Members Can Post Anonymously On This Site
NASA Selects 12 Companies to Collaborate on Key Technology Development
-
Similar Topics
-
By NASA
Students from Eau Gallie High School in Melbourne, Florida, visited the Prototype Development Laboratory at NASA’s Kennedy Space Center in Florida on Monday, April 28, 2025. The science, technology, engineering, and mathematics (STEM) participants are interested in technical trades and had the chance to hear from technicians at the Prototype Development Laboratory who design, fabricate, and evaluate protypes, test articles, and test support equipment.
NASA Kennedy’s Office of STEM Engagement provides opportunities to attract, engage, and enable students seeking careers in science, technology, engineering, and mathematics.
“My technical training in high school plays a huge role in the work I do every day in the Prototype Laboratory,” said Spencer Wells, mechanical engineering technician at Prototype Development Laboratory. “If it weren’t for that training, I’m convinced I wouldn’t be here at NASA.”
Some of the participants also have worked on a project to design and build a wheel for a lunar excavator demonstration mission as part of the NASA HUNCH program, an instructional partnership between NASA and educational institutions.
Image credit: NASA/Frank Michaux
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
When most people think of NASA, they picture rockets, astronauts, and the Moon. But behind the scenes, a group of inventors is quietly rewriting the rules of what’s possible — on Earth, in orbit, and beyond. Their groundbreaking inventions eventually become technology available for industry, helping to shape new products and services that improve life around the globe. For their contributions to NASA technology, we welcome four new inductees into the 2024-2025 NASA Inventors Hall of Fame
A robot for space and the workplace
Myron (Ron) Diftler led the team behind Robonaut 2 (R2), a humanoid robot developed with General Motors. The goal was to create a robot that could help humans both in space and on the factory floor. The R2 robot became the first humanoid robot in space aboard the International Space Station, and part of its technology was licensed for use on Earth, leading to a grip-strengthening robotic glove to help humans with strenuous, repetitive tasks. From factories to space exploration, Diftler’s work has real-world impact.
Some of the toughest electronic chips on and off Earth
Technology developed to one day explore the surface of Venus has to be tough enough to survive the planet where temperatures hit 860°F and the atmosphere is akin to battery acid. Philip Neudeck’s silicon carbide integrated circuits don’t just work — they ran for over 60 days in simulated Venus-like conditions. On Earth, these chips can boost efficiency in wireless communication systems, help make drilling for oil safer, and enable more practical electric vehicles.
From developing harder chip materials to unlocking new planetary missions, Neudeck is proving that the future of electronics isn’t just about speed — it’s about survival.
Hydrogen sensors that could go the distance on other worlds
Gary Hunter helped develop a hydrogen sensor so advanced it’s being considered for a future mission to Titan, Saturn’s icy moon. These and a range of other sensors he’s helped developed have applications that go beyond space exploration, such as factory floors here on Earth.
With new missions on the horizon and smarter sensors in development, Hunter is still pushing the boundaries of what NASA technology can do. Whether it’s Titan, the surface of Venus, or somewhere we haven’t dreamed of yet, this work could help shape the way to get there.
Advanced materials research to make travel safer
Advanced materials, such as foams and composites, are key to unlocking the next generation of manufacturing. From space exploration to industry, Erik Weiser spent years contributing his expertise to the development of polymers, ceramics, metals, nanomaterials, and more. He is named on more than 20 patents. During this time, he provided his foam expertise to the Space Shuttle Columbia accident investigation, the Shuttle Discovery Return-to-Flight Investigation and numerous teams geared toward improving the safety of the shuttle.
Today, Weiser serves as director of the Facilities and Real Estate Division at NASA Headquarters, overseeing the foundation of NASA’s missions. Whether it’s advancing research or optimizing real estate across the agency, he’s helping launch the future, one facility at a time.
Want to learn more about NASA’s game changing innovations? Visit the NASA Inventors Hall of Fame.
Read More Share
Details
Last Updated May 09, 2025 Related Terms
Technology Technology Transfer Technology Transfer & Spinoffs Explore More
3 min read Key Portion of NASA’s Roman Space Telescope Clears Thermal Vacuum Test
Article 2 days ago 4 min read NASA Enables SPHEREx Data Return Through Commercial Partnership
Article 3 days ago 6 min read NASA Data Helps Map Tiny Plankton That Feed Giant Right Whales
In the waters off New England, one of Earth’s rarest mammals swims slowly, mouth agape.…
Article 4 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Editor’s Note: The following is one of three related articles about the NASA Data Acquisition System and related efforts. Please visit Stennis News – NASA to access accompanying articles.
The NASA Data Acquisition System, developed at NASA Stennis, is used in multiple test areas at NASA’s Marshall Space Flight Center in Huntsville, Alabama, including Test Facility 116. The facility consists of an open-steel test stand structure, primarily used for subscale testing, and three adjacent test bays designed for large-scale/full-scale testing. NASA/Marshall Space Flight Center Teams at NASA’s Langley Research Center in Hampton, Virginia conduct a test in the 8-Foot High-Temperature Tunnel. The NASA Data Acquisition System, developed at NASA Stennis, represents a potential solution for engineers seeking to standardize data systems at NASA Langley. NASA/Langley Research Center Teams at Test Stand 403, located at NASA’s White Sands Test Facility in Las Cruces, New Mexico, plan to use the NASA Data Acquisition System to support testing and development projects related to NASA’s Orion spacecraft.NASA/White Sands Test Facility A data-focused software tool created at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, continues to expand its capabilities and use across the agency.
Much like the software on a cell phone, the NASA Data Acquisition System (NDAS) software evolves with updates to meet user needs.
“It is not just because we are seeking new opportunities that we evolve,” said Kris Mobbs, NASA project manager for NDAS. “It is because the community of people using this software tell us about all the new, cool things happening and how they want to use the tool.”
Created as a standard method for collecting rocket propulsion test data, NDAS is proving to be a building block to acquire, display, and process various datasets. The flexibility of the software has supplied solutions for NASA’s work in New Mexico and Alabama and is being evaluated for data acquisition needs in Virginia.
When NASA’s White Sands Test Facility in Las Cruces, New Mexico, needed a new data acquisition system with a flexible design, the facility reached out to NASA Stennis since the center had demonstrated success with a similar challenge.
“A major benefit for the agency is having a software platform that is agency owned and developed,” said Josh Simmons, White Sands technical upgrades lead. “Stennis is leading the way and the way the system is written and documented, other programmers can jump in, and the way they have it designed, it can continue on and that is key.”
The NASA Stennis team updated its NDAS platform based on input from White Sands personnel to make it more adaptable and to increase data acquisition rates.
“They look to understand the requirements and to develop an application that is flexible to meet everybody’s requirements,” Simmons said. “They are always willing to improve it, to make it more applicable to a wider audience.”
NDAS will be the primary data acquisition and control systems to support testing and development projects related to NASA’s Orion spacecraft.
“I would like to standardize around it here at White Sands,” said Simmons. “I want to show the worth and versatility of NDAS, so people who need it make a choice to use it.”
Meanwhile at NASA’s Marshall Space Flight Center in Huntsville, Alabama, NDAS is used in multiple areas for small-scale, subscale, and full-scale testing.
Devin Rios Ogle is a contractor software engineer at NASA Marshall, responsible for integrating and upgrading the data acquisition system in the testing areas. The system is used to record data on test sequences to verify they happen as intended.
“The visualization of data is really nice compared to other software I have worked with,” said Rios Ogle. “It is easier to see what data you want to see when you want to see it. You select a measurement, and you can see it in graph form, or tabular form, or however you would like. It is visually appealing and very easy to find the stuff you need.”
Rios Ogle is familiar with the database behind the system and understands what the program is trying to do. He particularly noted the modular approach built into the system, which allows users to adapt the software as needed and is a feature others would find beneficial.
Marcus Jackson, a contractor instrumentation and control engineer at NASA Marshall, echoed Ogle’s assessment of NDAS, noting that it has allowed the center to condense multiple systems into a single package that meets the team’s unique needs.
“Ultimately, NDAS provides us with an excellent software package that is built specifically for the kind of work performed here and at other test stands across the United States,” said Jackson. “It is easy to install, manage, and scale up. It doesn’t break, but if you do find a bug or issue, the NDAS team is very quick to respond and help you find a solution.”
NDAS also represents a potential solution for engineers seeking to standardize data systems at NASA’s Langley Research Center in Hampton, Virginia, a use that could positively impact a mission’s ability to make data-informed decisions.
“We are investigating alternatives for standardization at all Langley facilities,” said Scott Simmons, NASA Langley data systems engineer. “Standardization has the potential for significant maintenance cost savings and efficiencies because of the sharing of the software. Having an instance of NDAS available for the dynamic data system at the 8-Foot High Temperature tunnel enables us to evaluate it as a potential solution for standardization at Langley.”
As the nation’s largest hypersonic blow-down test facility, the tunnel duplicates, as near as possible, flight conditions that would be encountered by hypersonic vehicles at up to Mach 6.5, or more than six times the speed of sound.
Even as its use grows, the NASA Stennis-led software project continues to gain momentum as it expands its capabilities and collaboration with users.
“The goal is to provide a software portfolio that supports a wide range of exciting NASA projects, involving lots of talented people that collaborate and innovate new software solutions far into the future,” Mobbs said. “This is a community of innovative, ambitious, and supportive engineers and scientists across all engineering disciplines that are dedicated to advancing NASA’s bold missions.”
Read More Share
Details
Last Updated May 08, 2025 Related Terms
Stennis Space Center View the full article
-
By Space Force
Chief Master Sgt. of the Space Force John F. Bentivegna outlined key strategic, operational and personnel initiatives during the Air and Space Forces Association's Warfighters in Action event, May 5.
View the full article
-
By NASA
One half of NASA’s nearly complete Nancy Grace Roman Space Telescope just passed a lengthy test to ensure it will function properly in the space environment. This milestone keeps Roman well on track for its target launch by May 2027, with the team aiming for as early as fall 2026.
This photo shows half of the NASA’s Nancy Grace Roman observatory — the outer barrel assembly, deployable aperture cover, and test solar arrays — fully deployed in a thermal chamber at NASA’s Goddard Space Flight Center in Greenbelt, Md., for environmental testing. Credit: NASA/Sydney Rohde “This milestone tees us up to attach the flight solar array sun shield to the outer barrel assembly, and deployable aperture cover, which we’ll begin this month,” said Jack Marshall, who leads integration and testing for these elements at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Then we’ll complete remaining environmental tests for the flight assembly before moving on to connect Roman’s two major assemblies and run the full observatory through testing, and then we’ll be ready to launch!”
Prior to this thermal testing, technicians integrated Roman’s deployable aperture cover, a visor-like sunshade, to the outer barrel assembly, which will house the telescope and instruments, in January, then added test solar panels in March. They moved this whole structure into the Space Environment Simulator test chamber at NASA Goddard in April.
There, it was subjected to the hot and cold temperatures it will experience in space. Next, technicians will join Roman’s flight solar panels to the outer barrel assembly and sunshade. Then the structure will undergo a suite of assessments, including a shake test to ensure it can withstand the vibrations experienced during launch.
This photo captures the installation of the test solar panels for NASA’s Nancy Grace Roman Space Telescope, which took place in March. One panel is lifted in the center of the frame on its way to being attached to the outer barrel assembly at right. The deployable aperture cover is stowed on the front of the outer barrel assembly, and the other half of the observatory — the spacecraft and integrated payload assembly, which consists of the telescope, instrument carrier, and two instruments — appears at the left of the photo.Credit: NASA/Jolearra Tshiteya Meanwhile, Roman’s other major portion — the spacecraft and integrated payload assembly, which consists of the telescope, instrument carrier, and two instruments — will undergo its own shake test, along with additional assessments. Technicians will install the lower instrument sun shade and put this half of the observatory through a thermal vacuum test in the Space Environment Simulator.
“The test verifies the instruments will remain at stable operating temperatures even while the Sun bakes one side of the observatory and the other is exposed to freezing conditions — all in a vacuum, where heat doesn’t flow as readily as it does through air,” said Jeremy Perkins, an astrophysicist serving as Roman’s observatory integration and test scientist at NASA Goddard. Keeping the instrument temperatures stable ensures their readings will be precise and reliable.
Technicians are on track to connect Roman’s two major parts in November, resulting in a complete observatory by the end of the year. Following final tests, Roman is expected to ship to the launch site at NASA’s Kennedy Space Center in Florida for launch preparations in summer 2026. Roman remains on schedule for launch by May 2027, with the team aiming for launch as early as fall 2026.
This infographic shows the two major subsystems that make up NASA’s Nancy Grace Roman Space Telescope. The subsystems are each undergoing testing prior to being joined together this fall.Credit: NASA’s Goddard Space Flight Center To virtually tour an interactive version of the telescope, visit:
https://roman.gsfc.nasa.gov/interactive
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center
301-286-1940
Share
Details
Last Updated May 07, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Goddard Space Flight Center Technology Explore More
6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
Article 2 weeks ago 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
Article 2 months ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
Article 10 months ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.