Jump to content

Recommended Posts

Posted
ESA_s_exoplanet_missions_card_full.jpg Video: 00:00:57

More than 5000 exoplanets have been discovered to date, but what do they look like? ESA’s dedicated exoplanet missions Cheops, Plato and Ariel are on a quest to find out. Cheops will focus its search on mini-Neptunes, planets with sizes between Earth and Neptune, on short orbits around their stars. Cheops will find out how large these planets are, and may detect whether the planets have clouds. Plato will look at all kinds of exoplanets and determine their sizes and ages. Plato’s instruments are so sensitive it may discover the first Earth-like planet on an Earth-like orbit. Finally, Ariel will look at the atmospheres of exoplanets using the technique of transmission spectroscopy and discover what they are made of. Together these missions will discover what exoplanets and their systems look like and they will also reveal how special our own Solar System is.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      An unexpectedly strong solar storm rocked our planet on April 23, 2023, sparking auroras as far south as southern Texas in the U.S. and taking the world by surprise. 
      Two days earlier, the Sun blasted a coronal mass ejection (CME) — a cloud of energetic particles, magnetic fields, and solar material — toward Earth. Space scientists took notice, expecting it could cause disruptions to Earth’s magnetic field, known as a geomagnetic storm. But the CME wasn’t especially fast or massive, and it was preceded by a relatively weak solar flare, suggesting the storm would be minor. But it became severe.
      Using NASA heliophysics missions, new studies of this storm and others are helping scientists learn why some CMEs have more intense effects — and better predict the impacts of future solar eruptions on our lives.
      During the night of April 23 to 24, 2023, a geomagnetic storm produced auroras that were witnessed as far south as Arizona, Arkansas, and Texas in the U.S. This photo shows green aurora shimmering over Larimore, North Dakota, in the early morning of April 24. Copyright Elan Azriel, used with permission Why Was This Storm So Intense?
      A paper published in the Astrophysical Journal on March 31 suggests the CME’s orientation relative to Earth likely caused the April 2023 storm to become surprisingly strong.
      The researchers gathered observations from five heliophysics spacecraft across the inner solar system to study the CME in detail as it emerged from the Sun and traveled to Earth.
      They noticed a large coronal hole near the CME’s birthplace. Coronal holes are areas where the solar wind — a stream of particles flowing from the Sun — floods outward at higher than normal speeds.
      “The fast solar wind coming from this coronal hole acted like an air current, nudging the CME away from its original straight-line path and pushing it closer to Earth’s orbital plane,” said the paper’s lead author, Evangelos Paouris of the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “In addition to this deflection, the CME also rotated slightly.”
      Paouris says this turned the CME’s magnetic fields opposite to Earth’s magnetic field and held them there — allowing more of the Sun’s energy to pour into Earth’s environment and intensifying the storm.
      The strength of the April 2023 geomagnetic storm was a surprise in part because the coronal mass ejection (CME) that produced it followed a relatively weak solar flare, seen as the bright area to the lower right of center in this extreme ultraviolet image of the Sun from NASA’s Solar Dynamics Observatory. The CMEs that produce severe geomagnetic storms are typically preceded by stronger flares. However, a team of scientists think fast solar wind from a coronal hole (the dark area below the flare in this image) helped rotate the CME and made it more potent when it struck Earth. NASA/SDO Cool Thermosphere
      Meanwhile, NASA’s GOLD (Global-scale Observations of Limb and Disk) mission revealed another unexpected consequence of the April 2023 storm at Earth.
      Before, during, and after the storm, GOLD studied the temperature in the middle thermosphere, a part of Earth’s upper atmosphere about 85 to 120 miles overhead. During the storm, temperatures increased throughout GOLD’s wide field of view over the Americas. But surprisingly, after the storm, temperatures dropped about 90 to 198 degrees Fahrenheit lower than they were before the storm (from about 980 to 1,070 degrees Fahrenheit before the storm to 870 to 980 degrees Fahrenheit afterward).
      “Our measurement is the first to show widespread cooling in the middle thermosphere after a strong storm,” said Xuguang Cai of the University of Colorado, Boulder, lead author of a paper about GOLD’s observations published in the journal JGR Space Physics on April 15, 2025.
      The thermosphere’s temperature is important, because it affects how much drag Earth-orbiting satellites and space debris experience.
      “When the thermosphere cools, it contracts and becomes less dense at satellite altitudes, reducing drag,” Cai said. “This can cause satellites and space debris to stay in orbit longer than expected, increasing the risk of collisions. Understanding how geomagnetic storms and solar activity affect Earth’s upper atmosphere helps protect technologies we all rely on — like GPS, satellites, and radio communications.”
      Predicting When Storms Strike
      To predict when a CME will trigger a geomagnetic storm, or be “geoeffective,” some scientists are combining observations with machine learning. A paper published last November in the journal Solar Physics describes one such approach called GeoCME.
      Machine learning is a type of artificial intelligence in which a computer algorithm learns from data to identify patterns, then uses those patterns to make decisions or predictions.
      Scientists trained GeoCME by giving it images from the NASA/ESA (European Space Agency) SOHO (Solar and Heliospheric Observatory) spacecraft of different CMEs that reached Earth along with SOHO images of the Sun before, during, and after each CME. They then told the model whether each CME produced a geomagnetic storm.
      Then, when it was given images from three different science instruments on SOHO, the model’s predictions were highly accurate. Out of 21 geoeffective CMEs, the model correctly predicted all 21 of them; of 7 non-geoeffective ones, it correctly predicted 5 of them.
      “The algorithm shows promise,” said heliophysicist Jack Ireland of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who was not involved in the study. “Understanding if a CME will be geoeffective or not can help us protect infrastructure in space and technological systems on Earth. This paper shows machine learning approaches to predicting geoeffective CMEs are feasible.”
      The white cloud expanding outward in this image sequence is a coronal mass ejection (CME) that erupted from the Sun on April 21, 2023. Two days later, the CME struck Earth and produced a surprisingly strong geomagnetic storm. The images in this sequence are from a coronagraph on the NASA/ESA (European Space Agency) SOHO (Solar and Heliospheric Observatory) spacecraft. The coronagraph uses a disk to cover the Sun and reveal fainter details around it. The Sun’s location and size are indicated by a small white circle. The planet Jupiter appears as a bright dot on the far right. NASA/ESA/SOHO Earlier Warnings
      During a severe geomagnetic storm in May 2024 — the strongest to rattle Earth in over 20 years — NASA’s STEREO (Solar Terrestrial Relations Observatory) measured the magnetic field structure of CMEs as they passed by.
      When a CME headed for Earth hits a spacecraft first, that spacecraft can often measure the CME and its magnetic field directly, helping scientists determine how strong the geomagnetic storm will be at Earth. Typically, the first spacecraft to get hit are one million miles from Earth toward the Sun at a place called Lagrange Point 1 (L1), giving us only 10 to 60 minutes advanced warning.
      By chance, during the May 2024 storm, when several CMEs erupted from the Sun and merged on their way to Earth, NASA’s STEREO-A spacecraft happened to be between us and the Sun, about 4 million miles closer to the Sun than L1.
      A paper published March 17, 2025, in the journal Space Weather reports that if STEREO-A had served as a CME sentinel, it could have provided an accurate prediction of the resulting storm’s strength 2 hours and 34 minutes earlier than a spacecraft could at L1.
      According to the paper’s lead author, Eva Weiler of the Austrian Space Weather Office in Graz, “No other Earth-directed superstorm has ever been observed by a spacecraft positioned closer to the Sun than L1.”
      Earth’s Lagrange points are places in space where the gravitational pull between the Sun and Earth balance, making them relatively stable locations to put spacecraft. NASA By Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      View the full article
    • By NASA
      7 min read
      A New Alloy is Enabling Ultra-Stable Structures Needed for Exoplanet Discovery
      A unique new material that shrinks when it is heated and expands when it is cooled could help enable the ultra-stable space telescopes that future NASA missions require to search for habitable worlds.
      Advancements in material technologies are needed to meet the science needs of the next great observatories. These observatories will strive to find, identify, and study exoplanets and their ability to support life. Credit: NASA JPL One of the goals of NASA’s Astrophysics Division is to determine whether we are alone in the universe. NASA’s astrophysics missions seek to answer this question by identifying planets beyond our solar system (exoplanets) that could support life. Over the last two decades, scientists have developed ways to detect atmospheres on exoplanets by closely observing stars through advanced telescopes. As light passes through a planet’s atmosphere or is reflected or emitted from a planet’s surface, telescopes can measure the intensity and spectra (i.e., “color”) of the light, and can detect various shifts in the light caused by gases in the planetary atmosphere. By analyzing these patterns, scientists can determine the types of gasses in the exoplanet’s atmosphere.
      Decoding these shifts is no easy task because the exoplanets appear very near their host stars when we observe them, and the starlight is one billion times brighter than the light from an Earth-size exoplanet. To successfully detect habitable exoplanets, NASA’s future Habitable Worlds Observatory will need a contrast ratio of one to one billion (1:1,000,000,000).
      Achieving this extreme contrast ratio will require a telescope that is 1,000 times more stable than state-of-the-art space-based observatories like NASA’s James Webb Space Telescope and its forthcoming Nancy Grace Roman Space Telescope. New sensors, system architectures, and materials must be integrated and work in concert for future mission success. A team from the company ALLVAR is collaborating with NASA’s Marshall Space Flight Center and NASA’s Jet Propulsion Laboratory to demonstrate how integration of a new material with unique negative thermal expansion characteristics can help enable ultra-stable telescope structures.
      Material stability has always been a limiting factor for observing celestial phenomena. For decades, scientists and engineers have been working to overcome challenges such as micro-creep, thermal expansion, and moisture expansion that detrimentally affect telescope stability. The materials currently used for telescope mirrors and struts have drastically improved the dimensional stability of the great observatories like Webb and Roman, but as indicated in the Decadal Survey on Astronomy and Astrophysics 2020 developed by the National Academies of Sciences, Engineering, and Medicine, they still fall short of the 10 picometer level stability over several hours that will be required for the Habitable Worlds Observatory. For perspective, 10 picometers is roughly 1/10th the diameter of an atom.

      NASA’s Nancy Grace Roman Space Telescope sits atop the support structure and instrument payloads. The long black struts holding the telescope’s secondary mirror will contribute roughly 30% of the wave front error while the larger support structure underneath the primary mirror will contribute another 30%.
      Credit: NASA/Chris Gunn
      Funding from NASA and other sources has enabled this material to transition from the laboratory to the commercial scale. ALLVAR received NASA Small Business Innovative Research (SBIR) funding to scale and integrate a new alloy material into telescope structure demonstrations for potential use on future NASA missions like the Habitable Worlds Observatory. This alloy shrinks when heated and expands when cooled—a property known as negative thermal expansion (NTE). For example, ALLVAR Alloy 30 exhibits a -30 ppm/°C coefficient of thermal expansion (CTE) at room temperature. This means that a 1-meter long piece of this NTE alloy will shrink 0.003 mm for every 1 °C increase in temperature. For comparison, aluminum expands at +23 ppm/°C.

      While other materials expand while heated and contract when cooled, ALLVAR Alloy 30 exhibits a negative thermal expansion, which can compensate for the thermal expansion mismatch of other materials. The thermal strain versus temperature is shown for 6061 Aluminum, A286 Stainless Steel, Titanium 6Al-4V, Invar 36, and ALLVAR Alloy 30.
      Because it shrinks when other materials expand, ALLVAR Alloy 30 can be used to strategically compensate for the expansion and contraction of other materials. The alloy’s unique NTE property and lack of moisture expansion could enable optic designers to address the stability needs of future telescope structures. Calculations have indicated that integrating ALLVAR Alloy 30 into certain telescope designs could improve thermal stability up to 200 times compared to only using traditional materials like aluminum, titanium, Carbon Fiber Reinforced Polymers (CFRPs), and the nickel–iron alloy, Invar.
      The hexapod assembly with six ALLVAR Alloy struts was measured for long-term stability. The stability of the individual struts and the hexapod assembly were measured using interferometry at the University of Florida’s Institute for High Energy Physics and Astrophysics. The struts were found to have a length noise well below the proposed target for the success criteria for the project. Credit: (left) ALLVAR and (right) Simon F. Barke, Ph.D. To demonstrate that negative thermal expansion alloys can enable ultra-stable structures, the ALLVAR team developed a hexapod structure to separate two mirrors made of a commercially available glass ceramic material with ultra-low thermal expansion properties. Invar was bonded to the mirrors and flexures made of Ti6Al4V—a titanium alloy commonly used in aerospace applications—were attached to the Invar. To compensate for the positive CTEs of the Invar and Ti6Al4V components, an NTE ALLVAR Alloy 30 tube was used between the Ti6Al4V flexures to create the struts separating the two mirrors. The natural positive thermal expansion of the Invar and Ti6Al4V components is offset by the negative thermal expansion of the NTE alloy struts, resulting in a structure with an effective zero thermal expansion.
      The stability of the structure was evaluated at the University of Florida Institute for High Energy Physics and Astrophysics. The hexapod structure exhibited stability well below the 100 pm/√Hz target and achieved 11 pm/√Hz. This first iteration is close to the 10 pm stability required for the future Habitable Worlds Observatory. A paper and presentation made at the August 2021 Society of Photo-Optical Instrumentation Engineers conference provides details about this analysis.
      Furthermore, a series of tests run by NASA Marshall showed that the ultra-stable struts were able to achieve a near-zero thermal expansion that matched the mirrors in the above analysis. This result translates into less than a 5 nm root mean square (rms) change in the mirror’s shape across a 28K temperature change.
      The ALLVAR enabled Ultra-Stable Hexapod Assembly undergoing Interferometric Testing between 293K and 265K (right). On the left, the Root Mean Square (RMS) changes in the mirror’s surface shape are visually represented. The three roughly circular red areas are caused by the thermal expansion mismatch of the invar bonding pads with the ZERODUR mirror, while the blue and green sections show little to no changes caused by thermal expansion. The surface diagram shows a less than 5 nanometer RMS change in mirror figure. Credit: NASA’s X-Ray and Cryogenic Facility [XRCF] Beyond ultra-stable structures, the NTE alloy technology has enabled enhanced passive thermal switch performance and has been used to remove the detrimental effects of temperature changes on bolted joints and infrared optics. These applications could impact technologies used in other NASA missions. For example, these new alloys have been integrated into the cryogenic sub-assembly of Roman’s coronagraph technology demonstration. The addition of NTE washers enabled the use of pyrolytic graphite thermal straps for more efficient heat transfer. ALLVAR Alloy 30 is also being used in a high-performance passive thermal switch incorporated into the UC Berkeley Space Science Laboratory’s Lunar Surface Electromagnetics Experiment-Night (LuSEE Night) project aboard Firefly Aerospace’s Blue Ghost Mission 2, which will be delivered to the Moon through NASA’s CLPS (Commercial Lunar Payload Services) initiative. The NTE alloys enabled smaller thermal switch size and greater on-off heat conduction ratios for LuSEE Night.
      Through another recent NASA SBIR effort, the ALLVAR team worked with NASA’s Jet Propulsion Laboratory to develop detailed datasets of ALLVAR Alloy 30 material properties. These large datasets include statistically significant material properties such as strength, elastic modulus, fatigue, and thermal conductivity. The team also collected information about less common properties like micro-creep and micro-yield. With these properties characterized, ALLVAR Alloy 30 has cleared a major hurdle towards space-material qualification.
      As a spinoff of this NASA-funded work, the team is developing a new alloy with tunable thermal expansion properties that can match other materials or even achieve zero CTE. Thermal expansion mismatch causes dimensional stability and force-load issues that can impact fields such as nuclear engineering, quantum computing, aerospace and defense, optics, fundamental physics, and medical imaging. The potential uses for this new material will likely extend far beyond astronomy. For example, ALLVAR developed washers and spacers, are now commercially available to maintain consistent preloads across extreme temperature ranges in both space and terrestrial environments. These washers and spacers excel at counteracting the thermal expansion and contraction of other materials, ensuring stability for demanding applications.
      For additional details, see the entry for this project on NASA TechPort.
      Project Lead: Dr. James A. Monroe, ALLVAR
      The following NASA organizations sponsored this effort: NASA Astrophysics Division, NASA SBIR Program funded by the Space Technology Mission Directorate (STMD).
      Share








      Details
      Last Updated Jul 01, 2025 Related Terms
      Technology Highlights Astrophysics Astrophysics Division Science-enabling Technology Explore More
      7 min read NASA Webb ‘Pierces’ Bullet Cluster, Refines Its Mass


      Article


      1 day ago
      2 min read Hubble Captures an Active Galactic Center


      Article


      4 days ago
      2 min read NASA Citizen Scientists Find New Eclipsing Binary Stars


      Article


      5 days ago
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      With Voyager 2 in the background, John Casani holds a small U.S. flag that was sewn into the spacecraft’s thermal blankets before its 1977 launch. Then Voyager’s project manager, Casani was first to envision the mission’s Golden Record, which lies before him with its cover at right. NASA/JPL-Caltech During his work on several historic missions, Casani rose through a series of technical and management positions, making an indelible mark on the nation’s space program.  
      John R. Casani, a visionary engineer who served a central role in many of NASA’s historic deep space missions, died on Thursday, June 19, 2025, at the age of 92. He was preceded in death by his wife of 39 years, Lynn Casani, in 2008 and is survived by five sons and their families.
      Casani started at the Jet Propulsion Laboratory in Southern California in 1956 and went on to work as an electronics engineer on some of the nation’s earliest spacecraft after NASA’s formation in 1958. Along with leading the design teams for both the Ranger and Mariner series of spacecraft, he held senior project positions on many of the Mariner missions to Mars and Venus, and was project manager for three trailblazing space missions: Voyager, Galileo, and Cassini.
      His work helped advance NASA spacecraft in areas including mechanical technology, system design and integration, software, and deep space communications. No less demanding were the management challenges of these multifaceted missions, which led to innovations still in use today.
      JPL’s John Casani receives the National Air & Space Museum’s Lifetime Achievement Award.Carolyn Russo/NASM, National Air and Space Museum, Smithsonian Institution “John had a major influence on the development of spacecraft that visited almost every planet in our solar system, as well as the people who helped build them,” said JPL director Dave Gallagher. “He played an essential role in America’s first attempts to reach space and then the Moon, and he was just as crucial to the Voyager spacecraft that marked humanity’s first foray into interplanetary — and later, interstellar — space. That Voyager is still exploring after nearly 50 years is a testament to John’s remarkable engineering talent and his leadership that enabled others to push the boundaries of possibility.”
      Born in Philadelphia in 1932, Casani studied electrical engineering at the University of Pennsylvania. After a short stint at an Air Force research lab, he moved to California in 1956 and was hired to work at JPL, a division of Caltech, on the guidance system for the U.S. Army Ballistic Missile Agency’s Jupiter-C and Sergeant missile programs.
      In 1957, the Soviet Union launched Sputnik 1, the first human-made Earth satellite, alarming America and changing the trajectory of both JPL and Casani’s career. With the 1958 launch of Explorer 1, America’s first satellite, the lab transitioned to concentrating on robotic space explorers, and Casani segued from missiles to spacecraft.
      One of his jobs as payload engineer on Pioneer 3 and 4, NASA’s first missions to the Moon, was to carry each of the 20-inch-long (51-cm-long) probes in a suitcase from JPL to the launch site at Cape Canaveral, Florida, where he installed them in the rocket’s nose cone.
      At the dawn of the 1960s, Casani served as spacecraft systems engineer for the agency’s first two Ranger missions to the Moon, then joined the Mariner project in 1965, earning a reputation for being meticulous. Four years later, he was Mariner project manager.
      Asked to share some of his wisdom in a 2009 NASA presentation, Casani said, “The thing that makes any of this work … is toughness. Toughness because this is a tough business, and it’s a very unforgiving business. You can do 1,000 things right, but if you don’t do everything right, it’ll come back and bite you.”
      Casani’s next role: project manager for NASA’s high-profile flagship mission to the outer planets and beyond — Voyager. He not only led the mission from clean room to space, he was first to envision attaching a message representing humanity to any alien civilization that might encounter humanity’s first interstellar emissaries. 
      “I approached Carl Sagan,” he said in a 2007 radio interview, “and asked him if he could come up with something that would be appropriate that we could put on our spacecraft in a way of sending a message to whoever might receive it.” Sagan took up the challenge, and what resulted was the Golden Record, a 12-inch gold-plated copper disk containing sounds and images selected to portray the diversity of life and culture on Earth.
      Once Voyager 1 and 2 and their Golden Records launched in 1977, JPL wasted no time in pointing their “engineer’s engineer” toward Galileo, which would become the first mission to orbit a gas giant planet. As the mission’s initial project manager, Casani led the effort from inception to assembly. Along the way, he had to navigate several congressional attempts to end the project, necessitating multiple visits to Washington. The 1986 loss of Space Shuttle Challenger, from which Galileo was to launch atop a Centaur upper-stage booster, led to mission redesign efforts before its 1989 launch.
      After 11 years leading Galileo, Casani became deputy assistant laboratory director for flight projects in 1988, received a promotion just over a year later and then, from 1990 to 1991, served as project manager of Cassini, NASA’s first flagship mission to orbit Saturn.
      Casani became JPL’s first chief engineer in 1994, retiring in 1999 and serving on several nationally prominent committees, including leading the investigation boards of both the Mars Climate Orbiter and the Mars Polar Lander failures, and also leading the James Webb Space Telescope Independent Comprehensive Review Panel.
      In early 2003, Casani returned to JPL to serve as project manager for NASA’s Project Prometheus, which would have been the nation’s first nuclear-powered, electric-propulsion spacecraft. In 2005, he became manager of the Institutional Special Projects Office at JPL, a position he held until retiring again in 2012.
      “Throughout his career, John reflected the true spirit of JPL: bold, innovative, visionary, and welcoming,” said Charles Elachi, JPL’s director from 2001 to 2016. “He was an undisputed leader with an upbeat, fun attitude and left an indelible mark on the laboratory and NASA. I am proud to have called him a friend.”
      Casani received many awards over his lifetime, including NASA’s Exceptional Achievement Medal, the Management Improvement Award from the President of the United States for the Mariner Venus Mercury mission, and the Air and Space Museum Trophy for Lifetime Achievement.
      News Media Contacts
      Matthew Segal / Veronica McGregor
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-8307 / 818-354-9452
      matthew.j.segal@jpl.nasa.gov / veronica.c.mcgregor@jpl.nasa.gov
      Share
      Details
      Last Updated Jun 25, 2025 Related Terms
      Jet Propulsion Laboratory Explore More
      6 min read NASA’s Perseverance Rover Scours Mars for Science
      Article 2 hours ago 5 min read NASA’s Curiosity Mars Rover Starts Unpacking Boxwork Formations
      Article 2 days ago 4 min read NASA Mars Orbiter Captures Volcano Peeking Above Morning Cloud Tops
      Article 3 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read Frigid Exoplanet in Strange Orbit Imaged by NASA’s Webb
      This image of exoplanet 14 Herculis c was taken by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). A star symbol marks the location of the host star 14 Herculis, whose light has been blocked by a coronagraph on NIRCam (shown here as a dark circle outlined in white). Credits:
      NASA, ESA, CSA, STScI, W. Balmer (JHU), D. Bardalez Gagliuffi (Amherst College) A planetary system described as abnormal, chaotic, and strange by researchers has come into clearer view with NASA’s James Webb Space Telescope. Using Webb’s NIRCam (Near-Infrared Camera), researchers have successfully imaged one of two known planets surrounding the star 14 Herculis, located 60 light-years away from Earth in our own Milky Way galaxy.
      The exoplanet, 14 Herculis c, is one of the coldest imaged to date. While there are nearly 6,000 exoplanets that have been discovered, only a small number of those have been directly imaged, most of those being very hot (think hundreds or even thousands of degrees Fahrenheit). The new data suggests 14 Herculis c, which weighs about 7 times the planet Jupiter, is as cool as 26 degrees Fahrenheit (minus 3 degrees Celsius).
      Image: 14 Herculis c (NIRCam)
      This image of exoplanet 14 Herculis c was taken by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). A star symbol marks the location of the host star 14 Herculis, whose light has been blocked by a coronagraph on NIRCam (shown here as a dark circle outlined in white). NASA, ESA, CSA, STScI, W. Balmer (JHU), D. Bardalez Gagliuffi (Amherst College) The team’s results covering 14 Herculis c have been submitted to The Astrophysical Journal Letters and were presented in a press conference Tuesday at the 246th meeting of the American Astronomical Society in Anchorage, Alaska.
      “The colder an exoplanet, the harder it is to image, so this is a totally new regime of study that Webb has unlocked with its extreme sensitivity in the infrared,” said William Balmer, co-first author of the new paper and graduate student at Johns Hopkins University. “We are now able to add to the catalog of not just hot, young exoplanets imaged, but older exoplanets that are far colder than we’ve directly seen before Webb.”
      Webb’s image of 14 Herculis c also provides insights into a planetary system unlike most others studied in detail with Webb and other ground- and space-based `observatories. The central star, 14 Herculis, is almost Sun-like – it is similar in age and temperature to our own Sun, but a little less massive and cooler.
      There are two planets in this system – 14 Herculis b is closer to the star, and covered by the coronagraphic mask in the Webb image. These planets don’t orbit each other on the same plane like our solar system. Instead, they cross each other like an ‘X’, with the star being at the center. That is, the orbital planes of the two planets are inclined relative to one another at an angle of about 40 degrees. The planets tug and pull at one another as they orbit the star.
      This is the first time an image has ever been snapped of an exoplanet in such a mis-aligned system.
      Scientists are working on several theories for just how the planets in this system got so “off track.” One of the leading concepts is that the planets scattered after a third planet was violently ejected from the system early in its formation.
      “The early evolution of our own solar system was dominated by the movement and pull of our own gas giants,” added Balmer. “They threw around asteroids and rearranged other planets. Here, we are seeing the aftermath of a more violent planetary crime scene. It reminds us that something similar could have happened to our own solar system, and that the outcomes for small planets like Earth are often dictated by much larger forces.”
      Understanding the Planet’s Characteristics With Webb
      Webb’s new data is giving researchers further insights into not just the temperature of 14 Herculis c, but other details about the planet’s orbit and atmosphere.
      Findings indicate the planet orbits around 1.4 billion miles from the host star in a highly elliptical, or football-shaped orbit, closer in than previous estimates. This is around 15 times farther from the Sun than Earth. On average, this would put 14 Herculis c between Saturn and Uranus in our solar system.
      The planet’s brightness at 4.4 microns measured using Webb’s coronagraph, combined with the known mass of the planet and age of the system, hints at some complex atmospheric dynamics at play.
      “If a planet of a certain mass formed 4 billion years ago, then cooled over time because it doesn’t have a source of energy keeping it warm, we can predict how hot it should be today,” said Daniella C. Bardalez Gagliuffi of Amherst College, co-first author on the paper with Balmer. “Added information, like the perceived brightness in direct imaging, would in theory support this estimate of the planet’s temperature.”
      However, what researchers expect isn’t always reflected in the results. With 14 Herculis c, the brightness at this wavelength is fainter than expected for an object of this mass and age. The research team can explain this discrepancy, though. It’s called carbon disequilibrium chemistry, something often seen in brown dwarfs.
      “This exoplanet is so cold, the best comparisons we have that are well-studied are the coldest brown dwarfs,” Bardalez Gagliuffi explained. “In those objects, like with 14 Herculis c, we see carbon dioxide and carbon monoxide existing at temperatures where we should see methane. This is explained by churning in the atmosphere. Molecules made at warmer temperatures in the lower atmosphere are brought to the cold, upper atmosphere very quickly.”
      Researchers hope Webb’s image of 14 Herculis c is just the beginning of a new phase of investigation into this strange system.
      While the small dot of light obtained by Webb contains a plethora of information, future spectroscopic studies of 14 Herculis could better constrain the atmospheric properties of this interesting planet and help researchers understand the dynamics and formation pathways of the system.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hannah Braun – hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Video: Eclipse/Coronagraph Animation
      Webb Blog: How Webb’s Coronagraphs Reveal Exoplanets in the Infrared
      Read more about Webb’s Impact on Exoplanet Research
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Exoplanets



      Exoplanet Stories



      Universe


      Share








      Details
      Last Updated Jun 10, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Exoplanets Astrophysics Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research Studying Exoplanets The Universe View the full article
    • By NASA
      4 Min Read NASA Student Challenge Prepares Future Designers for Lunar Missions
      At NASA’s Johnson Space Center in Houston, the next generation of lunar explorers and engineers are already hard at work. Some started with sketchbooks and others worked with computer-aided design files, but all had a vision of how design could thrive in extreme environments.
      Thanks to NASA’s Student Design Challenge, Spacesuit User Interface Technologies for Students (SUITS), those visions are finding their way into real mission technologies.
      NASA’s Spacesuit User Interface Technologies for Students (SUITS) teams test their augmented reality devices at the Mars Rock Yard during the 2025 test week at Johnson Space Center in Houston.
      Credit: NASA/James Blair The SUITS challenge invites university and graduate students from across the U.S. to design, build, and test interactive displays integrated into spacesuit helmets, continuing an eight-year tradition of hands-on field evaluations that simulate conditions astronauts may face on the lunar surface. The technology aims to support astronauts with real-time navigation, task management, and scientific data visualization during moonwalks. While the challenge provides a unique opportunity to contribute to future lunar missions, for many participants, SUITS offers something more: a launchpad to aerospace careers.
      The challenge fosters collaboration between students in design, engineering, and computer science—mirroring the teamwork needed for real mission development.
      NASA SUITS teams test their augmented reality devices at Johnson’s Mars Rock Yard on May 21, 2025.
      Credit: NASA/Robert Markowitz SUITS taught me how design can be pushed to solve for the many niche challenges that come with an environment as unique and unforgiving as space.
      Keya Shah
      Softgoods Engineering Technologist
      Keya Shah, now a softgoods engineering technologist in Johnson’s Softgoods Laboratory, discovered her path through SUITS while studying industrial design at the Rhode Island School of Design (RISD).
      “SUITS taught me how design can be pushed to solve for the many niche challenges that come with an environment as unique and unforgiving as space,” Shah said. “Whether applied to digital or physical products, it gave me a deep understanding of how intuitive and thoughtfully designed solutions are vital for space exploration.”
      As chief designer for her team’s 2024 Mars spacewalk project, Shah led more than 30 designers and developers through rounds of user flow mapping, iterative prototyping, and interface testing.
      “Design holds its value in making you think beyond just the ‘what’ to solve a problem and figure out ‘how’ to make the solution most efficient and user-oriented,” she said, “SUITS emphasized that, and I continually strive to highlight these strengths with the softgoods I design.”
      Shah now works on fabric-based flight hardware at Johnson, including thermal and acoustic insulation blankets, tool stowage packs, and spacesuit components.
      “There’s a very exciting future in human space exploration at the intersection of softgoods with hardgoods and the digital world, through innovations like smart textiles, wearable technology, and soft robotics,” Shah said. “I look forward to being part of it.”
      Softgoods Engineering Technologist Keya Shah evaluates the SUITS interface design during the 2025 test week.
      Credit: NASA/James Blair For RISD alumnus Felix Arwen, now a softgoods engineer at Johnson, the challenge offered invaluable hands-on experience. “It gave me the opportunity to take projects from concept to a finished, tested product—something most classrooms didn’t push me to do,” Arwen said.
      Serving as a technical adviser and liaison between SUITS designers and engineers, Arwen helped bridge gaps between disciplines—a skill critical to NASA’s team-based approach.
      “It seems obvious now, but I didn’t always realize how much design contributes to space exploration,” Arwen said. “The creative, iterative process is invaluable. Our work isn’t just about aesthetics—it’s about usability, safety, and mission success.”
      Arwen played a key role in expanding RISD’s presence across multiple NASA Student Design Challenges, including the Human Exploration Rover Challenge, the Micro-g Neutral Buoyancy Experiment Design Teams, and the Breakthrough, Innovative, and Game-changing Idea Challenge. The teams, often partnering with Brown University, demonstrated how a design-focused education can uniquely contribute to solving complex engineering problems.
      “NASA’s Student Design Challenges gave me the structure to focus my efforts on learning new skills and pursuing projects I didn’t even know I’d be interested in,” he said.
      It seems obvious now, but I didn’t always realize how much design contributes to space exploration. The creative, iterative process is invaluable. Our work isn’t just about aesthetics—it’s about usability, safety, and mission success.
      Felix Arwen
      Softgoods Engineer
      Softgoods Engineer Felix Arwen tests hardware while wearing pressurized gloves inside a vacuum glovebox. Both Arwen and Shah remain involved with SUITS as mentors and judges, eager to support the next generation of space designers.
      Their advice to current participants? Build a portfolio that reflects your passion, seek opportunities outside the classroom, and do not be afraid to apply for roles that might not seem to fit a designer.
      “While the number of openings for a designer at NASA might be low, there will always be a need for good design work, and if you have the portfolio to back it up, you can apply to engineering roles that just might not know they need you yet,” Arwen said.
      SUIT teams test their augmented reality devices during nighttime activities on May 21, 2025.
      Credit: NASA/Robert MarkowitzNASA/Robert Markowitz As NASA prepares for lunar missions, the SUITS challenge continues to bridge the gap between student imagination and real-world innovation, inspiring a new wave of space-ready problem-solvers.
      “Design pushes you to consistently ask ‘what if?’ and reimagine what’s possible,” Shah said. “That kind of perspective will always stay core to NASA.”
      Are you interested in joining the next NASA SUITS challenge? Find more information here.
      The next challenge will open for proposals at the end of August 2025.
      About the Author
      Sumer Loggins

      Share
      Details
      Last Updated Jun 10, 2025 Related Terms
      Johnson Space Center Spacesuits STEM Engagement at NASA Explore More
      4 min read Laser Focused: Keith Barr Leads Orion’s Lunar Docking Efforts 
      Article 5 hours ago 3 min read NASA, ISRO Research Aboard Fourth Private Astronaut Mission to Station
      Article 6 days ago 4 min read Future Engineers Shine at NASA’s 2025 Lunabotics Robotics Competition
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...