Members Can Post Anonymously On This Site
Hubble Racks Up 10,000 Science Papers
-
Similar Topics
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Universe Uncovered Hubble’s Partners in Science AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Astronaut Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
Hubble Spies Galaxy with Lots to See
This NASA/ESA Hubble Space Telescope features the galaxy NGC 7456. ESA/Hubble & NASA, D. Thilker While it may appear as just another spiral galaxy among billions in the universe, this image from the NASA/ESA Hubble Space Telescope reveals a galaxy with plenty to study. The galaxy, NGC 7456, is located over 51 million light-years away in the constellation Grus (the Crane).
This Hubble image reveals fine detail in the galaxy’s patchy spiral arms, followed by clumps of dark, obscuring dust. Blossoms of glowing pink are rich reservoirs of gas where new stars are forming, illuminating the clouds around them and causing the gas to emit this tell-tale red light. The Hubble observing program that collected this data focused on the galaxy’s stellar activity, tracking new stars, clouds of hydrogen, and star clusters to learn how the galaxy evolved through time.
Hubble, with its ability to capture visible, ultraviolet, and some infrared light, is not the only observatory focused on NGC 7456. ESA’s XMM-Newton satellite imaged X-rays from the galaxy on multiple occasions, discovering many so-called ultraluminous X-ray sources. These small, compact objects emit terrifically powerful X-rays, much more than researchers would expect, given their size. Astronomers are still trying to pin down what powers these extreme objects, and NGC 7456 contributes a few more examples.
The region around the galaxy’s supermassive black hole is also spectacularly bright and energetic, making NGC 7456 an active galaxy. Whether looking at its core or its outskirts, at visible light or X-rays, this galaxy has something interesting for astronomers to study!
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Sep 04, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Science Behind the Discoveries
Hubble Design
Hubble’s Night Sky Challenge
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Universe Uncovered Hubble’s Partners in Science AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Astronaut Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
Hubble Homes in on Galaxy’s Star Formation
This NASA/ESA Hubble Space Telescope image features the asymmetric spiral galaxy Messier 96. ESA/Hubble & NASA, F. Belfiore, D. Calzetti This NASA/ESA Hubble Space Telescope image features a galaxy whose asymmetric appearance may be the result of a galactic tug of war. Located 35 million light-years away in the constellation Leo, the spiral galaxy Messier 96 is the brightest of the galaxies in its group. The gravitational pull of its galactic neighbors may be responsible for Messier 96’s uneven distribution of gas and dust, asymmetric spiral arms, and off-center galactic core.
This asymmetric appearance is on full display in the new Hubble image that incorporates data from observations made in ultraviolet, near infrared, and visible/optical light. Earlier Hubble images of Messier 96 were released in 2015 and 2018. Each successive image added new data, building up a beautiful and scientifically valuable view of the galaxy.
The 2015 image combined two wavelengths of optical light with one near infrared wavelength. The optical light revealed the galaxy’s uneven form of dust and gas spread asymmetrically throughout its weak spiral arms and its off-center core, while the infrared light revealed the heat of stars forming in clouds shaded pink in the image.
The 2018 image added two more optical wavelengths of light along with one wavelength of ultraviolet light that pinpointed areas where high-energy, young stars are forming.
This latest version offers us a new perspective on Messier 96’s star formation. It includes the addition of light that reveals regions of ionized hydrogen (H-alpha) and nitrogen (NII). This data helps astronomers determine the environment within the galaxy and the conditions in which stars are forming. The ionized hydrogen traces ongoing star formation, revealing regions where hot, young stars are ionizing the gas. The ionized nitrogen helps astronomers determine the rate of star formation and the properties of gas between stars, while the combination of the two ionized gasses helps researchers determine if the galaxy is a starburst galaxy or one with an active galactic nucleus.
The bubbles of pink gas in this image surround hot, young, massive stars, illuminating a ring of star formation in the galaxy’s outskirts. These young stars are still embedded within the clouds of gas from which they were born. Astronomers will use the new data in this image to study how stars are form within giant dusty gas clouds, how dust filters starlight, and how stars affect their environments.
Explore More:
Learn more about why astronomers study light in detail
Explore the different wavelengths of light Hubble sees
Explore the Night Sky: Messier 96
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Aug 29, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies Stars The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble Science Highlights
Hubble’s 35th Anniversary
Hubble’s Night Sky Challenge
View the full article
-
By NASA
Deputy Project Manager for Resources – Goddard Space Flight Center
Katie Bisci, photographed here with a model of NASA’s Nancy Grace Roman Space Telescope, Credit: NASA/Jolearra Tshiteya How are you helping set the stage for the Roman mission?
I’m a deputy project manager for resources on the Nancy Grace Roman Space Telescope team, sharing the role with Kris Steeley. Together, we oversee the business team, finance, outreach, scheduling, and more. I focus more on the “down and in” of the day-to-day team — helping the financial team, resource utilization across the project, and support service contracts management — while Kris handles more of the “up and out” external work with center management and NASA Headquarters. Kris and I collaborate on many things as well. The two of us have been together on Roman for many years, and we have definitely become one brain in many aspects of the role. The main goal in the job is programmatics: We need to understand and help along the technical parts of the mission, while also supporting cost and schedule control since Roman is a cost-capped mission. I try to make sure that I partner with our engineers to understand the technical part of Roman as much as possible. I find that I can’t do my job well on the programmatic side without working together closely with our engineers to understand the hardware and testing.
What drew you to NASA? Did you always intend to work here?
I think I always knew I wanted to go into the business and finance side of things, but I thought I’d end up at a big investment bank. I interned at one during college, but it just didn’t feel right for me. After graduating, I worked on corporate events for defense contractors in New York City. Then my husband got a job in Annapolis, Maryland, and I took a leap and applied for a resource analyst job at NASA, where some college friends were working. Looking back, as an oldest daughter it probably should have been obvious that project management would be a good fit! Once I got to NASA, I was really drawn in by the missions and work we do. It was so different from the corporate world. Being able to work on some of the coolest missions with some of the most brilliant minds out there is a gift. Almost 15 years later, I’m still here.
How did your career grow from there?
After serving as a resource analyst in the Safety and Mission Assurance Directorate at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, I moved into the center’s Astrophysics Projects Division, where I began working on Roman in 2012, back when it was just a small study called WFIRST (Wide Field Infrared Survey Telescope). I could never have imagined at the time what that small study would turn into. People at NASA often say they “grew up” on the James Webb Space Telescope, and for me I definitely “grew up” on Roman. I became the mission business manager, then financial manager, and now a deputy project manager for resources. I feel lucky that most of my career has been spent on Roman. Adding it up, I’ve been on this project for over a decade. I’ve worked with so many amazing people, not just at NASA Goddard, but across the United States. It’s hard to believe we are so close to launching.
What’s been the highlight of your career so far?
Becoming part of the management team on Roman, for sure. Working with the leadership team has been incredible. The best part about Roman is the people. It still cracks me up to look at the plethora of people we have in the same room for our weekly senior staff meeting, from the programmatic and finance types like myself, to engineers leading super complicated integration and test programs, Ph.D.s, and some of the most brilliant science minds I will probably ever know. The Roman team is amazing, and those relationships are what keep me excited to come to work every day.
Has your work influenced your understanding or appreciation of astronomy?
Absolutely. I’ve learned so much just by being around brilliant people like our project scientist Julie McEnery. I even recently gave a talk about Roman at my daughter’s school! Being able to stand up in front of a group of children and talk about what Roman science is going to do is something I never would have been able to do prior to working here. I’ve learned about how the Hubble Space Telescope, Webb, and Roman all build on each other during my time on this project. And it’s really incredible science. I’ve also developed a deep admiration for the engineers who have built Roman. As a business focused person, our engineering team has really helped me understand the different facets of what our engineering team does on Roman. They are so patient with me! It’s really fulfilling to be a small part of something so big.
What advice do you have for others who are interested in doing similar work?
If you’re in finance, don’t just learn the numbers — learn the work behind them. Understand the mission, the tech, the people. That’s what helps you move from analyst to leader. People can tell when you really get what they’re doing, and that’s how you become a better partner and manager.
What’s life like outside NASA?
I have three kids — ages 9, 5, and 3 — so life is busy! When I’m not working, I’m usually at their sports games or chauffeuring them around to one event or another. It’s a little bit of a rat race, but this season of life is also really fun. Recently, my family and I have gotten back into traveling now that my kids are a little bit older. We took a spring break trip to Europe, which was fantastic. Spending time with my family and friends is everything. Whether it’s going to the beach, spending time at the pool, or hanging out on the sideline of a lacrosse game, just like at work it’s being with my people that I thrive on. And maybe one day I will have time for more hobbies again!
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Aug 26, 2025 EditorAshley BalzerLocationGoddard Space Flight Center Related Terms
Goddard Space Flight Center Nancy Grace Roman Space Telescope People of Goddard View the full article
-
By NASA
NASA’s SpaceX 33rd commercial resupply mission successfully launched to deliver supplies and science investigations to the International Space Station from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida on Aug. 24, 2025.Credit: NASA Following a successful launch of NASA’s SpaceX 33rd commercial resupply mission, new scientific experiments and cargo for the agency are bound for the International Space Station.
The SpaceX Dragon spacecraft, carrying more than 5,000 pounds of supplies to the orbiting laboratory, lifted off at 2:45 a.m. EDT on Sunday, on the company’s Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
“Commercial resupply missions to the International Space Station deliver science that helps prove technologies for Artemis lunar missions and beyond,” said acting NASA Administrator Sean Duffy. “This flight will test 3D printing metal parts and bioprinting tissue in microgravity – technology that could give astronauts tools and medical support on future Moon and Mars missions.”
Live coverage of the spacecraft’s arrival will begin at 6 a.m., Monday, Aug. 25, on NASA+, Netflix, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.
The spacecraft is scheduled to dock autonomously at approximately 7:30 a.m. to the forward port of the space station’s Harmony module.
In addition to food, supplies, and equipment for the crew, Dragon will deliver several experiments, including bone-forming stem cells for studying bone loss prevention and materials, to 3D print medical implants that could advance treatments for nerve damage on Earth. Dragon also will deliver bioprinted liver tissue to study blood vessel development in microgravity, as well as supplies to 3D print metal cubes in space.
These are just a sample of the hundreds of biology and biotechnology, physical sciences, Earth and space science investigations conducted aboard the orbiting laboratory. This research benefits people on Earth while laying the groundwork for other agency deep space missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars, inspiring the world through discovery in a new Golden Age of innovation and exploration.
During the mission, Dragon also will perform a reboost demonstration of station to maintain its current altitude. The hardware, located in the trunk of Dragon, contains an independent propellant system separate from the spacecraft to fuel two Draco engines using existing hardware and propellant system design. The boost kit will help sustain the orbiting lab’s altitude starting in September with a series of burns planned periodically throughout the fall of 2025. During NASA’s SpaceX 31st commercial resupply services mission on Nov. 8, 2024, the Dragon spacecraft performed its first demonstration of these capabilities.
The Dragon spacecraft is scheduled to remain at the space station until December, when it will depart the orbiting laboratory and return to Earth with research and cargo, splashing down off the coast of California.
Learn more about the International Space Station at:
https://www.nasa.gov/international-space-station
-end-
Joshua Finch
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov
Steven Siceloff
Kennedy Space Center, Fla.
321-876-2468
steven.p.siceloff@nasa.gov
Sandra Jones / Joseph Zakrzewski
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
Share
Details
Last Updated Aug 24, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Commercial Resupply International Space Station (ISS) ISS Research SpaceX Commercial Resupply View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.