Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A collaboration between NASA and the small business Aloft Sensing produced a new compact radar system that will enable researchers to leverage High Altitude Long Endurance (HALE) platforms to observe dynamic Earth systems. This new radar is small, provides highly sensitive measurements, and doesn’t require GPS for positioning; eventually, it could be used on vehicles in space.
      HALE InSAR flies aboard a high-altitude balloon during a test-flight. This lightweight instrument will help researchers measure ground deformation and dynamic Earth systems. Credit: Aloft Sensing Long before a volcano erupts or a mountainous snowpack disappears, millimeter-scale changes in Earth’s surface indicate larger geologic processes are at work. But detecting those minute changes, which can serve as early warnings for impending disasters, is difficult.
      With support from NASA’s Earth Science Technology Office (ESTO ) a team of researchers from the small aerospace company Aloft Sensing is developing a compact radar instrument for observing Earth’s surface deformation, topography, and vegetation with unprecedented precision.
      Their project, “HALE InSAR,” has demonstrated the feasibility of using high-altitude, long-endurance (HALE) vehicles equipped with Interferometric Synthetic Aperture Radar (InSAR) to observe changes in surface deformation mere millimeters in size and terrain information with centimetric vertical accuracy.
      “It’s a level of sensitivity that has eluded traditional radar sensors, without making them bulky and expensive,” said Lauren Wye, CEO of Aloft Sensing and principal investigator for HALE InSAR.
      HALE vehicles are lightweight aircraft designed to stay airborne for extended periods of time, from weeks to months and even years. These vehicles can revisit a scene multiple times an hour, making them ideal for locating subtle changes in an area’s geologic environment.
      InSAR, a remote sensing technique that compares multiple images of the same scene to detect changes in surface topography or determine structure, is also uniquely well-suited to locate these clues. But traditional InSAR instruments are typically too large to fly aboard HALE vehicles.
      HALE InSAR is different. The instrument is compact enough for a variety of HALE vehicles, weighing less than 15 pounds (seven kilograms) and consuming fewer than 300 watts of power, about as much energy as it takes to power an electric bike.
      HALE InSAR leverages previously-funded NASA technologies to make such detailed measurements from a small platform: a novel electronically steered antenna and advanced positioning algorithms embedded within an agile software-defined transceiver. These technologies were developed under ESTO’s Instrument Incubation Program (IIP) and Decadal Survey Incubation (DSI) Program, respectively.
      “All of the design features that we’ve built into the instrument are starting to showcase themselves and highlight why this payload in particular is distinct from what other small radars might be looking to achieve,” said Wye.
      One of those features is a flat phased array antenna, which gives users the ability to focus HALE InSAR’s radar beam without physically moving the instrument. Using a panel about the size of a tablet computer, operators can steer the beam electronically, eliminating the need for gimbles and other heavy components, which helps enable the instrument’s reduced size and weight.
      A close up HALE InSAR fixed to a high-altitude airship. The flat planar antenna reduces the instruments mass and eliminates the need for gimbles and other heavy components. Credit: Aloft Sensing “SAR needs to look to the side. Our instrument can be mounted straight down, but look left and right on every other pulse such that we’re collecting a left-looking SAR image and a right-looking SAR image essentially simultaneously. It opens up opportunities for the most mass-constrained types of stratospheric vehicles,” said Wye.
      Using advanced positioning algorithms, HALE InSAR also has the unique ability to locate itself without GPS, relying instead on feedback from its own radar signals to determine its position even more accurately. Brian Pollard, Chief Engineer at Aloft Sensing and co-investigator for HALE InSAR, explained that precise positioning is essential for creating high-resolution data about surface deformation and topography.
      “SAR is like a long exposure camera, except with radio waves. Your exposure time could be a minute or two long, so you can imagine how much smearing goes on if you don’t know exactly where the radar is,” said Pollard.
      Navigating without GPS also makes HALE InSAR ideal for field missions in austere environments where reliable GPS signals may be unavailable, increasing the instrument’s utility for national security applications and science missions in remote locations.
      The Aloft Sensing team recently achieved several key milestones, validating their instrument aboard an airship at 65,000 feet as well as small stratospheric balloons. Next, they’ll test HALE InSAR aboard a fixed wing HALE aircraft. A future version of their instrument could even find its way into low Earth orbit on a small satellite.
      Wye credits NASA support for helping her company turn a prototype into a proven instrument.
      “This technology has been critically enabled by ESTO, and the benefit to science and civil applications is huge,” said Wye. “It also exemplifies the dual-use potential enabled by NASA-funded research. We are seeing significant military interest in this capability now that it is reaching maturity. As a small business, we need this hand-in-hand approach to be able to succeed.”
      For more information about opportunities to work with NASA to develop new Earth observation technologies, visit esto.nasa.gov.
      For additional details, see the entry for this project on NASA TechPort.
      Project Lead: Dr. Lauren Wye, CEO, Aloft Sensing
      Sponsoring Organization: NASA’s Instrument Incubation Program (IIP)
      Share








      Details
      Last Updated Aug 19, 2025 Related Terms
      Earth Science Division Earth Science Technology Office Science-enabling Technology Technology Highlights Explore More
      1 min read Snapshot Wisconsin Celebrates 10 Years and 100 Million Photos Collected!
      The Snapshot Wisconsin project recently collected their 100 millionth trail camera photo! What’s more, this…


      Article


      2 weeks ago
      2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica


      Article


      1 month ago
      7 min read A New Alloy is Enabling Ultra-Stable Structures Needed for Exoplanet Discovery


      Article


      2 months ago
      View the full article
    • By NASA
      If you asked someone what they expected to see during a visit to NASA’s Johnson Space Center, they would probably list things like astronauts, engineers, and maybe a spacecraft or two. It might be a surprise to learn you can also spy hundreds of species of animals – from geckos and snakes to white-tailed deer and red-tailed hawks.

      Ensuring those species and Johnson’s workforce can safely coexist is the main job of Matt Strausser, Johnson’s senior biologist for wildlife management. Strausser works to reduce the negative impacts animals can have on Johnson’s operations as well as the negative impact humans might have on native wildlife and their habitats.

      NASA’s Johnson Space Center Senior Biologist Matt Strausser leads a nature hike to Johnson staff that detailed the native plant species and wildlife onsite, invasive species, and mitigation efforts.NASA/Lauren Harnett Strausser joined NASA in 2012, fresh out of graduate school, when he was hired on a six-month contract to write Johnson’s first Wildlife Management Plan. “My contract was extended a couple of times until I became a regular part of the facilities service contract, which is where I still am today,” he said.

      Strausser remembers being interested in natural resources from a young age. “I spent a lot of my childhood poring through copies of National Geographic, hiking, and camping,” he said. When it was time for college, Strausser decided to study biology and natural resource management. He spent his summers in jobs or internships that mostly involved endangered wildlife species, including Attwater’s prairie chickens, which are bred at Johnson through a partnership with the Houston Zoo. Strausser noted that he conducted research across the country while he was a student, and even studied fish for a short time in the South Pacific.

      “After all of those adventures in faraway places, I find it ironic that I ended up about 20 miles from where I grew up,” he said. “Once I got onsite, it did not take me long to find that this property has great remnant native plant communities, a fascinating land use history, and some unique natural resource challenges that come from the work done here. Those factors really drew me in and helped motivate me to build a career at Johnson.”

      Matthew Strausser received a Silver Snoopy Award through NASA’s Space Flight Awareness Program in 2018, in recognition of his efforts to prevent and mitigate ant-inflicted damage to critical infrastructure electrical systems. From left: NASA astronaut Reid Weissman, Strausser, Strausser’s wife Kayla, NASA Acting Associate Administrator Vanessa Wyche. NASA Strausser’s work involves a variety of activities. First, he gathers data about Johnson’s wildlife populations and their habitats. “I use population counts, conflict records, satellite and aerial imagery, nest surveys, outside reports, and even historical data to get an understanding of what’s on the landscape and what problems we have to tackle,” he said.

      With that information, Strausser works to engage project and facility managers and provide recommendations on how to prevent or reduce the impact of wildlife problems onsite. Strausser works with Johnson’s facilities maintenance group to modify buildings to keep animals on the outside, and he gets support from the Johnson veterinarian on animal health issues. He also works closely with Johnson’s pest control and groundskeeping contracts, as their work is often adjacent to wildlife management.

      He supports the safety team, as well. “Our security contractors are a great resource for reporting wildlife issues as well as helping address them,” Strausser said, adding that some of Johnson’s safety groups “have been really helpful at getting the word out about how to stay safe around our wildlife” in coordination with the center’s internal communications team.  His team also responds to wildlife conflict calls, which often involve capturing and relocating animals that have wandered into areas where they pose a risk to people or operations.

      Additionally, Strausser runs the facilities contract’s small unmanned aircraft system, which uses drones to conduct facility inspections, support hurricane response, and survey on-site wildlife.

      An on-site wildlife snapshot captured by the Johnson Space Center facilities contract’s small unmanned aircraft system. NASA The nature of his work has instilled in Strausser an appreciation for teamwork and collaboration among colleagues with distinct experiences. Each of the projects he works on involves team members from different organizations and contracts, and most of them do not have a background in biology. “Building a wildlife and natural resource program from the ground up and bringing all of these once-disconnected and diverse professionals together to effectively address problems – that is the achievement I take the most pride in,” he said.

      Strausser observed that accomplishing the goals of the agency’s Artemis campaign will require a tremendous amount of specialized support infrastructure, and that developing and running that infrastructure will require a wide variety of professionals. “It is going to require students and specialists with all different types of backgrounds, passions, and talents.”

      Overall, Strausser said he has a very dynamic job. “Wildlife issues tend to be very seasonal, so throughout the year, the types of issues I am addressing change,” he said. “On top of that, there are always new projects, problems, and questions out there that keep the work fresh and challenging.” He has learned the value of being open to new challenges and learning new skills. “Being adaptable can be just as important as mastery in a specific field,” he said.
      An on-site wildlife snapshot captured by the Johnson Space Center facilities contract’s small unmanned aircraft system. NASA A Texas Longhorn relaxes onsite at Johnson Space Center, with Space Center Houston in the background.NASA Deer are plentiful on the Johnson Space Center campus.NASA A hawk perches in a tree at Johnson Space Center.NASA Attwater’s prairie chickens are bred at Johnson Space Center through a partnership with the Houston Zoo.NASA Explore More
      7 min read Station Nation: Meet Tess Caswell, Extravehicular Activity Flight Controller and Lead Capsule Communicator 
      Article 2 hours ago 3 min read Human Rating and NASA-STD-3001
      Article 3 days ago 2 min read Juliana Barajas: Supporting NASA’s Mission, One Task at a Time 
      Article 1 week ago View the full article
    • By NASA
      4 Min Read Vision Changes on Space Station
      NASA astronaut Jonny Kim, assisted by JAXA astronaut Takuya Onishi, performs an eye ultrasound on the International Space Station. Credits: NASA Science in Space July 2025
      When astronauts began spending six months and more aboard the International Space Station, they started to notice changes in their vision. For example, many found that, as their mission progressed, they needed stronger reading glasses. Researchers studying this phenomenon identified swelling in the optic disc, which is where the optic nerve enters the retina, and flattening of the eye shape. These symptoms became known as Space-Associated Neuro-Ocular Syndrome (SANS).
      NASA astronaut Suni Williams wears a cuff on her left leg as she conducts an eye exam for the Thigh Cuff investigation.NASA Microgravity causes a person’s blood and cerebrospinal fluid to shift toward the head and studies have suggested that these fluid shifts may be an underlying cause of SANS. A current investigation, Thigh Cuff, examines whether tight leg cuffs change the way fluid moves around inside the body, especially around the eyes and in the heart and blood vessels. If so, the cuffs could serve as a countermeasure against the problems associated with fluid shifts, including SANS. A simple and easy-to-use tool to counter the headward shift of body fluids could help protect astronauts on future missions to the Moon and Mars. The cuffs also could treat conditions on Earth that cause fluid to build up in the head or upper body, such as long-term bed rest and certain diseases.
      Following fluid shifts
      NASA astronaut Shane Kimbrough sets up optical coherence tomography hardware.NASA The Fluid Shifts investigation, conducted from 2015 through 2020, was the first to reveal changes in how blood drains from the brain in microgravity. Vision Impairment and Intracranial Pressure (VIIP) began testing the role those fluid shifts and resulting increased brain fluid pressure might play in the development of SANS. This research used a variety of measures including clinical eye exams with and without dilatation, imaging of the retina and associated blood vessels and nerves, noninvasive imaging to measure the thickness of retinal structures, and magnetic resonance imaging of the eye and optic nerve. In addition, approximately 300 astronauts completed questionnaires to document vision changes during their missions.
      In one paper published from the research, scientists described how these imaging techniques have improved the understanding of SANS. The authors summarized emerging research on developing a head-mounted virtual reality display that can conduct multimodal, noninvasive assessment to help diagnose SANS.
      Other researchers determined that measuring the optic nerve sheath diameter shows promise as a way to identify and quantify eye and vision changes during spaceflight. The paper also makes recommendations for standardizing imaging tools, measurement techniques, and other aspects of study design.
      Another paper reported on an individual astronaut who had more severe than usual changes after a six-month spaceflight and certain factors that may have contributed. Researchers also observed improvement in the individual’s symptoms that may have been due to B vitamin supplementation and lower cabin carbon dioxide levels following departure of some crew members. While a single case does not allow researchers to determine cause and effect, the magnitude of the improvements suggest this individual may be more affected by environmental conditions such as carbon dioxide. This may have been the first attempt to mitigate SANS with inflight B vitamin supplementation.
      Eyeball tissue stiffness
      Optical coherence tomography image of the back of the eyeball (top) and thickness of the middle wall of the eye (bottom) from the SANSORI investigation.University of Montreal SANSORI, a CSA (Canadian Space Agency) investigation, used an imaging technique called Optical Coherence Tomography to examine whether reduced stiffness of eye tissue contributes to SANS. On Earth, changes in stiffness of the tissue around the eyeball have been associated with aging and conditions such as glaucoma and myopia. Researchers found that long-duration spaceflight affected the mechanical properties of eye tissues, which could contribute to the development of SANS. This finding could improve understanding of eye changes during spaceflight and in aging patients on Earth.
      Genetic changes, artificial gravity
      The MHU-8 investigation from JAXA (Japan Aerospace Exploration Agency), which examined changes in DNA and gene expression in mice after spaceflight, found changes in the optic nerve and retinal tissue. Researchers also found that artificial gravity may reduce these changes and could serve as a countermeasure on future missions.
      These and other studies ultimately could help researchers prevent, diagnose, and treat vision impairment in crew members and people on Earth.
      Keep Exploring Discover More Topics From NASA
      Humans In Space
      Latest News from Space Station Research
      Space Station Research and Technology Tools and Information
      Space Station Research Results
      View the full article
    • By European Space Agency
      The Council of the European Space Agency has received the Anniversary Statement as signed by Member States marking 50 years of the agency.
      View the full article
    • By European Space Agency
      Video: 01:15:00 Watch the replay of the media information session where ESA Director General Josef Aschbacher and ESA Council Chair Renato Krpoun (CH) brief journalists on the key decisions made during the ESA Council meeting held at ESA Headquarters in Paris on 11–12 June 2025.
      View the full article
  • Check out these Videos

×
×
  • Create New...