Members Can Post Anonymously On This Site
NASA Selects Blue Origin as Second Artemis Lunar Lander Provider
-
Similar Topics
-
By NASA
8 Min Read NASA Telescopes Tune Into a Black Hole Prelude, Fugue
The first sonification features WR124, an extremely bright, massive star. Here, the star is shown in a short-lived phase preceding the possible creation of a black hole. NASA released three new pieces of cosmic sound Thursday that are associated with the densest and darkest members of our universe: black holes. These scientific productions are sonifications — or translations into sound — of data collected by NASA telescopes in space including the Chandra X-ray Observatory, James Webb Space Telescope, and Imaging X-ray Polarimetry Explorer (IXPE).
This trio of sonifications represents different aspects of black holes and black hole evolution. WR124 is an extremely bright, short-lived massive star known as a Wolf-Rayet that may collapse into a black hole in the future. SS 433 is a binary, or double system, containing a star like our Sun in orbit with either a neutron star or a black hole. The galaxy Centaurus A has an enormous black hole in its center that is sending a booming jet across the entire length of the galaxy. Data from Chandra and other telescopes were translated through a process called “sonification” into sounds and notes. This new trio of sonifications represents different aspects of black holes. Black holes are neither static nor monolithic. They evolve over time, and are found in a range of sizes and environments.
WR 124
Credit: X-ray: NASA/CXC/SAO; Infrared: (Herschel) ESA/NASA/Caltech, (Spitzer) NASA/JPL/Caltech, (WISE) NASA/JPL/Caltech; Infrared: NASA/ESA/CSA/STScI/Webb ERO Production Team; Image processing: NASA/CXC/SAO/J. Major; Sonification: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida) The first movement is a prelude to the potential birth of a black hole. WR124 is an extremely bright, short-lived massive star known as a Wolf-Rayet at a distance of about 28,000 light-years from Earth. These stars fling their outer layers out into space, creating spectacular arrangements seen in an image in infrared light from the Webb telescope. In the sonification of WR124, this nebula is heard as flutes and the background stars as bells. At the center of WR124, where the scan begins before moving outward, is a hot core of the star that may explode as a supernova and potentially collapse and leave behind a black hole in its wake. As the scan moves from the center outward, X-ray sources detected by Chandra are translated into harp sounds. Data from NASA’s James Webb Space Telescope is heard as metallic bell-like sounds, while the light of the central star is mapped to produce the descending scream-like sound at the beginning. The piece is rounded out by strings playing additional data from the infrared telescopic trio of ESA’s (European Space Agency’s) Herschel Space Telescope, NASA’s retired Spitzer Space Telescope, and NASA’s retired Wide Image Survey Explorer (WISE) as chords.
SS 433
Credit: X-ray: (IXPE): NASA/MSFC/IXPE; (Chandra): NASA/CXC/SAO; (XMM): ESA/XMM-Newton; IR: NASA/JPL/Caltech/WISE; Radio: NRAO/AUI/NSF/VLA/B. Saxton. (IR/Radio image created with data from M. Goss, et al.); Image Processing/compositing: NASA/CXC/SAO/N. Wolk & K. Arcand; Sonification: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida) In the second movement of this black hole composition, listeners can explore a duet. SS 433 is a binary, or double, system about 18,000 light-years away that sings out in X-rays. The two members of SS 433 include a star like our Sun in orbit around a much heavier partner, either a neutron star or a black hole. This orbital dance causes undulations in X-rays that Chandra, IXPE, and ESA’s XMM-Newton telescopes are tuned into. These X-ray notes have been combined with radio and infrared data to provide a backdrop for this celestial waltz. The nebula in radio waves resembles a drifting manatee, and the scan sweeps across from right to left. Light towards the top of the image is mapped to higher-pitch sound, with radio, infrared, and X-ray light mapped to low, medium, and high pitch ranges. Bright background stars are played as water-drop sounds, and the location of the binary system is heard as a plucked sound, pulsing to match the fluctuations due to the orbital dance.
Centarus A
Credit: X-ray: (Chandra) NASA/CXC/SAO, (IXPE) NASA/MSFC; Optical: ESO; Image Processing: NASA/CXC/SAO/K. Arcand, J. Major, and J. Schmidt; Sonification: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida) The third and final movement of the black hole-themed sonifications crescendos with a distant galaxy known as Centaurus A, about 12 million light-years away from Earth. At the center of Centaurus A is an enormous black hole that is sending a booming jet across the entire length of the galaxy. Sweeping around clockwise from the top of the image, the scan encounters Chandra’s X-rays and plays them as single-note wind chimes. X-ray light from IXPE is heard as a continuous range of frequencies, producing a wind-like sound. Visible light data from the European Southern Observatory’s MPG telescope shows the galaxy’s stars that are mapped to string instruments including foreground and background objects as plucked strings.
For more NASA sonifications and information about the project, visit https://chandra.si.edu/sound/
These sonifications were led by the Chandra X-ray Center (CXC), with support from NASA’s Marshall Space Flight Center and NASA’s Universe of Learning program, which is part of the NASA Science Activation program. The collaboration was driven by visualization scientist Kimberly Arcand (CXC), astrophysicist Matt Russo, and musician Andrew Santaguida (both of the SYSTEM Sounds project), along with consultant Christine Malec.
NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts. NASA’s Universe of Learning materials are based upon work supported by NASA under cooperative agreement award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and NASA’s Jet Propulsion Laboratory.
The agency’s IXPE is a collaboration between NASA and the Italian Space Agency with partners and science collaborators in 12 countries. The IXPE mission is led by Marshall. BAE Systems, Inc., headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.
To learn more about NASA’s space telescopes, visit:
https://science.nasa.gov/universe
Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release features three sonifications related to black holes, presented as soundtracks to short videos. Each sonification video features a composite image representing a different aspect of the life of a black hole. These images are visualizations of data collected by NASA telescopes. During each video, a line sweeps through the image. When the line encounters a visual element, it is translated into sound according to parameters established by visualization scientist Kimberly Arcand, astrophysicist Matt Russo, musician Andrew Santaguida, and consultant Christine Malec.
The first sonification features WR124, an extremely bright, massive star. Here, the star is shown in a short-lived phase preceding the possible creation of a black hole. At the center of the composite image is the large gleaming star in white and pale blue. The star sits at the heart of a mottled pink and gold cloud, its long diffraction spikes extending to the outer edges. Also residing in the cloud are other large gleaming stars, glowing hot-pink dots, and tiny specks of blue and white light. In this sonification, the sound activation line is an ever-expanding circle which starts in the center of the massive star and continues to grow until it exits the frame.
The second sonification features SS 433, a binary star system at the center of a supernova remnant known as the Manatee Nebula. Visually, the translucent, blobby teal nebula does, indeed, resemble a bulbous walrus or manatee, floating in a red haze packed with distant specs of light. Inside the nebula is a violet streak, a blue streak, and a large bright dot. The dot, represented by a plucking sound in the sonification, is the binary system at the heart of the nebula. In this sonification, the vertical activation line begins at our right edge of the frame, and sweeps across the image before exiting at our left.
The third and final sonification features Centaurus A, a distant galaxy with an enormous black hole emitting a long jet of high-energy particles. The black hole sits at the center of the composite image, represented by a brilliant white light. A dark, grainy, oblong cloud cuts diagonally across the black hole from our lower left toward our upper right. A large, faint, translucent blue cloud stretches from our upper left to our lower right. And the long, thin jet, also in translucent blue, extends from the black hole at the center toward the upper lefthand corner. In this sonification, the activation line rotates around the image like the hand of a clock. It begins at the twelve o’clock position, and sweeps clockwise around the image.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
Share
Details
Last Updated May 08, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
Chandra X-Ray Observatory Black Holes Galaxies, Stars, & Black Holes IXPE (Imaging X-ray Polarimetry Explorer) Marshall Astrophysics Marshall Science Research & Projects Marshall Space Flight Center Explore More
7 min read NASA’s Hubble Pinpoints Roaming Massive Black Hole
Like a scene out of a sci-fi movie, astronomers using NASA telescopes have found “Space…
Article 2 hours ago 5 min read NASA’s IXPE Reveals X-ray-Generating Particles in Black Hole Jets
Article 2 days ago 5 min read NASA’s NICER Maps Debris From Recurring Cosmic Crashes
Lee esta nota de prensa en español aquí. For the first time, astronomers have probed…
Article 2 days ago Keep Exploring Discover More Topics From NASA
Chandra X-ray Observatory
Launched on July 23, 1999, it is the largest and most sophisticated X-ray observatory to date. NASA’s Chandra X-ray Observatory…
Black Holes
Black Holes Black holes are among the most mysterious cosmic objects, much studied but not fully understood. These objects aren’t…
Universe
IXPE
View the full article
-
By NASA
Explore Hubble Science Hubble Space Telescope NASA’s Hubble Pinpoints… Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 7 Min Read NASA’s Hubble Pinpoints Roaming Massive Black Hole
This six-panel illustration of a tidal disruption event around a supermassive black hole shows the collision with a star followed by an explosion detected in X-ray as well as Hubble Space Telescope visible-light observations. Credits:
Artwork: NASA, ESA, STScI, Ralf Crawford (STScI) Like a scene out of a sci-fi movie, astronomers using NASA telescopes have found “Space Jaws.”
Lurking 600 million light-years away, within the inky black depths between stars, there is an invisible monster gulping down any wayward star that plummets toward it. The sneaky black hole betrayed its presence in a newly identified tidal disruption event (TDE) where a hapless star was ripped apart and swallowed in a spectacular burst of radiation. These disruption events are powerful probes of black hole physics, revealing the conditions necessary for launching jets and winds when a black hole is in the midst of consuming a star, and are seen as bright objects by telescopes.
The new TDE, called AT2024tvd, allowed astronomers to pinpoint a wandering supermassive black hole using NASA’s Hubble Space Telescope, with similar supporting observations from NASA’s Chandra X-Ray Observatory and the NRAO Very Large Array telescope that also showed that the black hole is offset from the center of the galaxy.
The paper will be published in an upcoming issue of The Astrophysical Journal Letters.
This six-panel illustration of a tidal disruption event around a supermassive black hole shows the following: 1) A supermassive black hole is adrift inside a galaxy, its presence only detectable by gravitational lensing; 2) A wayward star gets swept up in the black hole’s intense gravitational pull; 3) The star is stretched or “spaghettified” by gravitational tidal effects; 4) The star’s remnants form a disk around the black hole; 5) There is a period of black hole accretion, pouring out radiation across the electromagnetic spectrum, from X-rays to radio wavelengths; and 6) The host galaxy, seen from afar, contains a bright flash of energy that is offset from the galaxy’s nucleus, where an even more massive black hole dwells. Artwork: NASA, ESA, STScI, Ralf Crawford (STScI) Surprisingly, this one million-solar-mass black hole doesn’t reside exactly in the center of the host galaxy, where supermassive black holes are typically found, and actively gobble up surrounding material. Out of approximately 100 TDE events recorded by optical sky surveys so far, this is the first time an offset TDE has been identified. The rest are associated with the central black holes of galaxies.
In fact, at the center of the host galaxy there is a different supermassive black hole weighing 100 million times the mass of the Sun. Hubble’s optical precision shows the TDE was only 2,600 light-years from the more massive black hole at the galaxy’s center. That’s just one-tenth the distance between our Sun and the Milky Way’s central supermassive black hole.
This bigger black hole spews out energy as it accretes infalling gas, and it is categorized as an active galactic nucleus. Strangely, the two supermassive black holes co-exist in the same galaxy, but are not gravitationally bound to each other as a binary pair. The smaller black hole may eventually spiral into the galaxy’s center to merge with the bigger black hole. But for now, it is too far separated to be gravitationally bound.
A TDE happens when an infalling star is stretched or “spaghettified” by a black hole’s immense gravitational tidal forces. The shredded stellar remnants are pulled into a circular orbit around the black hole. This generates shocks and outflows with high temperatures that can be seen in ultraviolet and visible light.
“AT2024tvd is the first offset TDE captured by optical sky surveys, and it opens up the entire possibility of uncovering this elusive population of wandering black holes with future sky surveys,” said lead study author Yuhan Yao of the University of California at Berkeley. “Right now, theorists haven’t given much attention to offset TDEs. “I think this discovery will motivate scientists to look for more examples of this type of event.”
This is a Hubble Space Telescope image of distant galaxy that is host to the telltale signature of a roaming supermassive black hole. Science: NASA, ESA, STScI, Yuhan Yao (UC Berkeley); Image Processing: Joseph DePasquale (STScI) A Flash in the Night
The star-snacking black hole gave itself away when several ground-based sky survey telescopes observed a flare as bright as a supernova. But unlike a supernova, astronomers know that this came from a black hole snacking on a star because the flare was very hot, and showed broad emission lines of hydrogen, helium, carbon, nitrogen, and silicon. The Zwicky Transient Facility at Caltech’s Palomar Observatory, with its 1.2-meter telescope that surveys the entire northern sky every two days, first observed the event.
“Tidal disruption events hold great promise for illuminating the presence of massive black holes that we would otherwise not be able to detect,” said Ryan Chornock, associate adjunct professor at UC Berkeley and a member of the ZTF team. “Theorists have predicted that a population of massive black holes located away from the centers of galaxies must exist, but now we can use TDEs to find them.”
The flare was seemingly offset from the center of a bright massive galaxy as cataloged by Pan-STARRS (Panoramic Survey Telescope and Rapid Response System), the Sloan Digital Sky Survey, and the DESI Legacy Imaging Survey. To better determine that it was not at the galactic center, Yao’s team used NASA’s Chandra X-ray Observatory to confirm that X-rays from the flare site were also offset.
It took the resolving power of Hubble to settle any uncertainties. Hubble’s sensitivity to ultraviolet light also allows it to pinpoint the location of the TDE, which is much bluer than the rest of the galaxy.
This is a combined Hubble Space Telescope/Chandra X-Ray Observatory image of a distant galaxy that is host to the telltale signature of a roaming supermassive black hole. Both telescopes caught a tidal disruption event (TDE) caused by the black hole eating a star. Science: NASA, ESA, STScI, Yuhan Yao (UC Berkeley); Image Processing: Joseph DePasquale (STScI) Origin Unknown
The black hole responsible for the TDE is prowling inside the bulge of the massive galaxy. The black hole only becomes apparent every few tens of thousands of years when it “burps” from capturing a star, and then it goes quiet again until its next meal comes along.
How did the black hole get off-center? Previous theoretical studies have shown that black holes can be ejected out of the centers of galaxies because of three-body interactions, where the lowest-mass member gets kicked out. This may be the case here, given the stealthy black hole’s close proximity to the central black hole. “If the black hole went through a triple interaction with two other black holes in the galaxy’s core, it can still remain bound to the galaxy, orbiting around the central region,“ said Yao.
An alternative explanation is that the black hole is the surviving remnant of a smaller galaxy that merged with the host galaxy more than 1 billion years ago. If that is the case, the black hole might eventually spiral in to merge with the central active black hole sometime in the very far future. So at present, astronomers don’t know if it’s coming or going.
Erica Hammerstein, another UC Berkeley postdoctoral researcher, scrutinized the Hubble images as part of the study, but did not find any evidence of a past galaxy merger. But she explained, “There is already good evidence that galaxy mergers enhance TDE rates, but the presence of a second black hole in AT2024tvd’s host galaxy means that at some point in this galaxy’s past, a merger must have happened.”
Specialized for different kinds of light, observatories like Hubble and Chandra work together to pinpoint and better understand fleeting events like these. Future telescopes that will also be optimized for capturing transient events like this one include the National Science Foundation’s Vera C. Rubin Observatory and NASA’s upcoming Nancy Grace Roman Space Telescope. They will provide more opportunities for follow-up Hubble observations to zero in on a transient’s exact location.
Explore More:
Monster Black Holes are Everywhere
Hubble Focus: Black Holes – Into the Vortex e-Book
Science Behind the Discoveries: Black Holes
Hubble’s Universe Uncovered: Black Holes
The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
ZTF is a public-private partnership, with equal support from the ZTF Partnership and from the U.S. National Science Foundation.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos
Six panel illustration of Black Hole TDE AT2024tvd
This is a six-panel illustration of a tidal disruption event around a supermassive back hole.
Black Hole TDE AT2024tvdu00a0
This is a Hubble Space Telescope image of a distant galaxy that is host to the telltale signature of a roaming supermassive black hole.
Black Hole TDE AT2024tvd (Hubble + Chandra)
This is a combined Hubble Space Telescope/Chandra X-Ray Observatory image of a distant galaxy that is host to the telltale signature of a roaming supermassive black hole.
Black Hole TDE AT2024tvd Compass Image
This is a combined Hubble Space Telescope/Chandra X-Ray Observatory image of a distant galaxy that is host to the telltale signature of a roaming supermassive black hole.
Black Hole Tidal Disruption Event
This is a video animation of a tidal disruption event (TDE), an intense flash of radiation caused by the supermassive black hole eating a star. The video begins by zooming into a galaxy located 600 million light-years away.
Share
Details
Last Updated May 08, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center
Contact Media Claire Andreoli
NASA’s Goddard Space Flight Center
Greenbelt, Maryland
claire.andreoli@nasa.gov
Ray Villard
Space Telescope Science Institute
Baltimore, Maryland
Related Terms
Hubble Space Telescope Astrophysics Astrophysics Division Black Holes Chandra X-Ray Observatory Galaxies Goddard Space Flight Center
Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble Science Highlights
Hubble Images
Hubble News
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Editor’s Note: The following is one of three related articles about the NASA Data Acquisition System and related efforts. Please visit Stennis News – NASA to access accompanying articles.
A blended team of NASA personnel and contractors support ongoing development and operation of the NASA Data Acquisition System at NASA’s Stennis Space Center. Team members include, left to right: Andrew Graves (NASA), Shane Cravens (Syncom Space Services), Peggi Marshall (Syncom Space Services), Nicholas Payton Karno (Syncom Space Services), Alex Elliot (NASA), Kris Mobbs (NASA), Brandon Carver (NASA), Richard Smith (Syncom Space Services), and David Carver (NASA)NASA/Danny Nowlin Members of the NASA Data Acquisition System team at NASA’s Stennis Space Center evaluate system hardware for use in monitoring and collecting propulsion test data at the site.NASA/Danny Nowlin NASA software engineer Alex Elliot, right, and Syncom Space Services software engineer Peggi Marshall fine-tune data acquisition equipment at NASA’s Stennis Space Center by adjusting an oscilloscope to capture precise measurements. NASA/Danny Nowlin Syncom Space Services software test engineer Nicholas Payton Karno monitors a lab console at NASA’s Stennis Space Center displaying video footage of an RS-25 engine gimbal test, alongside data acquisition screens showing lab measurements. NASA/Danny Nowlin Just as a steady heartbeat is critical to staying alive, propulsion test data is vital to ensure engines and systems perform flawlessly.
The accuracy of the data produced during hot fire tests at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, tells the performance story.
So, when NASA needed a standardized way to collect hot fire data across test facilities, an onsite team created an adaptable software tool to do it.
“The NASA Data Acquisition System (NDAS) developed at NASA Stennis is a forward-thinking solution,” said David Carver, acting chief of the Office of Test Data and Information Management. “It has unified NASA’s rocket propulsion testing under an adaptable software suite to meet needs with room for future expansion, both within NASA and potentially beyond.”
Before NDAS, contractors conducting test projects used various proprietary tools to gather performance data, which made cross-collaboration difficult. NDAS takes a one-size-fits-all approach, providing NASA with its own system to ensure consistency.
“Test teams in the past had to develop their own software tools, but now, they can focus on propulsion testing while the NDAS team focuses on developing the software that collects data,” said Carver.
A more efficient workflow has followed since the software system is designed to work with any test hardware. It allows engineers to seamlessly work between test areas, even when upgrades have been made and hardware has changed, to support hot fire requirements for the agency and commercial customers.
With the backing and resources of the NASA Rocket Propulsion Test (RPT) Program Office, a blended team of NASA personnel and contractors began developing NDAS in 2011 as part of the agency’s move to resume control of test operations at NASA Stennis. Commercial entities had conducted the operations on NASA’s behalf for several decades.
The NASA Stennis team wrote the NDAS software code with modular components that function independently and can be updated to meet the needs of each test facility. The team used LabVIEW, a graphical platform that allows developers to build software visually rather than using traditional text-based code.
Syncom Space Services software engineer Richard Smith, front, analyzes test results using the NASA Data Acquisition System Displays interface at NASA’s Stennis Space Center while NASA software engineer Brandon Carver actively tests and develops laboratory equipment. NASA/Danny Nowlin NASA engineers, from left to right, Tristan Mooney, Steven Helmstetter Chase Aubry, and Christoffer Barnett-Woods are shown in the E-1 Test Control Center where the NASA Data Acquisition System is utilized for propulsion test activities. NASA/Danny Nowlin NASA engineers Steven Helmstetter, Christoffer Barnett-Woods, and Tristan Mooney perform checkouts on a large data acquisition system for the E-1 Test Stand at NASA’s Stennis Space Center. The data acquisition hardware, which supports testing for E Test Complex commercial customers, is controlled by NASA Data Acquisition System software that allows engineers to view real-time data while troubleshooting hardware configuration.NASA/Danny Nowlin NASA engineers Steven Helmstetter, left, and Tristan Mooney work with the NASA Data Acquisition System in the E-1 Test Control Center, where the system is utilized for propulsion test activities.NASA/Danny Nowlin “These were very good decisions by the original team looking toward the future,” said Joe Lacher, a previous NASA project manager. “LabVIEW was a new language and is now taught in colleges and widely used in industry. Making the program modular made it adaptable.”
During propulsion tests, the NDAS system captures both high-speed and low-speed sensor data. The raw sensor data is converted into units for both real-time monitoring and post-test analysis.
During non-test operations, the system monitors the facility and test article systems to help ensure the general health and safety of the facility and personnel.
“Having quality software for instrumentation and data recording systems is critical and, in recent years, has become increasingly important,” said Tristan Mooney, NASA instrumentation engineer. “Long ago, the systems used less software, or even none at all. Amplifiers were configured with physical knobs, and data was recorded on tape or paper charts. Today, we use computers to configure, display, and store data for nearly everything.”
Developers demonstrated the new system on the A-2 Test Stand in 2014 for the J-2X engine test project.
From there, the team rolled it out on the Fred Haise Test Stand (formerly A-1), where it has been used for RS-25 engine testing since 2015. A year later, teams used NDAS on the Thad Cochran Test Stand (formerly B-2) in 2016 to support SLS (Space Launch System) Green Run testing for future Artemis missions.
One of the project goals for the system is to provide a common user experience to drive consistency across test complexes and centers.
Kris Mobbs, current NASA project manager for NDAS, said the system “really shined” during the core stage testing. “We ran 24-hour shifts, so we had people from across the test complex working on Green Run,” Mobbs said. “When the different shifts came to work, there was not a big transition needed. Using the software for troubleshooting, getting access to views, and seeing the measurements were very common activities, so the various teams did not have a lot of build-up time to support that test.”
Following success at the larger test stands, teams started using NDAS in the E Test Complex in 2017, first at the E-2 Test Stand, then on the E-1 and E-3 stands in 2020.
Growth of the project was “a little overwhelming,” Lacher recalled. The team maintained the software on active stands supporting tests, while also continuing to develop the software for other areas and their many unique requirements.
Each request for change had to be tracked, implemented into the code, tested in the lab, then deployed and validated on the test stands.
“This confluence of requirements tested my knowledge of every stand and its uniqueness,” said Lacher. “I had to understand the need, the effort to meet it, and then had to make decisions as to the priorities the team would work on first.”
Creation of the data system and its ongoing updates have transformed into opportunities for growth among the NASA Stennis teams working together.
“From a mechanical test operations perspective, NDAS has been a pretty easy system to learn,” said Derek Zacher, NASA test operations engineer. “The developers are responsive to the team’s ideas for improvement, and our experience has consistently improved with the changes that enable us to view our data in new ways.”
Originally designed to support the RPT office at NASA Stennis, the software is expanding beyond south Mississippi to other test centers, attracting interest from various NASA programs and projects, and garnering attention from government agencies that require reliable and scalable data acquisition. “It can be adopted nearly anywhere, such as aerospace and defense, research and development institutions and more places, where data acquisition systems are needed,” said Mobbs. “It is an ever-evolving solution.”
Read More Share
Details
Last Updated May 08, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center View the full article
-
By NASA
Explore This Section RPS Home About About RPS About the Program About Plutonium-238 Safety and Reliability For Mission Planners Contact Power & Heat Overview Power Systems Thermal Systems Dynamic Radioisotope Power Missions Overview Timeline News Resources STEM FAQ 3 min read
NASA Selects Winners of the 2024-2025 Power to Explore Challenge
Ten-year-old, Terry Xu of Arcadia, California; 14-year-old, Maggie Hou of Snohomish, Washington; and 17-year-old, Kairat Otorov of Trumbull, Connecticut, winners of the 2024-2025 Power to Explore Student Writing Challenge. NASA/David Lam, Binbin Zheng, The Herald/Olivia Vanni, Meerim Otorova NASA has chosen three winners out of nine finalists in the fourth annual Power to Explore Challenge, a national writing competition designed to teach K-12 students about the enabling power of radioisotopes for space exploration.
“Congratulations to the amazing champions and all of the participants!
Carl Sandifer II
Program Manager, NASA’s Radioisotope Power Systems Program
The essay competition asked students to learn about NASA’s radioisotope power systems (RPS), likened to “nuclear batteries,” which the agency has used discover “moonquakes” on Earth’s Moon and study some of the most extreme of the more than 891 moons in the solar system. In 275 words or less, students dreamed up a unique exploration mission of one of these moons and described their own power to achieve their mission goals.
“I’m so impressed by the creativity and knowledge of our Power to Explore winners,” said Carl Sandifer II, program manager of the Radioisotope Power Systems Program at NASA’s Glenn Research Center in Cleveland.
Entries were split into three groups based on grade level, and a winner was chosen from each. The three winners, each accompanied by a guardian, are invited to NASA’s Glenn Research Center in Cleveland for a VIP tour of its world-class research facilities this summer.
The winners are:
Terry Xu, Arcadia, California, kindergarten through fourth grade Maggie Hou, Snohomish, Washington, fifth through eighth grade Kairat Otorov, Trumbull, Connecticut, ninth through 12th grade “Congratulations to the amazing champions and all of the participants! Your “super powers” inspire me and make me even more optimistic about the future of America’s leadership in space,” Sandifer said.
The Power to Explore Challenge offered students the opportunity to learn about space power, celebrate their own strengths, and interact with NASA’s diverse workforce. This year’s contest received nearly 2,051 submitted entries from all 50 states, U.S. territories, and the Department of Defense Education Activity overseas.
Every student who submitted an entry received a digital certificate and an invitation to the Power Up virtual event held on March 21. There, NASA announced the 45 national semifinalists, and students learned about what powers the NASA workforce.
Additionally, the national semifinalists received a NASA RPS prize pack.
NASA announced three finalists in each age group (nine total) on April 23. Finalists were invited to discuss their mission concepts with a NASA scientist or engineer during an exclusive virtual event.
The challenge is funded by the Radioisotope Power Systems Program Office in NASA’s Science Mission Directorate and administered by Future Engineers under a Small Business Innovation Research phase III contract. This task is managed by the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.
For more information on radioisotope power systems visit: https://nasa.gov/rps
Karen Fox / Erin Morton
Headquarters, Washington
301-286-6284 / 202-805-9393
karen.c.fox@nasa.gov / erin.morton@nasa.gov
Kristin Jansen
Glenn Research Center, Cleveland
216-296-2203
kristin.m.jansen@nasa.gov
View the full article
-
By NASA
Technicians move the Orion spacecraft for NASA’s Artemis II test flight out of the Neil A. Armstrong Operations and Checkout Building to the Multi-Payload Processing Facility at Kennedy Space Center in Florida on Saturday, May 3, 2025. NASA/Kim Shiflett Engineers, technicians, mission planners, and the four astronauts set to fly around the Moon next year on Artemis II, NASA’s first crewed Artemis mission, are rapidly progressing toward launch.
At the agency’s Kennedy Space Center in Florida, teams are working around the clock to move into integration and final testing of all SLS (Space Launch System) and Orion spacecraft elements. Recently they completed two key milestones – connecting the SLS upper stage with the rest of the assembled rocket and moving Orion from its assembly facility to be fueled for flight.
“We’re extremely focused on preparing for Artemis II, and the mission is nearly here,” said Lakiesha Hawkins, assistant deputy associate administrator for NASA’s Moon to Mars Program, who also will chair the mission management team during Artemis II. “This crewed test flight, which will send four humans around the Moon, will inform our future missions to the Moon and Mars.”
Teams with NASA’s Exploration Ground Systems Program begin integrating the interim cryogenic propulsion stage to the SLS (Space Launch System) launch vehicle stage adapter on Wednesday, April 30, 2025, inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. NASA/Isaac Watson On May 1, technicians successfully attached the interim cryogenic propulsion stage to the SLS rocket elements already poised atop mobile launcher 1, including its twin solid rocket boosters and core stage, inside the spaceport’s Vehicle Assembly Building (VAB). This portion of the rocket produces 24,750 pounds of thrust for Orion after the rest of the rocket has completed its job. Teams soon will move into a series of integrated tests to ensure all the rocket’s elements are communicating with each other and the Launch Control Center as expected. The tests include verifying interfaces and ensuring SLS systems work properly with the ground systems.
Meanwhile, on May 3, Orion left its metaphorical nest, the Neil Armstrong Operations & Checkout Facility at Kennedy, where it was assembled and underwent initial testing. There the crew module was outfitted with thousands of parts including critical life support systems for flight and integrated with the service module and crew module adapter. Its next stop on the road to the launch pad is the Multi-Payload Processing Facility, where it will be carefully fueled with propellants, high pressure gases, coolant, and other fluids the spacecraft and its crew need to maneuver in space and carry out the mission.
After fueling is complete, the four astronauts flying on the mission around the Moon and back over the course of approximately 10 days, will board the spacecraft in their Orion Crew Survival System spacesuits to test all the equipment interfaces they will need to operate during the mission. This will mark the first time NASA’s Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, will board their actual spacecraft while wearing their spacesuits. After the crewed testing is complete, technicians will move Orion to Kennedy’s Launch Abort System Facility, where the critical escape system will be added. From there, Orion will move to the VAB to be integrated with the fully assembled rocket.
NASA also announced its second agreement with an international space agency to fly a CubeSat on the mission. The collaborations provide opportunities for other countries to work alongside NASA to integrate and fly technology and experiments as part of the agency’s Artemis campaign.
While engineers at Kennedy integrate and test hardware with their eyes on final preparations for the mission, teams responsible for launching and flying the mission have been busy preparing for a variety of scenarios they could face.
The launch team at Kennedy has completed more than 30 simulations across cryogenic propellant loading and terminal countdown scenarios. The crew has been taking part in simulations for mission scenarios, including with teams in mission control. In April, the crew and the flight control team at NASA’s Johnson Space Center in Houston simulated liftoff through a planned manual piloting test together for the first time. The crew also recently conducted long-duration fit checks for their spacesuits and seats, practicing several operations while under various suit pressures.
NASA astronaut Christina Koch participates in a fit check April 18, 2025, in the spacesuit she will wear during Artemis II. NASA/Josh Valcarcel Teams are heading into a busy summer of mission preparations. While hardware checkouts and integration continue, in coming months the crew, flight controllers, and launch controllers will begin practicing their roles in the mission together as part of integrated simulations. In May, the crew will begin participating pre-launch operations and training for emergency scenarios during launch operations at Kennedy and observe a simulation by the launch control team of the terminal countdown portion of launch. In June, recovery teams will rehearse procedures they would use in the case of a pad or ascent abort off the coast of Florida, with launch and flight control teams supporting. The mission management team, responsible for reviewing mission status and risk assessments for issues that arise and making decisions about them, also will begin practicing their roles in simulations. Later this summer, the Orion stage adapter will arrive at the VAB from NASA’s Marshall Spaceflight Center in Huntsville, Alabama, and stacked on top of the rocket.
NASA astronauts Reid Wiseman (foreground) and Victor Glover participate in a simulation of their Artemis II entry profile on March 13, 2025.NASA/Bill Stafford Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.