Jump to content

HAARP hit an asteroid with 9.6 million radio waves - Preparation against Apophis?


Recommended Posts

Posted
Scientists at the University of Alaska Fairbanks (UAF) and NASA want to examine the 2010 XC15 space rock to test their preparation against Apophis. This dangerous asteroid might hit our planet in 2029. It is believed that on April 13, 2029, Apophis will be 10 times closer to Earth than the moon. 

haarp%20apophis%20radio%20waves.jpg

The researchers will use the HAARP (High-frequency Active Auroral Research Program) array to shoot 9.6 megahertz radio waves at the 500-foot-wide 2010 XC15 asteroid. 

HAARP is a government-funded research program that generally studies the ionosphere (part of Earth’s atmosphere at 50 to 400 miles above the surface). However, this will be the first time it will be employed to examine an asteroid. 

Astronomers have been shooting radio waves in space to spot asteroids; figure out their shape, trajectory, structure of their surface, and many other characteristics. For this purpose, they use radio waves having frequency ranges either in the S-band (2,000 to 4,000 MHz) or X-band (8,000 to 12,000 MHz). 

Interestingly, for probing 2010 XC15, the researchers are using waves of much lower frequency (9.6 MHz) and longer wavelengths because, this time, they don’t just want to explore the surface of the asteroid. They want to know what’s inside. 

Information about the interiors could reveal important details about the damage that an asteroid could cause and help scientists figure out an effective counter-strategy. 

Flashback: On December 27, the distance between 2010 XC15 and Earth will be around twice the distance between Earth and the moon. HAARP will be shooting 9.6 million chirping radio waves every second to this distance, and this process will be repeated every two seconds. This test is crucial because if the researchers can successfully examine 2010 XC15 using low-frequency radio waves at such a long distance. Then they could easily employ the same method to analyze Apophis. 

Although the 2029 asteroid is most likely to miss Earth, in case it doesn’t, the consequences could be catastrophic. 

For instance, in response to an FAQ that explores the possibility of Apophis hitting Earth, The Planetary Society wrote on its website, “Apophis would cause widespread destruction up to several hundred kilometers from its impact site. The energy released would be equal to more than 1,000 megatons of TNT, or tens to hundreds of nuclear weapons.” 

Moreover, Apophis is just one asteroid. There will be many asteroids that will pass by, or might even hit, Earth in the future. Low-frequency radio waves could play a key role in understanding the composition of these mysterious space objects and, at the same time, help us strengthen our planetary defense mechanism. 

However, before all this happens, HAARP and its low-frequency radio waves will have to pass their first test, which indeed has been carried out on December 27. 

If the experiment worked, the pulses also reached asteroid 2010 XC15, which passed by Earth on Dec. 27th at a distance of 770,000 km. Researchers from NASA and the University of Alaska pinged 2010 XC15 with shortwave radio signals to probe the asteroid's interior--a first if it worked. They are still waiting for confirmation that the reflections were received, as expected, by antenna arrays in California and New Mexico. 

They say that the 2029 Asteroid Apophis is most likely to miss Earth, but the fact that they perform this first test indicates that they are not 100 percent sure whether it will hit the Earth or not. 

Also interesting is that they want to know what's inside asteroids, such as Apophis, but what will happen if they discover that the inside of an asteroid is made up of advanced technology, a hollow spacecraft built by aliens and disguised as an asteroid, like the infamous space rock ‘Oumuamua’.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      NASA Launching Rockets Into Radio-Disrupting Clouds
      NASA is launching rockets from a remote Pacific island to study mysterious, high-altitude cloud-like structures that can disrupt critical communication systems. The mission, called Sporadic-E ElectroDynamics, or SEED, opens its three-week launch window from Kwajalein Atoll in the Marshall Islands on Friday, June 13.
      The atmospheric features SEED is studying are known as Sporadic-E layers, and they create a host of problems for radio communications. When they are present, air traffic controllers and marine radio users may pick up signals from unusually distant regions, mistaking them for nearby sources. Military operators using radar to see beyond the horizon may detect false targets — nicknamed “ghosts” — or receive garbled signals that are tricky to decipher. Sporadic-E layers are constantly forming, moving, and dissipating, so these disruptions can be difficult to anticipate.
      An animated illustration depicts Sporadic-E layers forming in the lower portions of the ionosphere, causing radio signals to reflect back to Earth before reaching higher layers of the ionosphere. NASA’s Goddard Space Flight Center/Conceptual Image Lab Sporadic-E layers form in the ionosphere, a layer of Earth’s atmosphere that stretches from about 40 to 600 miles (60 to 1,000 kilometers) above sea level. Home to the International Space Station and most Earth-orbiting satellites, the ionosphere is also where we see the greatest impacts of space weather. Primarily driven by the Sun, space weather causes myriad problems for our communications with satellites and between ground systems. A better understanding of the ionosphere is key to keeping critical infrastructure running smoothly.
      The ionosphere is named for the charged particles, or ions, that reside there. Some of these ions come from meteors, which burn up in the atmosphere and leave traces of ionized iron, magnesium, calcium, sodium, and potassium suspended in the sky. These “heavy metals” are more massive than the ionosphere’s typical residents and tend to sink to lower altitudes, below 90 miles (140 kilometers). Occasionally, they clump together to create dense clusters known as Sporadic-E layers.
      The Perseids meteor shower peaks in mid-August. Meteors like these can deposit metals into Earth’s ionosphere that can help create cloud-like structures called Sporadic-E layers. NASA/Preston Dyches “These Sporadic-E layers are not visible to naked eye, and can only be seen by radars. In the radar plots, some layers appear like patchy and puffy clouds, while others spread out, similar to an overcast sky, which we call blanketing Sporadic-E layer” said Aroh Barjatya, the SEED mission’s principal investigator and a professor of engineering physics at Embry-Riddle Aeronautical University in Daytona Beach, Florida. The SEED team includes scientists from Embry-Riddle, Boston College in Massachusetts, and Clemson University in South Carolina.
      “There’s a lot of interest in predicting these layers and understanding their dynamics because of how they interfere with communications,” Barjatya said.
      A Mystery at the Equator
      Scientists can explain Sporadic-E layers when they form at midlatitudes but not when they appear close to Earth’s equator — such as near Kwajalein Atoll, where the SEED mission will launch.
      In the Northern and Southern Hemispheres, Sporadic-E layers can be thought of as particle traffic jams.
      Think of ions in the atmosphere as miniature cars traveling single file in lanes defined by Earth’s magnetic field lines. These lanes connect Earth end to end — emerging near the South Pole, bowing around the equator, and plunging back into the North Pole.
      A conceptual animation shows Earth’s magnetic field. The blue lines radiating from Earth represent the magnetic field lines that charged particles travel along. NASA’s Goddard Space Flight Center/Conceptual Image Lab At Earth’s midlatitudes, the field lines angle toward the ground, descending through atmospheric layers with varying wind speeds and directions. As the ions pass through these layers, they experience wind shear — turbulent gusts that cause their orderly line to clump together. These particle pileups form Sporadic-E layers.
      But near the magnetic equator, this explanation doesn’t work. There, Earth’s magnetic field lines run parallel to the surface and do not intersect atmospheric layers with differing winds, so Sporadic-E layers shouldn’t form. Yet, they do — though less frequently.
      “We’re launching from the closest place NASA can to the magnetic equator,” Barjatya said, “to study the physics that existing theory doesn’t fully explain.”
      Taking to the Skies
      To investigate, Barjatya developed SEED to study low-latitude Sporadic-E layers from the inside. The mission relies on sounding rockets — uncrewed suborbital spacecraft carrying scientific instruments. Their flights last only a few minutes but can be launched precisely at fleeting targets.
      Beginning the night of June 13, Barjatya and his team will monitor ALTAIR (ARPA Long-Range Tracking and Instrumentation Radar), a high-powered, ground-based radar system at the launch site, for signs of developing Sporadic-E layers. When conditions are right, Barjatya will give the launch command. A few minutes later, the rocket will be in flight.
      The SEED science team and mission management team in front of the ARPA Long-Range Tracking and Instrumentation Radar (ALTAIR). The SEED team will use ALTAIR to monitor the ionosphere for signs of Sporadic-E layers and time the launch. U.S. Army Space and Missile Defense Command On ascent, the rocket will release colorful vapor tracers. Ground-based cameras will track the tracers to measure wind patterns in three dimensions. Once inside the Sporadic-E layer, the rocket will deploy four subpayloads — miniature detectors that will measure particle density and magnetic field strength at multiple points. The data will be transmitted back to the ground as the rocket descends.
      On another night during the launch window, the team will launch a second, nearly identical rocket to collect additional data under potentially different conditions.
      Barjatya and his team will use the data to improve computer models of the ionosphere, aiming to explain how Sporadic-E layers form so close to the equator.
      “Sporadic-E layers are part of a much larger, more complicated physical system that is home to space-based assets we rely on every day,” Barjatya said. “This launch gets us closer to understanding another key piece of Earth’s interface to space.”
      By Miles Hatfield
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Jun 12, 2025 Related Terms
      Heliophysics Goddard Space Flight Center Heliophysics Division Ionosphere Missions NASA Centers & Facilities NASA Directorates Science & Research Science Mission Directorate Sounding Rockets Sounding Rockets Program The Solar System The Sun Uncategorized Wallops Flight Facility Weather and Atmospheric Dynamics Explore More
      9 min read The Earth Observer Editor’s Corner: April–June 2025


      Article


      22 hours ago
      5 min read NASA’s Webb ‘UNCOVERs’ Galaxy Population Driving Cosmic Renovation


      Article


      22 hours ago
      6 min read Frigid Exoplanet in Strange Orbit Imaged by NASA’s Webb


      Article


      2 days ago
      Keep Exploring Discover Related Topics
      Sounding Rockets



      Ionosphere, Thermosphere & Mesosphere



      Space Weather


      Solar flares, coronal mass ejections, solar particle events, and the solar wind form the recipe space weather that affects life…


      Solar System


      View the full article
    • By European Space Agency
      The European Space Agency’s (ESA) newest planetary defender has opened its ‘eye’ to the cosmos for the first time. The Flyeye telescope’s ‘first light’ marks the beginning of a new chapter in how we scan the skies for new near-Earth asteroids and comets.
      View the full article
    • By NASA
      L. Y. Zhou, a senior at Skyline High School, Ann Arbor, MI, representing the SunRISE Ground Radio Lab (GRL) summer research project team at the Solar Heliospheric and INterplanetary Environment (SHINE) conference, held in Juneau, AK in August 2024. Other contributing high school students were S. Rajavelu-Mohan (Washtenaw Technical Middle College, Ann Arbor, MI), M. I. Costacamps-Rivera (Centro Residencial de Oportunidades Educativas de Mayagüez, Mayagüez, PR), E. Schneider (Marquette Senior High School, Marquette, MI), and L. Cui (Skyline High School, Ann Arbor, MI). Solar radio bursts, intense blasts of radio emission associated with solar flares, can wreak havoc on global navigation systems. Now, as part of the Ground Radio Lab campaign led by the University of Michigan and NASA’s SunRISE (Sun Radio Interferometer Space Experiment) mission, which is managed by the agency’s Jet Propulsion Laboratory in Southern California, high school and college students across the nation are collecting, processing, and analyzing space weather data to help better understand these bursts. 
      Participating students have presented their findings at local science fairs and national conferences, including the Solar Heliospheric and INterplanetary Environment (SHINE) conference held in Juneau, Alaska in August 2024. These students sifted through thousands of hours of observations to identify and categorize solar radio bursts.  
      Your school can get involved too! 
      Participating high schools receive free, self-paced online training modules sponsored by the SunRISE mission that cover a range of topics, including radio astronomy, space physics, and science data collection and analysis. Students and teachers participate in monthly webinars with space science and astronomy experts, build radio telescopes from kits, and then use these telescopes to observe low frequency emissions from the Sun and other objects like Jupiter and the Milky Way. 
      Visit the Ground Radio Lab website to learn more about the new campaign and apply to participate.
      Share








      Details
      Last Updated May 28, 2025 Related Terms
      Citizen Science Heliophysics Explore More
      2 min read Space Cloud Watch Needs Your Photos of Night-Shining Clouds 


      Article


      2 weeks ago
      4 min read Eclipses, Auroras, and the Spark of Becoming: NASA Inspires Future Scientists


      Article


      2 weeks ago
      6 min read NASA Observes First Visible-light Auroras at Mars


      Article


      2 weeks ago
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The SWOT satellite is helping scientists size up flood waves on waterways like the Yellowstone River, pictured here in October 2024 in Montana. SWOT measures the height of surface waters, including the ocean, and hundreds of thousands of rivers, lakes, and reservoirs in the U.S. alone.NPS In a first, researchers from NASA and Virginia Tech used satellite data to measure the height and speed of potentially hazardous flood waves traveling down U.S. rivers. The three waves they tracked were likely caused by extreme rainfall and by a loosened ice jam. While there is currently no database that compiles satellite data on river flood waves, the new study highlights the potential of space-based observations to aid hydrologists and engineers, especially those working in communities along river networks with limited flood control structures such as levees and flood gates.
      Unlike ocean waves, which are ordinarily driven by wind and tides, and roll to shore at a steady clip, river waves (also called flood or flow waves) are temporary surges stretching tens to hundreds of miles. Typically caused by rainfall or seasonal snowmelt, they are essential to shuttling nutrients and organisms down a river. But they can also pose hazards: Extreme river waves triggered by a prolonged downpour or dam break can produce floods.
      “Ocean waves are well known from surfing and sailing, but rivers are the arteries of the planet. We want to understand their dynamics,” said Cedric David, a hydrologist at NASA’s Jet Propulsion Laboratory in Southern California and a coauthor of a new study published May 14 in Geophysical Research Letters.
      SWOT is depicted in orbit in this artist’s concept, with sunlight glinting off one of its solar panels and both antennas of its key instrument — the Ka-band Radar Interferometer (KaRIn) — extended. The antennas collect data along a swath 30 miles (50 kilometers) wide on either side of the satellite.CNES Measuring Speed and Size
      To search for river waves for her doctoral research, lead author Hana Thurman of Virginia Tech turned to a spacecraft launched in 2022. The SWOT (Surface Water and Ocean Topography) satellite is a collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales). It is surveying the height of nearly all of Earth’s surface waters, both fresh and salty, using its sensitive Ka-band Radar Interferometer (KaRIn). The instrument maps the elevation and width of water bodies by bouncing microwaves off the surface and timing how long the signal takes to return.
      “In addition to monitoring total storage of waters in lakes and rivers, we zoom in on dynamics and impacts of water movement and change,” said Nadya Vinogradova Shiffer, SWOT program scientist at NASA Headquarters in Washington.
      Thurman knew that SWOT has helped scientists track rising sea levels near the coast, spot tsunami slosh, and map the seafloor, but could she identify river height anomalies in the data indicating a wave on the move?
      She found that the mission had caught three clear examples of river waves, including one that arose abruptly on the Yellowstone River in Montana in April 2023. As the satellite passed overhead, it observed a 9.1-foot-tall (2.8-meter-tall) crest flowing toward the Missouri River in North Dakota. It was divided into a dramatic 6.8-mile-long (11-kilometer-long) peak followed by a more drawn‐out tail. These details are exciting to see from orbit and illustrate the KaRIn instrument’s uniquely high spatial resolution, Thurman said.
      Sleuthing through optical Sentinel-2 imagery of the area, she determined that the wave likely resulted from an ice jam breaking apart upstream and releasing pent-up water.
      The other two river waves that Thurman and the team found were triggered by rainfall runoff. One, spotted by SWOT starting on Jan. 25, 2024, on the Colorado River south of Austin, Texas, was associated with the largest flood of the year on that section of river. Measuring over 30 feet (9 meters) tall and 166 miles (267 kilometers) long, it traveled around 3.5 feet (1.07 meters) per second for over 250 miles (400 kilometers) before discharging into Matagorda Bay.
      The other wave originated on the Ocmulgee River near Macon, Georgia, in March 2024. Measuring over 20 feet (6 meters) tall and extending more than 100 miles (165 kilometers), it traveled about a foot (0.33 meters) per second for more than 124 miles (200 kilometers).
      “We’re learning more about the shape and speed of flow waves, and how they change along long stretches of river,” Thurman said. “That could help us answer questions like, how fast could a flood get here and is infrastructure at risk?”
      Complementary Observations
      Engineers and water managers measuring river waves have long relied on stream gauges, which record water height and estimate discharge at fixed points along a river. In the United States, stream gauge networks are maintained by agencies including the U.S. Geological Survey. They are sparser in other parts of the world.
      “Satellite data is complementary because it can help fill in the gaps,” said study supervisor George Allen, a hydrologist and remote sensing expert at Virginia Tech.
      If stream gauges are like toll booths clocking cars as they pass, SWOT is like a traffic helicopter taking snapshots of the highway.
      The wave speeds that SWOT helped determine were similar to those calculated using gauge data alone, Allen said, showing how the satellite could help monitor waves in river basins without gauges. Knowing where and why river waves develop can help scientists tracking changing flood patterns around the world.
      Orbiting Earth multiple times each day, SWOT is expected to observe some 55% of large-scale floods at some stage in their life cycle. “If we see something in the data, we can say something,” David said of SWOT’s potential to flag dangerous floods in the making. “For a long time, we’ve stood on the banks of our rivers, but we’ve never seen them like we are now.”
      More About SWOT
      The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      Written by Sally Younger
      2025-074




      Share
      Details
      Last Updated May 21, 2025 Related Terms
      SWOT (Surface Water and Ocean Topography) Jet Propulsion Laboratory Explore More
      3 min read Devil’s in Details in Selfie Taken by NASA’s Mars Perseverance Rover
      Article 2 hours ago 5 min read NASA’s Perseverance Mars Rover to Take Bite Out of ‘Krokodillen’
      Article 2 days ago 6 min read NASA, French SWOT Satellite Offers Big View of Small Ocean Features
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...