Members Can Post Anonymously On This Site
Another UAP shot down over Canada and unknown object detected on radar flying over Montana
-
Similar Topics
-
By NASA
A collaboration between NASA and the Indian Space Research Organisation, NISAR will use synthetic aperture radar to monitor nearly all the planet’s land- and ice-covered surfaces twice every 12 days.Credit: NASA NASA will host a news conference at 12 p.m. EDT Monday, July 21, to discuss the upcoming NISAR (NASA-ISRO Synthetic Aperture Radar) mission.
The Earth-observing satellite, a first-of-its-kind collaboration between NASA and ISRO (Indian Space Research Organisation), carries an advanced radar system that will help protect communities by providing a dynamic, three-dimensional view of Earth in unprecedented detail and detecting the movement of land and ice surfaces down to the centimeter.
The NISAR mission will lift off from ISRO’s Satish Dhawan Space Centre in Sriharikota, on India’s southeastern coast. Launch is targeted for no earlier than late July.
NASA’s Jet Propulsion Laboratory in Southern California will stream the briefing live on its X, Facebook, and YouTube channels. Learn how to watch NASA content through a variety of platforms, including social media.
Participants in the news conference include:
Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Karen St. Germain, director, Earth Science Division, NASA Headquarters Wendy Edelstein, deputy project manager, NISAR, NASA JPL Paul Rosen, project scientist, NISAR, NASA JPL To ask questions by phone, members of the media must RSVP no later than two hours before the start of the event to: rexana.v.vizza@jpl.nasa.gov. NASA’s media accreditation policy is available online. Questions can be asked on social media during the briefing using #AskNISAR.
With its two radar instruments — an S-band system provided by ISRO and an L-band system provided by NASA — NISAR will use a technique known as synthetic aperture radar (SAR) to scan nearly all the planet’s land and ice surfaces twice every 12 days. Each system’s signal is sensitive to different sizes of features on Earth’s surface, and each specializes in measuring different attributes, such as moisture content, surface roughness, and motion.
These capabilities will help scientists better understand processes involved in natural hazards and catastrophic events, such as earthquakes, volcanic eruptions, land subsidence, and landslides.
Additionally, NISAR’s cloud penetrating ability will aid urgent responses to communities during weather disasters such as hurricanes, storm surge, and flooding. The detailed maps the mission creates also will provide information on both gradual and sudden changes occurring on Earth’s land and ice surfaces.
Managed by Caltech for NASA, JPL leads the U.S. component of the NISAR project and provided the L-band SAR. NASA JPL also provided the radar reflector antenna, the deployable boom, a high-rate communication subsystem for science data, GPS receivers, a solid-state recorder, and payload data subsystem. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the Near Space Network, which will receive NISAR’s L-band data.
Multiple ISRO centers have contributed to NISAR. The Space Applications Centre is providing the mission’s S-band SAR. The U R Rao Satellite Centre provided the spacecraft bus. The rocket is from Vikram Sarabhai Space Centre, launch services are through Satish Dhawan Space Centre, and satellite mission operations are by the ISRO Telemetry Tracking and Command Network. The National Remote Sensing Centre is responsible for S-band data reception, operational products generation, and dissemination.
To learn more about NISAR, visit:
https://nisar.jpl.nasa.gov
-end-
Karen Fox / Elizabeth Vlock
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov
Andrew Wang / Scott Hulme
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-653-9131
andrew.wang@jpl.nasa.gov / scott.d.hulme@jpl.nasa.gov
Share
Details
Last Updated Jul 16, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
NISAR (NASA-ISRO Synthetic Aperture Radar) Earth Science Division Goddard Space Flight Center Jet Propulsion Laboratory Near Space Network Science Mission Directorate View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Curiosity Blog, Sols 4600-4601: Up and Over the Sand Covered Ramp
NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on July 13, 2025 — Sol 4598, or Martian day 4,598 of the Mars Science Laboratory mission — at 15:24:10 UTC. NASA/JPL-Caltech Written by Sharon Wilson Purdy, Planetary Geologist at the Smithsonian National Air and Space Museum
Earth planning date: Monday, July 14, 2025
The Curiosity rover continues to navigate through the region of Mount Sharp characterized by the boxwork terrain. After successfully completing a drive of about 34 meters over the weekend (about 112 feet), the rover parked near the edge of a smooth, sandy stretch at the base of a ridge that leads to the most prominent and complex network of boxwork structures seen so far.
Due to the lack of exposed bedrock in the immediate workspace, the science team opted to give some of the rover’s contact science instruments a break. With the dust removal tool (DRT) and APXS instruments stowed, the extra energy allowed the Mars Hand Lens Imager (MAHLI) to take high resolution images of “Playa de la Gallina” to survey the uniform, smooth surface consisting of sand and pebble-sized material.
The ChemCam and Mastcam teams scheduled several observations in this two-sol plan that further investigated the rocks and structures in our immediate vicinity and surroundings. ChemCam LIBS was used to target “El Olivo” to determine the chemistry of the bumpy textured bedrock near the rover, which was also imaged by a Mastcam stereo mosaic. Additional Mastcam stereo mosaics include fractures at “El Corral” and linear troughs at “Chapare.” Further away, ChemCam’s Remote Micro Imager (RMI) will provide insight into an intriguing section of scoured features within the Mishe Mokwa butte.
The environmental working group continues to keep an eye in the sky and planned a supra-horizon movie and a dust-devil survey as part of their ongoing monitoring campaign of the atmospheric conditions in Gale Crater.
The 21-meter-long drive (about 69 feet) at the end of this plan will maneuver the rover past the sandy ramp to the top of the main boxwork region. From here, the science team will be able to explore this fascinating area of particularly large boxwork structures. Stay tuned as Curiosity continues to climb higher and delve deeper into the geologic history of Mars!
For more Curiosity blog posts, visit MSL Mission Updates
Learn more about Curiosity’s science instruments
Share
Details
Last Updated Jul 16, 2025 Related Terms
Blogs Explore More
2 min read Curiosity Blog, Sols 4597-4599: Wide Open Spaces
Article
1 hour ago
3 min read Curiosity Blog, Sols 4595-4596: Just Another Beautiful Day on Mars
Article
23 hours ago
4 min read Curiosity Blog, Sols 4593-4594: Three Layers and a Lot of Structure at Volcán Peña Blanca
Article
5 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
Curiosity Blog, Sols 4595-4596: Just Another Beautiful Day on Mars
NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on July 9, 2025 — Sol 4594, or Martian day 4,594 of the Mars Science Laboratory mission — at 11:03:48 UTC. NASA/JPL-Caltech Written by Ashley Stroupe, Mission Operations Engineer at NASA’s Jet Propulsion Laboratory
Earth planning date: Wednesday, July 9, 2025
In today’s plan, we have a little bit of everything. With it being winter still, we are taking advantage of the ability to let the rover sleep in, doing most of the activities in the afternoon when it is warmer and we need less heating. As the Systems Engineer (Engineering Uplink Lead) today, I sequenced the needed heating and some other engineering housekeeping activities.
We start off with an extensive remote science block with Mastcam imaging of a nearby trough to look for potential sand activity. There is color imaging of a displaced block, “Ouro,” near a circular depression — could this be a small crater? Mastcam also takes a look at a ridge “Volcán Peña Blanca” to look at the sedimentary structures, which may provide insights into its formation. ChemCam LIBS and Mastcam team up to look at the “Los Andes” target, which is the dark face of a nearby piece of exposed bedrock. ChemCam RMI and Mastcam check out a distant small outcrop to examine the geometry of the layers. We also throw in environmental observations, a Mastcam solar Tau and a Navcam line-of-site looking at dust in the atmosphere. After a nap, Curiosity will be doing some contact science activities on “Cataratas del Jardín” and “Rio Ivirizu” bedrock targets. Looking at two nearby targets for variability can help us understand the local geology. Cataratas del Jardín gets a brushing to clear away the dust before both targets are examined by MAHLI and APXS. Fortunately for the Arm Rover Planner, both of these targets are fairly flat and easy to reach. Before going to sleep for the night, Curiosity will stow the arm to be ready for driving on the next sol.On the second sol, there is more remote science. ChemCam LIBS and Mastcam will examine “Torotoro,” another piece of layered bedrock. ChemCam RMI will take a mosaic of “Paniri,” which is an interesting incision in the rock that is filled with another material. There are also environmental observations, a Navcam dust devil survey and a suprahorizon movie. After another nap, Curiosity is getting on the road. We’re heading southwest (direction shown in the image) about 50 meters (about 164 feet), but we need to sneak between sandy pits and skirt around some terrain that we can’t see behind. The terrain here provides pretty nice driving, though, without a lot of big boulders, steep slopes, or pointy rocks that can poke holes in our wheels. After the standard post-drive imaging for our next plan, there are some Navcam observations to look for clouds and our normal look under the rover with MARDI before Curiosity goes to sleep for the night.
For more Curiosity blog posts, visit MSL Mission Updates
Learn more about Curiosity’s science instruments
Share
Details
Last Updated Jul 15, 2025 Related Terms
Blogs Explore More
4 min read Curiosity Blog, Sols 4593-4594: Three Layers and a Lot of Structure at Volcán Peña Blanca
Article
4 days ago
3 min read Continuing the Quest for Clays
Article
7 days ago
2 min read Curiosity Blog, Sols 4589–4592: Setting up to explore Volcán Peña Blanca
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By Space Force
Chief of Space Operations Gen. Chance Saltzman traveled to Canada to attend the Royal Canadian Air Force Change of Command ceremony,
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA instruments and aircraft are helping identify potential sources of critical minerals across vast swaths of California, Nevada, and other Western states. Pilots gear up to reach altitudes about twice as high as those of a cruising passenger jet.NASA NASA and the U.S. Geological Survey have been mapping the planets since Apollo. One team is searching closer to home for minerals critical to national security and the economy.
If not for the Joshua trees, the tan hills of Cuprite, Nevada, would resemble Mars. Scalded and chemically altered by water from deep underground, the rocks here are earthly analogs for understanding ancient Martian geology. The hills are also rich with minerals. They’ve lured prospectors for more than 100 years and made Cuprite an ideal place to test NASA technology designed to map the minerals, craters, crusts, and ices of our solar system.
Sensors that discovered lunar water, charted Saturn’s moons, even investigated ground zero in New York City were all tested and calibrated at Cuprite, said Robert Green, a senior research scientist at NASA’s Jet Propulsion Laboratory in Southern California. He’s honed instruments in Nevada for decades.
One of Green’s latest projects is to find and map rocky surfaces in the American West that could contain minerals crucial to the nation’s economy and security. Currently, the U.S. is dependent on imports of 50 critical minerals, which include lithium and rare earth elements used in everything from rechargeable batteries to medicine.
Scientists from the U.S. Geological Survey (USGS) are searching nationwide for domestic sources. NASA is contributing to this effort with high-altitude aircraft and sensors capable of detecting the molecular fingerprints of minerals across vast, treeless expanses in wavelengths of light not visible to human eyes.
The hills of Cuprite, Nevada, appear pink and tan to the eye (top image) but they shine with mica, gypsum, and alunite among other types of minerals when imaged spectroscopically (lower image). NASA sensors used to study Earth and other rocky worlds have been tested there.USGS/Ray Kokaly The collaboration is called GEMx, the Geological Earth Mapping Experiment, and it’s likely the largest airborne spectroscopic survey in U.S. history. Since 2023, scientists working on GEMx have charted more than 190,000 square miles (500,000 square kilometers) of North American soil.
Mapping Partnership Started During Apollo
As NASA instruments fly in aircraft 60,000 feet (18,000 meters) overhead, Todd Hoefen, a geophysicist, and his colleagues from USGS work below. The samples of rock they test and collect in the field are crucial to ensuring that the airborne observations match reality on the ground and are not skewed by the intervening atmosphere.
The GEMx mission marks the latest in a long history of partnerships between NASA and USGS. The two agencies have worked together to map rocky worlds — and keep astronauts and rovers safe — since the early days of the space race.
For example, geologic maps of the Moon made in the early 1960s at the USGS Astrogeology Science Center in Flagstaff, Arizona, helped Apollo mission planners select safe and scientifically promising sites for the six crewed landings that occurred from 1969 to 1972. Before stepping onto the lunar surface, NASA’s Moon-bound astronauts traveled to Flagstaff to practice fieldwork with USGS geologists. A version of those Apollo boot camps continues today with astronauts and scientists involved in NASA’s Artemis mission.
Geophysicist Raymond Kokaly, who leads the GEMx campaign for USGS, is pictured here conducting ground-based hyperspectral imaging of rock in Cuprite, Nevada, in April 2019.USGS/Todd Hoefen The GEMx mission marks the latest in a long history of partnerships between NASA and USGS. The two agencies have worked together to map rocky worlds — and keep astronauts and rovers safe — since the early days of the space race.
Rainbows and Rocks
To detect minerals and other compounds on the surfaces of rocky bodies across the solar system, including Earth, scientists use a technology pioneered by JPL in the 1980s called imaging spectroscopy. One of the original imaging spectrometers built by Robert Green and his team is central to the GEMx campaign in the Western U.S.
About the size and weight of a minifridge and built to fly on planes, the instrument is called AVIRIS-Classic, short for Airborne Visible/Infrared Imaging Spectrometer. Like all imaging spectrometers, it takes advantage of the fact that every molecule reflects and absorbs light in a unique pattern, like a fingerprint. Spectrometers detect these molecular fingerprints in the light bouncing off or emitted from a sample or a surface.
In the case of GEMx, that’s sunlight shimmering off different kinds of rocks.
Compared to a standard digital camera, which “sees” three color channels (red, green, and blue), imaging spectrometers can see more than 200 channels, including infrared wavelengths of light that are invisible to the human eye.
NASA spectrometers have orbited or flown by every major rocky body in our solar system. They’ve helped scientists investigate methane lakes on Titan, Saturn’s largest moon, and study Pluto’s thin atmosphere. One JPL-built spectrometer is currently en route to Europa, an icy moon of Jupiter, to help search for chemical ingredients necessary to support life.
“One of the cool things about NASA is that we develop technology to look out at the solar system and beyond, but we also turn around and look back down,” said Ben Phillips, a longtime NASA program manager who led GEMx until he retired in 2025.
The Newest Instrument
More than 200 hours of GEMx flights are scheduled through fall 2025. Scientists will process and validate the data, with the first USGS mineral maps to follow. During these flights, an ER-2 research aircraft from NASA’s Armstrong Flight Research Center in Edwards, California, will cruise over the Western U.S. at altitudes twice as high as a passenger jet flies.
At such high altitudes, pilot Dean Neeley must wear a spacesuit similar to those used by astronauts. He flies solo in the cramped cockpit but will be accompanied by state-of-the-art NASA instruments. In the belly of the plane rides AVIRIS-Classic, which will be retiring soon after more than three decades in service. Carefully packed in the plane’s nose is its successor: AVIRIS-5, taking flight for the first time in 2025.
Together, the two instruments provide 10 times the performance of the older spectrometer alone, but even by itself AVIRIS-5 marks a leap forward. It can sample areas ranging from about 30 feet (10 meters) to less than a foot (30 centimeters).
“The newest generation of AVIRIS will more than live up to the original,” Green said.
More About GEMx
The GEMx research project will last four years and is funded by the USGS Earth Mapping Resources Initiative. The initiative will capitalize on both the technology developed by NASA for spectroscopic imaging, as well as the agency’s expertise in analyzing the datasets and extracting critical mineral information from them.
Data collected by GEMx is available here.
News Media Contacts
Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
Karen Fox / Elizabeth Vlock
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov
Written by Sally Younger
2025-086
Share
Details
Last Updated Jul 10, 2025 Related Terms
Earth Science Earth Jet Propulsion Laboratory NASA Aircraft Explore More
3 min read NASA Aircraft, Sensor Technology, Aid in Texas Flood Recovery Efforts
Article 22 hours ago 2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica
Citizen science projects result in an overwhelmingly positive impact on the polar tourism experience. That’s…
Article 1 day ago 4 min read NASA Mission Monitoring Air Quality from Space Extended
Article 7 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.