of the radiometer sensitivity. Some areas of the globe remain problematic as RFI that is very high level and persistent results in high percentages of data loss due to removal of contaminated data. A global map of RFI detection rate for January 2025 shows a large contrast between Eastern and Western Hemispheres and between Northern and Southern Hemispheres – see Figure 6. Regions of isolated RFI and severe RFI correspond to populated areas. A detection rate of 100% means all pixels are flagged and removed, resulting in data loss. Analysis of spectral information reveal many sources are likely terrestrial radar systems; however, many wideband, high-level sources and low-level, non-radar sources also persist. Over areas of geopolitical conflict, the time-frequency data show interference covering the entire radiometer receiver bandwidth.
Figure 6. Percentage of pixels on a 0.25° grid for January 2025 that have been flagged for removal by the Soil Moisture Active Passive radio frequency interference detection algorithms. Figure Credit: Priscilla N. Mohammed [GSFC] The RFI challenge is further addressed through official spectrum management channels and formal reports that include the geolocated coordinates of sources, interference levels, frequency of occurrence during the observed period, and spectral information – all of which aid field agents as they work to identify potential offenders. Reports are submitted to the NASA Spectrum office and then forwarded to the country of interest through the Satellite Interference Reporting and Resolution System.
SMAP Science Data Products
The current suite of SMAP science data products is available in the Table. The principal data products are grouped in four levels designated as L1–4. The L1 products are instrument L-band brightness temperature in Kelvin and include all four Stokes parameters (i.e., horizonal and vertical polarization as well as third and fourth Stokes). Both 6:00 AM equatorial crossing (descending) and 6:00 PM equatorial crossing (ascending data) are contained in the products. The user has access to quality flags of the conditions under which measurements are available for each project. The L1B products are time-ordered and include fore and aft measurements. L1C products are on the Equal-Area Scalable Earth V2 (EASE2) grid with polar and global projections. L2 data products are geophysical retrievals (i.e., soil moisture, VOD, and binary freeze/thaw classification on a fixed Earth grid). The L2 half-orbit products are available to the public within a day of acquisition. L3 products are daily composites and include all half-orbits for that day.
The SMAP project also produces L4 data that are the result of data assimilation. The L4 products take advantage of other environmental observations, such as precipitation, air temperature and humidity, radiative fluxes at the land surface, and ancillary land use and soil texture information, to produce estimates of surface [nominally 0–5 cm (0–2 in)] and subsurface (e.g., root-zone up to a meter) soil moisture. The data assimilation system is a merger of model and measurements and hence resolves the diurnal cycle of land surface conditions. The data assimilation system also provides estimates of surface fluxes of carbon, energy, and water, such as evaporation, runoff, gross primary productivity (GPP), and respiration. The difference between GPP and respiration is the net ecosystem exchange, which is the net source/sink of the carbon cycle over land.
The SMAP suite of products also include near-real-time (NRT) brightness temperature and soil moisture products for use in operational weather forecast applications. The NRT product targets delivery to users within three hours of measurement acquisition. The NRT uses predicted SMAP antenna pointing (instead of telemetry) and model predicted ancillary data (soil temperature) in order to support operational centers that require more than three hours of data products for updating weather forecast models. To date SMAP has met its required and target (for NRT) latency requirements.
Two other data projects merge synergistically with other (colocated) satellite measurements. The SPL2SMAP_S merges SMAP L-band radio brightness measurements with C-band synthetic aperture radar (SAR) measurements from the ESA Copernicus Sentinel-1 mission. The SAR data have high resolution and allow the generation of 1 and 3 km (0.62 and 1.8 mi) merged surface soil moisture estimates. The high resolution soil moisture information, however, is only available when there is coincident SMAP and Sentinel-1 measurements. The refresh rate of this product is limited and can be as long as 12 days.
The merged SMOS–SMAP passive L-band radiometry data allows the generation of global, near daily surface soil moisture estimates, which are required to resolve fast hydrologic processes, such as gravity drainage and recharge flux. These parameters are only partially resolved with the SMAP, with a two to three day data refresh rate. This product interpolates the multi-angular SMOS data to the SMAP 40º incident angle and uses all SMAP algorithms, including correction of waterbody impact on SMAP brightness temperature, and ancillary data for geophysical inversions to soil moisture and VOD, ensuring consistency. The combined SMAP–SMOS data product may not be available daily across locations, such as Japan, parts of China, and the Middle East, where RFI affects data collection.
Table. Soil Moisture Active Passive suite of science products are available through the National Snow and Ice Data Center, one of NASA’s Distributed Active Archive Centers.
Product Type Product description Resolution (Gridding) Granule Extent SPL1BTB Geolocated, calibrated brightness temperature in time order 36 km Half Orbit SPL1CTB_E Backus-Gilbert interpolated, calibrated brightness temperature in time order (9 km) Half Orbit SPL1CTB Geolocated, calibrated brightness temperature on Equal-Area Scalable Earth V2 (EASE2) grid 36 km Half Orbit SPL1CTB_E Backus-Gilbert interpolated, calibrated brightness temperature on EASE2 grid (9 km) Half Orbit SPL2SMP Radiometer soil moisture and vegetation optical depth 36 km Half Orbit SPL2SMP_E Radiometer soil moisture and vegetation optical depth based on SPL1CTB (9 km) Half Orbit SPL2SMAP_S SMAP radiometer/Copernicus Sentinel-1 soil moisture 3 km Sentinel-1 SPL3SMP Daily global composite radiometer soil moisture and vegetation optical depth based on SPL1CTB 36 km Daily–Global SPL3SMP_E Daily global composite radiometer soil moisture and vegetation optical depth based on SPL1CTB_E (9 km) Daily–Global SPL3FTP Daily composite freeze/thaw state based on SPL1CTB 36 km Daily–Global SPL3FTP_E Daily composite freeze/thaw state based on SPL1CTB_E (9 km) Daily–Global SPL4SMAU Surface and Root Zone soil moisture 9 km 3 hours – Global SPL4CMDL Carbon Net Ecosystem Exchange 9 km Daily–Global SPL1BTB_NRT Near Real Time Geolocated, calibrated brightness temperature in time order 36 km Half Orbit SPL2SMP_NRT Near Real Time Radiometer soil moisture 36 km Half Orbit L2/L3 SMOS SM SMOS soil moisture and VOD based on SMAP algorithms (9 km) Half Orbit/Daily Global Future Directions for the SMAP Active–Passive Algorithm
Although the SMAP radar failed not long after launch, the data that were collected have been used to advance the development of the SMAP Active–Passive (AP) algorithm, which will be applied to the combined SMAP radiometer data and radar data from the NASA–Indian Space Research Organisation (ISRO) Synthetic Aperture Radar [NISAR] mission, a recently-launched L-Band Synthetic Aperture mission to produce global soil moisture at a spatial resolution of 1 km (0.62 mi) or better. The high resolution product can advance applications of SMAP data (e.g., agricultural productivity, wildfire, and landslide monitoring).
Data Continuity Beyond SMAP
A forthcoming mission meets some – but not all – of the SMAP measurement requirements and desired enhancements. The European Union’s Copernicus Program Copernicus Imaging Microwave Radiometer (CIMR) mission is a proposed multichannel microwave radiometry observatory that includes L-band and four other microwave channels sharing a large mesh reflector. The mesh reflector is similar to the one that is used on SMAP, but larger. The successful SMAP demonstration of rotating large deployable mesh antennas for Earth observations has been useful to the CIMR design.
In terms of RFI detection capability, CIMR will also use an approach that is similar to SMAP. With regard to instrument thermal noise (NEDT) and data latency, CIMR meets or comes close to the next-mission desired characteristics and equals or exceeds SMAP in most of the attributes. The native L-band resolution of CIMR is ~60 km (37 mi); however, the measurements are coincident and higher-resolution measurements in this configuration allow reconstruction of L-band radiometry at higher resolution than CIMR’s L-band. It may be possible to combine the L- and C-bands and achieve a reconstructed ~15 km (9 mi) L-band product based on the coincident and overlapping measurements. A refresh rate of one day is possible with the wide-swath characteristic of CIMR.
CIMR is currently in development; the first version, CIMR-1A, is expected to launch within this decade and the second version, CIMR-1B, in the mid 2030s. Since the Copernicus program supports operational activities (e.g., numerical weather prediction), the program includes plans for follow-on CIMR observatories so that the data record will be maintained without gaps in the future.
Conclusions
The SMAP mission was launched in 2015 and has produced over 10 years of science data. Because of its unique instrument and operating characteristics, the global low-frequency microwave radiometry with the SMAP observatory has resulted in surface soil moisture, vegetation optical depth, and freeze/thaw state estimates that outperform past and current products. The data have been widely used in the Earth system science community and also applied to natural hazards applications.
The Earth system science and application communities are actively using the decade-long, high-quality global L-band radiometry. The intensity and range of SMAP science data usage is evident in the number of peer-reviewed journal publications that contain SMAP or Soil Moisture Active Passive in their title or abstract and use SMAP data in the study (i.e., search: www.webofscience.com data-base). The authors acknowledge that many publications escape this particular query approach. Currently the bibliography includes over 1700 entries and over 20,000 citations spanning several elements of Earth system science, including hydrologic science and regional and global water cycle, oceanic and atmospheric sciences, cryosphere science, global ecology as well as microwave remote sensing technologies.
To Learn More About SMAP
A more comprehensive bibliography of studies published based on SMAP data products, a set of one-page SMAP science and applications highlights in standardized format, and SMAP project documents including assessment reports are all available online via the links provided.
Acknowledgements
The authors wish to acknowledge the contributions of the SMAP Science Team, the SMAP Algorithm Development Team, and the SMAP Project Office engineers and staff. All of these teams contribute to the ongoing SMAP science product generation and uses reported in this article.
Dara Entekhabi
Massachusetts Institute of Technology
darae@mit.edu
Simon Yueh
Jet Propulsion Laboratory/California Institute of Technology
simon.h.yueh@jpl.nasa.gov
Rajat Bindlish
NASA Goddard Space Flight Center
rajat.bindlish@nasa.gov
Mark Garcia
Jet Propulsion Laboratory/California Institute of Technology
mark.d.garcia@jpl.nasa.gov
Jared Entin
NASA Headquarters
jared.k.entin@nasa.gov
Craig Ferguson
NASA Headquarters
craig.r.ferguson@nasa.gov
Share
Details
Last Updated Aug 18, 2025 Related Terms
Earth Science View the full article
-
By USH
NASA’s 1991 Discovery shuttle video shows UFOs making impossible maneuvers, evading a possible Star Wars railgun test. Evidence of secret tech?
In September 1991, NASA’s Space Shuttle Discovery transmitted live video that has since become one of the most debated UFO clips ever recorded. The footage, later analyzed by independent researchers, shows glowing objects in orbit performing maneuvers far beyond the limits of known physics.
One object appears over Earth’s horizon, drifts smoothly, then suddenly reacts to a flash of light by accelerating at impossible speeds, estimated at over 200,000 mph while withstanding forces of 14,000 g’s. NASA officially dismissed the anomalies as ice particles or debris, but side by side comparisons with actual orbital ice show key differences: the objects make sharp turns, sudden accelerations, and fade in brightness in ways consistent with being hundreds of miles away, not near the shuttle.
Image analysis expert Dr. Mark Carlotto confirmed that at least one object was located about 1,700 miles from the shuttle, placing it in Earth’s atmosphere. At that distance, the object would be too large and too fast to be dismissed as ice or space junk.
The flash and two streaks seen in the video resemble the Pentagon’s “Brilliant Pebbles” concept, a railgun based missile defense system tested in the early 1990s. Researchers suggest the shuttle cameras may have accidentally, or deliberately, captured a live Star Wars weapons test in orbit.
The UFO easily evaded the attack, leading some to conclude that it was powered by a form of hyperdimensional technology capable of altering gravity.
Notably, following this 1991 incident, all subsequent NASA shuttle external camera feeds were censored or delayed, raising speculation that someone inside the agency allowed the extraordinary footage to slip out.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.