Jump to content

48,500 year old zombie virus revived from siberian permafrost, 'What Could Go Wrong'?


Recommended Posts

Posted
48,500 years old Zombie Virus Resurrected In French Lab..As the world warms up, vast tranches of permafrost are melting, releasing material that's been trapped in its icy grip for years. This includes a slew of microbes that have lain dormant for hundreds of millennia in some cases. 

zombi%20virus.jpg

To study the emerging microbes, scientists have now revived a number of these "zombie viruses" from Siberian permafrost, including one thought to be nearly 50,000 years old – a record age for a frozen virus returning to a state capable of infecting other organisms. 

The team behind the work, led by microbiologist Jean-Marie Alempic from the French National Centre for Scientific Research, says these reanimating viruses are potentially a significant threat to public health, and further study needs to be done to assess the danger that these infectious agents could pose as they awake from their icy slumber. 

"One quarter of the Northern Hemisphere is underlain by permanently frozen ground, referred to as permafrost," write the researchers in their paper. 

"Due to climate warming, irreversibly thawing permafrost is releasing organic matter frozen for up to a million years, most of which decompose into carbon dioxide and methane, further enhancing the greenhouse effect." 

The 48,500-year-old amoeba virus is actually one of 13 outlined in a new study currently in preprint, with nine of them thought to be tens of thousands of years old. The researchers established that each one was distinct from all other known viruses in terms of their genome. 

While the record-breaking virus was found beneath a lake, other extraction locations included mammoth wool and the intestines of a Siberian wolf – all buried beneath permafrost. Using live single-cell amoeba cultures, the team proved that the viruses still had the potential to be infectious pathogens. 

We're also seeing huge numbers of bacteria released into the environment as the world warms up, but given the antibiotics at our disposal it might be argued they would prove less threatening. A novel virus – as with SARS-CoV-2 – could be much more problematic for public health, especially as the Arctic becomes more populated. 

"The situation would be much more disastrous in the case of plant, animal, or human diseases caused by the revival of an ancient unknown virus," write the researchers. 

"It is therefore legitimate to ponder the risk of ancient viral particles remaining infectious and getting back into circulation by the thawing of ancient permafrost layers." 

This team has form for diligently digging up viruses in Siberia, with a previous study detailing the discovery of a 30,000-year-old virus. Like the new record holder, that was also a pandoravirus, a giant big enough to be visible using light microscopy. 

The revived virus has been given the name Pandoravirus yedoma, which acknowledges its size and the type of permafrost soil that it was found in. The researchers think there are many more viruses to find too, beyond those that only target amoebas. 

Many of the viruses that will be released as the ice thaws will be completely unknown to us – although it remains to be seen how infectious these viruses will be once they're exposed to the light, heat and oxygen of the outdoor environment. These are all areas that could be investigated in future studies.  

Virologist Eric Delwart from the University of California, San Francisco, agrees that these giant viruses are just the start when it comes to exploring what lies hidden beneath the permafrost. Though Delwart wasn't involved in the current study, he has plenty of experience resuscitating ancient plant viruses. 

"If the authors are indeed isolating live viruses from ancient permafrost, it is likely that the even smaller, simpler mammalian viruses would also survive frozen for eons."

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Dr. Steven “Steve” Platnick stepped down from his role at NASA on August 8, 2025, after more than three decades of public service. Steve began his career at NASA as a physical scientist at Goddard Space Flight Center in 2002. He moved to the Earth Science Division in 2009, where he has served in various senior management roles, including as the Earth Observing System (EOS) Senior Project Scientist. In this role, he led the EOS Project Science Office and continued periodic meetings of the EOS Project Scientists, initiated by Michael King during his tenure. Steve expanded these meetings to include representatives of non-EOS Earth observing missions and representatives from Earth Science Mission Operations (ESMO). In addition, Steve was named Deputy Director for Atmospheres in the Earth Science Division in January 2015 and served in this position until July 2024.
      Dr. Steve Platnick Image credit: NASA During his time at NASA, Steve played an integral role in the development, sustainability, and advancement of NASA’s Earth Observing System platforms. From January 2003 – February 2010, Steve served as Deputy Project Scientist for Aqua. In this role, he applied his expertise in theoretical and experimental studies of satellite, aircraft, and ground-based cloud remote sensing to improve algorithms to benefit the data gathered from remote observing systems.
      Taking the Lead to Improve Algorithms
      Steve was actively involved in the Moderate Resolution Imaging Spectroradiometer (MODIS) Science Team, serving as the MODIS Atmosphere Team Lead. Steve helped advance several key components of the MODIS instrument, which flies on NASA’s Terra and Aqua platforms. He led a team that enhanced, maintained, and evaluated MODIS algorithms that support the Level-2 (L2) Cloud Optical/Microphysical Properties components (e.g., COD06 and MYD06) for MODIS on Terra and Aqua. The algorithms were designed to retrieve thermodynamic phase, optical thickness, effective particle radius, and water path for liquid and ice clouds. The team’s work also contributes to L3 products that address cloud mask, aerosols, clouds, and clear sky radiance for data within  1° grids over one-day, eight-day, and one-month repeat cycles. Under Steve’s leadership, the team also developed L2 products (e.g., MODATML2 and MYDATML2) that include essential atmosphere datasets of samples collected at 5–10 km (3–6 mi) that is consistent with L3 products to ease storage requirements of core atmospheric data.
      Steve is also a member of the Suomi-National Polar-orbiting Partnership (Suomi NPP) Atmosphere Team, working on operational cloud optical and microphysical products. In this role, he contributed to algorithm development and refinement for the Cloud Product. In particular, he helped address a critical gap in the Visible Infrared Imaging Radiometer Suite (VIIRS) spectral channel, which was not designed to collect information for carbon dioxide (CO2) slicing and water vapor data in the same way as MODIS. Steve and his colleagues developed a suite of L2 algorithms for the spectral channels that were common to both MODIS and VIIRS to address cloud mask and cloud optical/microphysical properties. Through these efforts, the project has established a continuous cloud data record gathered from both instruments from 2017 to the present.
      Steve also participated in numerous other working groups during the past 30 years. He participated in the Global Energy and Water Exchanges (GEWEX) Cloud Assessment Working Group (2008–present), Arctic Radiation-Cloud-Aerosol-Surface Interaction Experiment (ARCSIX) Science Team (2023–present), ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) Earth–Venture Suborbital (EVS)-2 Science Team (2014–2023), Deep Space Climate Observatory (DSCOVR) Science Team (2014–present), Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Science Team (2014–2023), PACE Science Definition Team, Deputy Chair (2011–2012), Glory Science Team (2010–2014) NASA Observations for Modeling Intercomparison Studies (obs4MIPs) Working Group (2011), Advanced Composition Explorer (ACE) Science Definition Team (2009–2011), and Geostationary Operational Environmental Satellites (GOES) R-series Advanced Baseline Imager (ABI) Cloud Team (2005–2009).
      Steve has also participated in numerous major airborne field campaigns in various roles, including: GSFC Lidar Observation and Validation Experiment (GLOVE, 2025), PACE Postlaunch Airborne eXperiment (PAX, 2024), the Westcoast & Heartland Hyperspectral Microwave Sensor Intensive Experiment (WH2yMSIE, 2024), ORACLES Science Team (2015–2019), Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) Science Team (2011–2015), Tropical Composition, Cloud and Climate Coupling (TC4) Management Team (2007), Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cirrus Experiment (CRYSTAL-FACE) Science Management Team (2002), Southern Africa Fire-Atmosphere Research Initiative (SAFARI, 2000), First ISCCP Regional Experiment (FIRE) Arctic Cloud Experiment (ACE) (1998), Mikulski Archive for Space Telescopes (MAST, 1994), and ACE (1992).
      Supporting Earth Science Communications
      Through his senior leadership roles within ESD Steve has been supportive of the activities of NASA’s Science Support Office (SSO). He has participated in many NASA Science exhibits at both national and international scientific conferences, including serving as a Hyperwall presenter numerous times. He has met with task leaders frequently and has advocated on behalf of the SSO to management at NASA Headquarters, GSFC, and Global Sciences & Technology Inc.
      For The Earth Observer newsletter publication team in particular, Steve replaced Michael King as Acting EOS Senior Project Scientist in June 2008, taking over the authorship of “The Editor’s Corner” beginning with the May–June 2008 issue [Volume 20, Issue 3]. The Acting label was removed beginning with the January–February 2010 issue [Volume 22, Issue 1]. Steve has been a champion of continuing to retain a historical record of NASA meetings to maintain a chronology of advances made by different groups within the NASA Earth Science community. He was supportive of the Executive Editor’s efforts to create a series called “Perspectives on EOS,” which ran from 2008–2011 and told the stories of the early years of the EOS Program from the point of view of those who lived them. He also supported the development of articles to commemorate the 25th and 30th anniversary of The Earth Observer. Later, Steve helped guide the transition of the newsletterfrom a print publication – the November–December 2022 issue was the last printed issue – to fully online by July 2024, a few months after the publication’s 35th anniversary. The Earth Observer team will miss Steve’s keen insight, historical perspective, and encouragement that he has shown through his leadership for the past 85 issues of print and online publications.
      A Career Recognized through Awards and Honors
      Throughout his career, Steve has amassed numerous honors, including the Robert H. Goddard Award for Science: MODIS/VIIRS Cloud Products Science Team (2024) and the William Nordberg Memorial Award for Earth Science in 2023. He received the Verner E. Suomi Award from the American Meteorological Society (AMS) in 2016 and was named an AMS Fellow that same year.
      Steve has received numerous NASA Group Achievement Awards, including for the Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex) Field Campaign Team (2020), Fire Influence of Regional to Global Environments and Air Quality (FIREX-AQ) Field Campaign Team (2020), ORACLES Field Campaign Team (2019), obs4MIPs Working Group (2015), SEAC4RS Field Campaign Team (2015), Advanced Microwave Scanning Radiometer for EOS (AMSR-E) Instrument Recovery Team (2013), Climate Absolute Radiance and Refractivity Observatory (CLARREO) Mission Concept Team (2012), Earth Science Constellation Red Team (2011), Science Mission Directorate ARRA Team (2011), TC4 Team (2009), MODIS Science Data Support Team (2007), Aqua Mission Team (2003), CRYSTAL-FACE Science Team (2003), and SAFARI 2000 International Leadership Team (2002).
      Steve received two NASA Agency Honor Awards – the Exceptional Service Medal in 2015 and the Exceptional Achievement Medal in 2008. He was also part of the NASA Agency Team Excellence Award in 2017 for his work with the Satellite Needs Assessment Team. The Laboratory for Atmospheres honored him with the Best Senior Author Publication Award in 2001 and the Scientific Research Peer Award in 2005.
      Steve received his bachelor’s degree and master’s degree in electrical engineering from Duke University and the University of California, Berkeley, respectively. He earned a Ph.D. in atmospheric sciences from the University of Arizona. He began his career at the Joint Center for Earth Systems Technology (JCET) at University of Maryland Baltimore County in 1996 as a research associate professor. He held this appointment until 2002. Steve has published more than 150 scholarly articles.
      View the full article
    • By NASA
      NASA has demonstrated a breakthrough in 3D-printable high-temperature materials that could lead to stronger, more durable parts for airplanes and spacecraft. Credit: NASA/Jordan Salkin  NASA’s Inventions and Contributions Board (ICB) has awarded Commercial Invention of the Year to NASA Glenn Research Center’s GRX-810: A 3D Printable Alloy Designed for Extreme Environments.  

      NASA Alloy GRX–810, an oxide dispersion strengthened (ODS) alloy, can endure temperatures over 2,000 degrees Fahrenheit. It is more malleable and can survive more than 1,000 times longer than existing state-of-the-art alloys. This new alloy can be used to build aerospace parts for high-temperature applications, like those inside aircraft and rocket engines, because ODS alloys can withstand harsher conditions before reaching their breaking point. 
      The NASA Glenn team of inventors includes Dr. Timothy Smith (co-lead), Dr. Christopher Kantzos (co-lead), Robert Carter, and Dr. Michael Kulis. 
      Four American companies have been granted co-exclusive licenses to produce and market GRX-810 material. All four have replicated NASA Glenn’s patented process and are selling fully coated materials. This benefits the United States economy as a return on investment of taxpayer dollars.  
      For more information on this technology, visit 3D Printed Alloy and New Material Built to Withstand Extreme Conditions. 
      The NASA insignia is 3D printed using the GRX-810 superalloy. 
      Video Credit: NASA/Jordan Salkin
      Additionally, the ICB selected NASA Glenn’s High-Rate Delay Tolerant Networking (HDTN) project for an honorable mention in the Software of the Year category. HDTN is a protocol suite that extends terrestrial internet principles to the space environment, creating a high-speed data transfer path for spacecraft and different communication systems. It is an optimized version of the DTN standard for high-rate radio frequency and optical links.  
      The ICB reviews and recommends awards for significant scientific and technical contributions to the agency’s aeronautical and space activities. These awards recognize technologies that not only advance NASA’s mission but also benefit the public through commercialization.  
      Return to Newsletter Explore More
      2 min read NASA Glenn Shoots for the Stars During WNBA All-Star Weekend
      Article 1 day ago 3 min read NASA Drop Test Supports Safer Air Taxi Design and Certification
      Article 2 weeks ago 3 min read NASA Rehearses How to Measure X-59’s Noise Levels
      Article 3 weeks ago View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Curiosity Blog, Sols 4622-4623: Kicking Off (Earth) Year 14 With an Investigation of Veins
      NASA’s Mars rover Curiosity, using its Left Navigation Camera, caught the shadow of the rover’s mast looking ahead to new terrain as the mission started its 14th Earth year on Mars. Curiosity acquired this image on Aug. 6, 2025 — Sol 4621, or Martian day 4,621 of the Mars Science Laboratory mission — at 06:24:09 UTC. NASA/JPL-Caltech Written by Abigail Fraeman, Deputy Project Scientist at NASA’s Jet Propulsion Laboratory
      Earth planning date: Wednesday, Aug. 6, 2025.
      Today was a very special day for Curiosity as the rover celebrated the start of a 14th year on Mars. Curiosity is currently exploring the mysterious boxwork formations. On Monday, the rover positioned itself at the side of one of the ridges, where the team had spotted tantalizing hints of a complex network of razor-thin veins that may give insight into what is holding the ridges up, compared to the surrounding hollows. 
      In this plan, the team will use the instruments on Curiosity’s arm and mast to investigate the geometry and composition of these veins to learn more about them. APXS and MAHLI will both observe “Repechón,” a loose block with dark-toned, mottled material exposed on top, as well as “Lago Poopó,” a bright, relatively clean vein network. MAHLI will also collect a side view of “Repechón.” ChemCam will use its laser to analyze two targets, “Vicguna,” a protruding vein edge with nodular texture, and “Ibare,” which has some exposed light-toned veins. Outside of the vein investigation, ChemCam’s telescopic RMI camera will observe layering in a nearby butte and the Mishe Mokwa feature, while Mastcam will take mosaics on “Cachiniba,” a broken block, “Yapacani,” the side of another large boxwork ridge, and “Llullaillaco,” a faraway feature that we imaged from a slightly different location in a previous plan. Additional environmental monitoring observations will round out the plan, followed by a straight-line drive to the east, to an area where several large boxwork ridges intersect that the team has been informally calling “the peace sign” because of its shape.
      I usually get nostalgic around landing anniversaries, or “landiversaries,” and this year, I found myself looking back through pictures of landing night. One of my favorites shows me standing next to science team member Kirsten Siebach right after we received the first images from Curiosity. The two of us have the biggest, most excited grins on our faces. We were both graduate students at the time, and both of us were writing thesis chapters analyzing orbital data over regions we hoped to explore with Curiosity one day. I was studying a layer in Mount Sharp that contained hematite, and the team named this feature “Vera Rubin ridge” when Curiosity reached it in 2017. Kirsten, who is now a professor at Rice University, was focused on the boxwork structures, pondering how they formed and hypothesizing what they might tell us about the history of Martian habitability when we reached them.
      Thirteen years later, I had another big grin on my face today, as I listened to Kirsten and our incredible science team members excitedly discussing Curiosity’s new images of these same boxwork structures. I was also filled with gratitude for the thousands of people it took to get us to this moment. It was the absolute best way to spend a landiversary.

      Learn more about Curiosity’s science instruments


      For more Curiosity blog posts, visit MSL Mission Updates

      Share








      Details
      Last Updated Aug 07, 2025 Related Terms
      Blogs Explore More
      3 min read Curiosity Blog, Sols 4618-4619: The Boxwork Structures Continue to Call to Us


      Article


      2 days ago
      3 min read Curiosity Blog, Sols 4620-4621: Among the Hollows and the Ridges


      Article


      2 days ago
      4 min read Curiosity Blog, Sols 4616-4617: Standing Tall on the Ridge


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Scientists predict one of the major surveys by NASA’s upcoming Nancy Grace Roman Space Telescope may reveal around 100,000 celestial blasts, ranging from exploding stars to feeding black holes. Roman may even find evidence of some of the universe’s first stars, which are thought to completely self-destruct without leaving any remnant behind.
      This simulation showcases the dynamic universe as NASA’s Nancy Grace Roman Space Telescope could see it over the course of its five-year primary mission. The video sparkles with synthetic supernovae from observations of the OpenUniverse simulated universe taken every five days (similar to the expected cadence of Roman’s High-Latitude Time-Domain Survey, which OpenUniverse simulates in its entirety). On top of the static sky of stars in the Milky Way and other galaxies, more than a million exploding stars flare into visibility and then slowly fade away. To highlight the dynamic physics happening and for visibility at this scale, the true brightness of each transient event has been magnified by a factor of 10,000 and no background light has been added to the simulated images. The video begins with Roman’s full field of view, which represents a single pointing of Roman’s camera, and then zooms into one square.Credit: NASA’s Goddard Space Flight Center and M. Troxel Cosmic explosions offer clues to some of the biggest mysteries of the universe. One is the nature of dark energy, the mysterious pressure thought to be accelerating the universe’s expansion.
      “Whether you want to explore dark energy, dying stars, galactic powerhouses, or probably even entirely new things we’ve never seen before, this survey will be a gold mine,” said Benjamin Rose, an assistant professor at Baylor University in Waco, Texas, who led a study about the results. The paper is published in The Astrophysical Journal.
      Called the High-Latitude Time-Domain Survey, this observation program will scan the same large region of the cosmos every five days for two years. Scientists will stitch these observations together to create movies that uncover all sorts of cosmic fireworks.
      Chief among them are exploding stars. The survey is largely geared toward finding a special class of supernova called type Ia. These stellar cataclysms allow scientists to measure cosmic distances and trace the universe’s expansion because they peak at about the same intrinsic brightness. Figuring out how fast the universe has ballooned during different cosmic epochs offers clues to dark energy.
      This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth.Credit: NASA, ESA, CSA, and STScI In the new study, scientists simulated Roman’s entire High-Latitude Time-Domain Survey. The results suggest Roman could see around 27,000 type Ia supernovae—about 10 times more than all previous surveys combined.
      Beyond dramatically increasing our total sample of these supernovae, Roman will push the boundaries of how far back in time we can see them. While most of those detected so far occurred within approximately the last 8 billion years, Roman is expected to see vast numbers of them earlier in the universe’s history, including more than a thousand that exploded more than 10 billion years ago and potentially dozens from as far back as 11.5 billion years. That means Roman will almost certainly set a new record for the farthest type Ia supernova while profoundly expanding our view of the early universe and filling in a critical gap in our understanding of how the cosmos has evolved over time.
      “Filling these data gaps could also fill in gaps in our understanding of dark energy,” Rose said. “Evidence is mounting that dark energy has changed over time, and Roman will help us understand that change by exploring cosmic history in ways other telescopes can’t.”
      But type Ia supernovae will be hidden among a much bigger sample of exploding stars Roman will see once it begins science operations in 2027. The team estimates Roman will also spot about 60,000 core-collapse supernovae, which occur when a massive star runs out of fuel and collapses under its own weight.
      That’s different from type Ia supernovae, which originate from binary star systems that contain at least one white dwarf — the small, hot core remnant of a Sun-like star — siphoning material from a companion star. Core-collapse supernovae aren’t as useful for dark energy studies as type Ias are, but their signals look similar from halfway across the cosmos.
      “By seeing the way an object’s light changes over time and splitting it into spectra — individual colors with patterns that reveal information about the object that emitted the light—we can distinguish between all the different types of flashes Roman will see,” said Rebekah Hounsell, an assistant research scientist at the University of Maryland-Baltimore County working at NASA’s Goddard Space Flight Center in Greenbelt, Maryland and a co-author of the study.
      “With the dataset we’ve created, scientists can train machine-learning algorithms to distinguish between different types of objects and sift through Roman’s downpour of data to find them,” Hounsell added. “While searching for type Ia supernovae, Roman is going to collect a lot of cosmic ‘bycatch’—other phenomena that aren’t useful to some scientists, but will be invaluable to others.”
      Hidden Gems
      Thanks to Roman’s large, deep view of space, scientists say the survey should also unearth extremely rare and elusive phenomena, including even scarcer stellar explosions and disintegrating stars.
      Upon close approach to a black hole, intense gravity can shred a star in a so-called tidal disruption event. The stellar crumbs heat up as they swirl around the black hole, creating a glow astronomers can see from across vast stretches of space-time. Scientists think Roman’s survey will unveil 40 tidal disruption events, offering a chance to learn more about black hole physics.
      The team also estimates Roman will find about 90 superluminous supernovae, which can be 100 times brighter than a typical supernova. They pack a punch, but scientists aren’t completely sure why. Finding more of them will help astronomers weigh different theories.
      Even rarer and more powerful, Roman could also detect several kilonovae. These blasts occur when two neutron stars — extremely dense cores leftover from stars that exploded as supernovae — collide. To date, there has been only one definitive kilonova detection. The team estimates Roman could spot five more.
      NASA’s Roman Space Telescope will survey the same areas of the sky every few days following its launch in May 2027. Researchers will mine these data to identify kilonovae – explosions that happen when two neutron stars or a neutron star and a black hole collide and merge. When these collisions happen, a fraction of the resulting debris is ejected as jets, which move near the speed of light. The remaining debris produces hot, glowing, neutron-rich clouds that forge heavy elements, like gold and platinum. Roman’s extensive data will help astronomers better identify how often these events occur, how much energy they give off, and how near or far they are.Credit: NASA, ESA, J. Olmsted (STScI) That would help astronomers learn much more about these mysterious events, potentially including their fate. As of now, scientists are unsure whether kilonovae result in a single neutron star, a black hole, or something else entirely.
      Roman may even spot the detonations of some of the first stars that formed in the universe. These nuclear furnaces were giants, up to hundreds of times more massive than our Sun, and unsullied by heavy elements that hadn’t yet formed.
      They were so massive that scientists think they exploded differently than modern massive stars do. Instead of reaching the point where a heavy star today would collapse, intense gamma rays inside the first stars may have turned into matter-antimatter pairs (electrons and positrons). That would drain the pressure holding the stars up until they collapsed, self-destructing in explosions so powerful they’re thought to leave nothing behind.
      So far, astronomers have found about half a dozen candidates of these “pair-instability” supernovae, but none have been confirmed.
      “I think Roman will make the first confirmed detection of a pair-instability supernova,” Rose said — in fact the study suggests Roman will find more than 10. “They’re incredibly far away and very rare, so you need a telescope that can survey a lot of the sky at a deep exposure level in near-infrared light, and that’s Roman.”
      A future rendition of the simulation could include even more types of cosmic flashes, such as variable stars and active galaxies. Other telescopes may follow up on the rare phenomena and objects Roman discovers to view them in different wavelengths of light to study them in more detail.
      “Roman’s going to find a whole bunch of weird and wonderful things out in space, including some we haven’t even thought of yet,” Hounsell said. “We’re definitely expecting the unexpected.”
      For more information about the Roman Space Telescope visit www.nasa.gov/roman.
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Jul 15, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.gov Related Terms
      Nancy Grace Roman Space Telescope Astrophysics Black Holes Dark Energy Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Goddard Space Flight Center Science & Research Stars Supernovae The Universe Explore More
      6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
      Article 3 months ago 6 min read New Simulated Universe Previews Panoramas From NASA’s Roman Telescope
      Article 6 months ago 3 min read NASA’s Roman Space Telescope Team Installs Observatory’s Solar Panels
      Article 5 days ago View the full article
    • By Amazing Space
      MUSK Says It's Time To Scarp the Space Station - Why He's Wrong!
  • Check out these Videos

×
×
  • Create New...