Jump to content

Recommended Posts

Posted
ExoMars_Back_on_track_for_the_Red_Planet Video: 00:13:54

A year has passed since the launch of the ESA’s Rosalind Franklin rover mission was put on hold, but the work has not stopped for the ExoMars teams in Europe.

In this programme, the ESA Web TV crew travel back to Turin, Italy to talk to the teams and watch as new tests are being conducted with the rover’s Earth twin Amalia while the real rover remains carefully stored in an ultra-clean room.

The 15-minute special programme gives an update on what happened since the mission was cancelled in 2022 because of the Russian invasion of Ukraine, the plan ahead, the new challenges, the latest deep drilling test and the stringent planetary protection measures in place.

ESA’s Rosalind Franklin rover has unique drilling capabilities and an on-board science laboratory unrivalled by any other mission in development. Its twin rover Amalia was back on its wheels and drilled down 1.7 metres into a martian-like ground in Italy – about 25 times deeper than any other rover has ever attempted on Mars. The rover also collected samples for analysis under the watchful eye of European science teams.

ESA, together with international and industrial partners, is reshaping the ExoMars Rosalind Franklin Mission with new European elements, including a lander, and a target date of 2028 for the trip to Mars.

The newly shaped Rosalind Franklin Mission will recover one of the original objectives of ExoMars – to create an independent European capability to access the surface of Mars with a sophisticated robotic payload.

More information: https://www.esa.int/ExoMars

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Acting Administrator Sean Duffy: We’re Going Back to the Moon – and Staying
    • By NASA
      Patricia White is a contracting officer at NASA’s Stennis Space Center, where she contributes to NASA’s Artemis program that will send astronauts to the Moon to prepare for future human exploration of Mars. NASA/Danny Nowlin When NASA’s Artemis II mission launches in 2026, it will inspire the world through discovery in a new Golden Age of innovation and exploration.
      It will be another inspiring NASA moment Patricia White can add to her growing list.
      White supports the Artemis program to send astronauts to the Moon to prepare for future human exploration of Mars as a contracting officer at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.
      White takes special pride in the test operations contract she helped draft. The contract provides support to the Fred Haise Test Stand, which tests the RS-25 engines that will help power NASA’s SLS (Space Launch System) rocket on Artemis missions.
      “I was awestruck the first time I witnessed an engine test,” White said. “I remember how small I felt in comparison to this big and fascinating world, and I wondered what that engine would see that I would never be able to see.”
      Four RS-25 engines tested at NASA Stennis will help launch Artemis II with four astronauts to venture around the Moon. As the first crewed Artemis mission, it will represent another milestone for the nation’s human space exploration effort.
      From Interstate Signs to NASA Career
      White describes NASA Stennis as a hidden gem. Growing up in nearby Slidell, Louisiana, she had driven by the interstate signs pointing toward NASA Stennis her entire life.
      When she heard about a job opportunity at the center, she immediately applied. Initially hired as a contractor with only a high school diploma in February 2008, White found her motivation among NASA’s ranks.
      “I work with very inspiring people, and it only took one person to say, ‘You should go to college’ to give me the courage to go so late in life,” she said.
      Hard But Worth It
      White began college classes in her 40s and finished at 50. She balanced a marriage, full-time job, academic studies, and household responsibilities. When she started her educational journey, her children were either toddlers or newborns. They were growing up as she stayed in school for nine years while meeting life’s challenges.
      “It was hard, but it was so worth it,” she said. “I love my job and what I do, and even though it is crazy busy, I look forward to working at NASA every single day.”
      She joined NASA officially in 2013, going from contractor to civil servant.
      Setting an Example
      White’s proudest work moment came when she brought home the NASA Early Career Achievement award and medal. It served as a tangible symbol of her success she could share with her family.
      “It was a long road from being hired as an intern, and we all made extraordinary sacrifices,” she said. “I wanted to share it with them and set a good example for my children.”
      As Artemis II prepares to carry humans back to lunar orbit for the first time in over 50 years, White takes pride knowing her work helps power humanity’s return to deep space exploration. Her work is proof that sometimes the most important journeys begin right in one’s own backyard.
      Learn More About Careers at NASA Stennis Explore More
      4 min read NASA Stennis Provides Ideal Setting for Range Operations
      Article 1 week ago 10 min read NASA’s Stennis Space Center Employees Receive NASA Honor Awards
      Article 3 weeks ago 6 min read A Defining Era: NASA Stennis and Space Shuttle Main Engine Testing
      Article 4 months ago View the full article
    • By European Space Agency
      The European Space Agency-led Solar Orbiter mission has split the flood of energetic particles flung out into space from the Sun into two groups, tracing each back to a different kind of outburst from our star.
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Scientists believe giant impacts — like the one depicted in this artist’s concept — occurred on Mars 4.5 billion years ago, injecting debris from the impact deep into the planet’s mantle. NASA’s InSight lander detected this debris before the mission’s end in 2022.NASA/JPL-Caltech Rocky material that impacted Mars lies scattered in giant lumps throughout the planet’s mantle, offering clues about Mars’ interior and its ancient past.
      What appear to be fragments from the aftermath of massive impacts on Mars that occurred 4.5 billion years ago have been detected deep below the planet’s surface. The discovery was made thanks to NASA’s now-retired InSight lander, which recorded the findings before the mission’s end in 2022. The ancient impacts released enough energy to melt continent-size swaths of the early crust and mantle into vast magma oceans, simultaneously injecting the impactor fragments and Martian debris deep into the planet’s interior.
      There’s no way to tell exactly what struck Mars: The early solar system was filled with a range of different rocky objects that could have done so, including some so large they were effectively protoplanets. The remains of these impacts still exist in the form of lumps that are as large as 2.5 miles (4 kilometers) across and scattered throughout the Martian mantle. They offer a record preserved only on worlds like Mars, whose lack of tectonic plates has kept its interior from being churned up the way Earth’s is through a process known as convection.
      A cutaway view of Mars in this artist’s concept (not to scale) reveals debris from ancient impacts scattered through the planet’s mantle. On the surface at left, a meteoroid impact sends seismic signals through the interior; at right is NASA’s InSight lander.NASA/JPL-Caltech The finding was reported Thursday, Aug. 28, in a study published by the journal Science.
      “We’ve never seen the inside of a planet in such fine detail and clarity before,” said the paper’s lead author, Constantinos Charalambous of Imperial College London. “What we’re seeing is a mantle studded with ancient fragments. Their survival to this day tells us Mars’ mantle has evolved sluggishly over billions of years. On Earth, features like these may well have been largely erased.”
      InSight, which was managed by NASA’s Jet Propulsion Laboratory in Southern California, placed the first seismometer on Mars’ surface in 2018. The extremely sensitive instrument recorded 1,319 marsquakes before the lander’s end of mission in 2022.
      NASA’s InSight took this selfie in 2019 using a camera on its robotic arm. The lander also used its arm to deploy the mission’s seismometer, whose data was used in a 2025 study showing impacts left chunks of debris deep in the planet’s interior.NASA/JPL-Caltech Quakes produce seismic waves that change as they pass through different kinds of material, providing scientists a way to study the interior of a planetary body. To date, the InSight team has measured the size, depth, and composition of Mars’ crust, mantle, and core. This latest discovery regarding the mantle’s composition suggests how much is still waiting to be discovered within InSight’s data.
      “We knew Mars was a time capsule bearing records of its early formation, but we didn’t anticipate just how clearly we’d be able to see with InSight,” said Tom Pike of Imperial College London, coauthor of the paper.
      Quake hunting
      Mars lacks the tectonic plates that produce the temblors many people in seismically active areas are familiar with. But there are two other types of quakes on Earth that also occur on Mars: those caused by rocks cracking under heat and pressure, and those caused by meteoroid impacts.
      Of the two types, meteoroid impacts on Mars produce high-frequency seismic waves that travel from the crust deep into the planet’s mantle, according to a paper published earlier this year in Geophysical Research Letters. Located beneath the planet’s crust, the Martian mantle can be as much as 960 miles (1,550 kilometers) thick and is made of solid rock that can reach temperatures as high as 2,732 degrees Fahrenheit (1,500 degrees Celsius).
      Scrambled signals
      The new Science paper identifies eight marsquakes whose seismic waves contained strong, high-frequency energy that reached deep into the mantle, where their seismic waves were distinctly altered.
      “When we first saw this in our quake data, we thought the slowdowns were happening in the Martian crust,” Pike said. “But then we noticed that the farther seismic waves travel through the mantle, the more these high-frequency signals were being delayed.”
      Using planetwide computer simulations, the team saw that the slowing down and scrambling happened only when the signals passed through small, localized regions within the mantle. They also determined that these regions appear to be lumps of material with a different composition than the surrounding mantle.
      With one riddle solved, the team focused on another: how those lumps got there.
      Turning back the clock, they concluded that the lumps likely arrived as giant asteroids or other rocky material that struck Mars during the early solar system, generating those oceans of magma as they drove deep into the mantle, bringing with them fragments of crust and mantle.
      Charalambous likens the pattern to shattered glass — a few large shards with many smaller fragments. The pattern is consistent with a large release of energy that scattered many fragments of material throughout the mantle. It also fits well with current thinking that in the early solar system, asteroids and other planetary bodies regularly bombarded the young planets.
      On Earth, the crust and uppermost mantle is continuously recycled by plate tectonics pushing a plate’s edge into the hot interior, where, through convection, hotter, less-dense material rises and cooler, denser material sinks. Mars, by contrast, lacks tectonic plates, and its interior circulates far more sluggishly. The fact that such fine structures are still visible today, Charalambous said, “tells us Mars hasn’t undergone the vigorous churning that would have smoothed out these lumps.”
      And in that way, Mars could point to what may be lurking beneath the surface of other rocky planets that lack plate tectonics, including Venus and Mercury.
      More about InSight
      JPL managed InSight for NASA’s Science Mission Directorate. InSight was part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supported spacecraft operations for the mission.
      A number of European partners, including France’s Centre National d’Études Spatiales (CNES) and the German Aerospace Center (DLR), supported the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument to NASA, with the principal investigator at IPGP (Institut de Physique du Globe de Paris). Significant contributions for SEIS came from IPGP; the Max Planck Institute for Solar System Research (MPS) in Germany; the Swiss Federal Institute of Technology (ETH Zurich) in Switzerland; Imperial College London and Oxford University in the United Kingdom; and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the temperature and wind sensors.
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2025-110
      Share
      Details
      Last Updated Aug 28, 2025 Related Terms
      InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Jet Propulsion Laboratory Mars Explore More
      4 min read NASA: Ceres May Have Had Long-Standing Energy to Fuel Habitability
      Article 1 week ago 4 min read NASA’s Psyche Captures Images of Earth, Moon
      Article 1 week ago 4 min read US-French SWOT Satellite Measures Tsunami After Massive Quake
      Article 3 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Video: 00:09:30 In Tenerife, Spain, stands a unique duo: ESA’s Izaña-1 and Izaña-2 laser-ranging stations. Together, they form an optical technology testbed of the European Space Agency that takes the monitoring of space debris and satellites to a new level while maturing new technologies for commercialisation.  
      Space debris is a threat to satellites and is rapidly becoming a daily concern for satellite operators. The Space Safety Programme, part of ESA Operations, managed from ESOC in Germany, helps develop new technologies to detect and track debris, and to prevent collisions in orbit in new and innovative ways. 
      One of these efforts takes place at the Izaña station in Tenerife. There, ESA and partner companies are testing how to deliver precise orbit data on demand with laser-based technologies. The Izaña-2 station was recently finalised by the German company DiGOS and is now in use.  
      To perform space debris laser ranging, Izaña-2 operates as a laser transmitter, emitting high-power laser pulses towards objects in space. Izaña-1 then acts as the receiver of the few photons that are reflected back. The precision of the laser technology enables highly accurate data for precise orbit determination, which in turn is crucial for actionable collision avoidance systems and sustainable space traffic management. 
      With the OMLET (Orbital Maintenance via Laser momEntum Transfer) project, ESA combines different development streams and possibilities for automation to support European industry with getting two innovative services market-ready: on-demand ephemeris provision and laser-based collision avoidance services for end users such as satellite operators. 
      A future goal is to achieve collision avoidance by laser momentum transfer, where instead of the operational satellite, the piece of debris will be moved out of the way. This involves altering the orbit of a piece of space debris slightly by applying a small force to the object through laser illumination.  
      The European Space Agency actively supports European industry in capitalising on the business opportunities that not only safeguard our satellites but also pave the way for the sustainable use of space. 
      View the full article
  • Check out these Videos

×
×
  • Create New...