Jump to content

Earthrise after Orion Executes Outbound Powered Flyby


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Space changes you. It strengthens some muscles, weakens others, shifts fluids within your body, and realigns your sense of balance. NASA’s Human Research Program works to understand—and sometimes even counter—those changes so astronauts can thrive on future deep space missions.  
      NASA astronaut Loral O’Hara pedals on the Cycle Ergometer Vibration Isolation System (CEVIS) inside the International Space Station’s Destiny laboratory module.NASA Astronauts aboard the International Space Station work out roughly two hours a day to protect bone density, muscle strength and the cardiovascular system, but the longer they are in microgravity, the harder it can be for the brain and body to readapt to gravity’s pull. After months in orbit, returning astronauts often describe Earth as heavy, loud, and strangely still. Some reacclimate within days, while other astronauts take longer to fully recover.
      Adjusting to Gravity  
      NASA’s SpaceX Crew-7 astronaut Jasmin Moghbeli after landing in the Gulf of America on March 12, 2024, completing 197 days in space.NASA/Joel Kowsky The crew of NASA’s SpaceX Crew-7 mission— NASA astronaut Jasmin Moghbeli, ESA (European Space Agency) astronaut Andreas Mogensen, JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa, and Roscosmos cosmonaut Konstantin Borisov—landed in March 2024 after nearly 200 days in space. One of the first tests volunteer crew members completed was walking with their eyes open and then closed.  
      “With eyes closed, it was almost impossible to walk in a straight line,” Mogensen said. In space, vision is the primary way astronauts orient themselves, but back on Earth, the brain must relearn how to use inner-ear balance signals. Moghbeli joked her first attempt at the exercise looked like “a nice tap dance.”   
      “I felt very wobbly for the first two days,” Moghbeli said. “My neck was very tired from holding up my head.” She added that, overall, her body readapted to gravity quickly.  
      Astronauts each recover on their own timetable and may encounter different challenges. Mogensen said his coordination took time to return. Furukawa noted that he could not look down without feeling nauseated. “Day by day, I recovered and got more stable,” he said. 
      NASA astronaut Loral O’Hara after landing in a remote area near the town of Zhezkazgan, Kazakhstan, on April 6, 2024.NASA/Bill Ingalls NASA astronaut Loral O’Hara returned in April 2024 after 204 days in space. She said she felt almost completely back to normal a week after returning to Earth. O’Hara added that her prior experience as an ocean engineer gave her insight into space missions. “Having those small teams in the field working with a team somewhere else back on shore with more resources is a good analog for the space station and all the missions we’re hoping to do in the future,” she said. 
      NASA astronaut Nichole Ayers, who flew her first space mission with NASA’s SpaceX Crew-10, noted that the brain quickly adapts to weightlessness by tuning out the vestibular system, which controls balance. “Then, within days of being back on Earth, it remembers again—it’s amazing how fast the body readjusts,” she said. 
      Expedition 69 NASA astronaut Frank Rubio outside the Soyuz MS-23 spacecraft after landing near the town of Zhezkazgan, Kazakhstan, on Sept. 27, 2023. NASA/Bill Ingalls When NASA astronaut Frank Rubio landed in Kazakhstan in September 2023, he had just completed a record 371-day mission—the longest single U.S. spaceflight.  
      Rubio said his body adjusted to gravity right away, though his feet and lower back were sore after more than a year without weight on them. Thanks to consistent workouts, Rubio said he felt mostly recovered within a couple of weeks.  
      Mentally, extending his mission from six months to a year was a challenge. “It was a mixed emotional roller coaster,” he said, but regular video calls with family kept him grounded. “It was almost overwhelming how much love and support we received.” 
      Crew-8 astronauts Matt Dominick, Jeanette Epps, Michael Barratt, and cosmonaut Alexander Grebenkin splashed down in October 2024 after 235 days on station. Dominick found sitting on hard surfaces uncomfortable at first. Epps felt the heaviness of Earth immediately. “You have to move and exercise every day, regardless of how exhausted you feel,” she said.  
      Barratt, veteran astronaut and board certified in internal and aerospace medicine, explained that recovery differs for each crew member, and that every return teaches NASA something new. 
      Still a Challenge, Even for Space Veterans  
      NASA astronaut Suni Williams is helped out of a SpaceX Dragon spacecraft aboard the SpaceX recovery ship after splashing down off the coast of Tallahassee, Florida, March 18, 2025. NASA/Keegan Barber Veteran NASA astronauts Suni Williams and Butch Wilmore returned from a nine-month mission with Crew-9 in early 2025. Despite her extensive spaceflight experience, Williams said re-adapting to gravity can still be tough. “The weight and heaviness of things is surprising,” she said. Like others, she pushed herself to move daily to regain strength and balance.  
      NASA astronaut Don Pettit arrives at Ellington Field in Houston on April 20, 2025, after returning to Earth aboard the Soyuz MS-25 spacecraft. NASA/Robert Markowitz NASA astronaut Don Pettit, also a veteran flyer, came home in April 2025 after 220 days on the space station. At 70 years old, he is NASA’s oldest active astronaut—but experience did not make gravity gentler.  During landing, he says he was kept busy, “emptying the contents of my stomach onto the steppes of Kazakhstan.” Microgravity had eased the aches in his joints and muscles, but Earth’s pull brought them back all at once.  
      Pettit said his recovery felt similar to earlier missions. “I still feel like a little kid inside,” he said. The hardest part, he explained, isn’t regaining strength in big muscle groups, but retraining the small, often-overlooked muscles unused in space. “It’s a learning process to get used to gravity again.”  
      Recovery happens day by day—with help from exercise, support systems, and a little humor. No matter how long an astronaut is in space, every journey back to Earth is unique. 
      The Human Research Program help scientists understand how spaceflight environments affect astronaut health and performance and informs strategies to keep crews healthy for future missions to the Moon, Mars, and beyond. The program studies astronauts before, during, and after spaceflight to learn how the human body adapts to living and working in space. It also collects data through Earth-based analog missions that can help keep astronauts safer for future space exploration.  
      To learn more about how microgravity affects the human body and develop new ways to help astronauts stay healthy, for example, its scientists conduct bedrest studies – asking dozens of volunteers to spend 60 days in bed with their heads tilted down at a specific angle.  Lying in this position tricks the body into responding as it would if the body was in space which allows scientists to trial interventions to hopefully counter some of microgravity’s effects.  Such studies, through led by NASA, occur at the German Aerospace Center’s Cologne campus at a facility called :envihab – a combination of “environment” and “habitat.”  
      Additional Earth-based insights come from the Crew Health and Performance Exploration Analog (CHAPEA) and the Human Exploration Research Analog (HERA) at NASA’s Johnson Space Center in Houston. Both analogs recreate the remote conditions and scenarios of deep space exploration here on Earth with volunteer crews who agree to live and work in the isolation of ground-based habitats and endure challenges like delayed communication that simulates the type of interactions that will occur during deep space journeys to and from Mars. Findings from these ground-based missions and others will help NASA refine its future interventions, strategies, and protocols for astronauts in space. 
      NASA and its partners have supported humans continuously living and working in space since November 2000. After nearly 25 years of continuous human presence, the space station remains the sole space-based proving ground for training and research for deep space missions, enabling NASA’s Artemis campaign, lunar exploration, and future Mars missions. 
      Explore More
      7 min read A Few Things Artemis Will Teach Us About Living and Working on the Moon
      Article 6 years ago 3 min read Inside NASA’s New Orion Mission Evaluation Room for Artemis II 
      Article 2 weeks ago 12 min read 15 Ways the International Space Station Benefits Humanity Back on Earth
      Article 3 years ago
      View the full article
    • By NASA
      NASA/Rad Sinyak Orion Mission Evaluation Room (MER) team member works during an Artemis II mission simulation on Aug. 19, 2025, from the new Orion MER inside the Mission Control Center at NASA’s Johnson Space Center in Houston.
      As NASA’s Orion spacecraft is carrying crew around the Moon on the Artemis II mission, a team of expert engineers in the Mission Control Center at NASA’s Johnson Space Center in Houston will be meticulously monitoring the spacecraft along its journey. They’ll be operating from a new space in the mission control complex built to host the Orion Mission Evaluation Room (MER). Through the success of Orion and the Artemis missions, NASA will return humanity to the Moon and prepare to land an American on the surface of Mars.
      View the full article
    • By NASA
      3 Min Read Inside NASA’s New Orion Mission Evaluation Room for Artemis II 
      As NASA’s Orion spacecraft is carrying crew around the Moon on the Artemis II mission, a team of expert engineers in the Mission Control Center at NASA’s Johnson Space Center in Houston will be meticulously monitoring the spacecraft along its journey. They’ll be operating from a new space in the mission control complex built to host the Orion Mission Evaluation Room (MER). Through the success of Orion and the Artemis missions, NASA will return humanity to the Moon and prepare to land an American on the surface of Mars.

      Inside the Mission Evaluation Room, dozens of engineers will be monitoring the spacecraft and collecting data, while the flight control team located in mission control’s White Flight Control Room is simultaneously operating and sending commands to Orion during the flight. The flight control team will rely on the engineering expertise of the evaluation room to help with unexpected spacecraft behaviors that may arise during the mission and help analyze Orion’s performance data.

      The new Orion Mission Evaluation Room inside the Mission Control Center at NASA’s Johnson Space Center in Houston.NASA/Rad Sinyak The Mission Evaluation Room team is made up of engineers from NASA, Lockheed Martin, ESA (European Space Agency), and Airbus who bring deep, expert knowledge of the spacecraft’s subsystems and functions to the mission. These functions are represented across 24 consoles, usually staffed by two engineers in their respective discipline, often hosting additional support personnel during planned dynamic phases of the mission or test objectives.
      “The operations team is flying the spacecraft, but they are relying on the Mission Evaluation Room’s reachback engineering capability from the NASA, industry, and international Orion team that has designed, built, and tested this spacecraft.”
      Trey PerrymAn
      Lead for Orion Mission and Integration Systems at NASA Johnson
      Perryman guides the Artemis II Orion mission evaluation room alongside Jen Madsen, deputy manager for Orion’s Avionics, Power, and Software.

      With crew aboard, Orion will put more systems to the test, requiring more expertise to monitor new systems not previously flown. To support these needs, and safe, successful flights of Orion to the Moon, NASA officially opened the all-new facility in mission control to host the Orion Mission Evaluation Room on Aug. 15.
      The Orion Mission Evaluation Room team works during an Artemis II mission simulation on Aug. 19, 2025, from the new space inside the Mission Control Center at NASA’s Johnson Space Center in Houston.NASA/Rad Sinyak During Artemis II, the evaluation room will operate in three daily shifts, beginning about 48 hours prior to liftoff. The room is staffed around the clock throughout the nearly 10 day mission, up until the spacecraft has been safely secured inside the U.S. Navy ship that will recover it after splashdown.

      Another key function of the evaluation room is collecting and analyzing the large amount of data Orion will produce during the flight, which will help inform the room’s team on the spacecraft’s performance.

      “Data collection is hugely significant,” Perryman said. “We’ll do an analysis and assessment of all the data we’ve collected, and compare it against what we were expecting from the spacecraft. While a lot of that data comparison will take place during the mission, we’ll also do deeper analysis after the mission is over to see what we learned.”

      The Orion Mission Evaluation Room team works during an Artemis II mission simulation on Aug. 19, 2025, from the new space inside the Mission Control Center at NASA’s Johnson Space Center in Houston.NASA/Rad Sinyak If unplanned situations arise during the mission, the Mission Evaluation Room has additional layers of ability to support any specific need that presents itself.  This includes various engineering support from different NASA centers, Lockheed Martin’s Integrated Test Lab, ESA’s European Space Research and Technology Center, and more.
      “It’s been amazing to have helped design and build Orion from the beginning – and now, we’ll be able to see the culmination of all those years of work in this new Mission Evaluation Room."
      Jen Madsen
      Deputy Manager for Orion’s Avionics, Power, and Software
      “We’ll see our spacecraft carrying our crew to the Moon on these screens and still be continuously learning about all of its capabilities,” said Madsen.

      The Artemis II test flight will send NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen around the Moon and return them safely back home. This first crewed flight under NASA’s Artemis campaign will set the stage for NASA to return Americans to the lunar surface and help the agency and its commercial and international partners prepare for future human missions to Mars.
      The Orion Mission Evaluation Room Team gathers for a group photo on Aug. 18, 2025.NASA/Josh Valcarcel Share
      Details
      Last Updated Aug 26, 2025 Related Terms
      Orion Multi-Purpose Crew Vehicle Artemis Artemis 2 Johnson Space Center Johnson's Mission Control Center Orion Program Explore More
      3 min read Lindy Garay: Supporting Space Station Safety and Success
      Article 1 day ago 3 min read NASA Shares Final Contenders for Artemis II Moon Mascot Design Contest
      Article 4 days ago 5 min read NASA’s Bennu Samples Reveal Complex Origins, Dramatic Transformation
      Asteroid Bennu, sampled by NASA’s OSIRIS-REx mission in 2020, is a mixture of dust that…
      Article 4 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Dr. Steven “Steve” Platnick took the NASA agency Deferred Resignation Program (DRP). His last work day was August 8, 2025. Steve spent more than three decades at, or associated with, NASA. While he began his civil servant career at the NASA’s Goddard Space Flight Center (GSFC) in 2002, his Goddard association went back to 1993, first as a contractor and then as one of the earliest employees of the Joint Center for Earth Systems Technology (JCET), a cooperative agreement between the University of Maryland, Baltimore County (UMBC) and GSFC’s Earth Science Division. At JCET Steve helped lead the development of the Atmosphere Physics Track curricula. Previously, he had held an NRC post-doctoral fellow at the NASA’s Ames Research Center. Along with his research work on cloud remote sensing from satellite and airborne sensors, Steve served as the Deputy Director for Atmospheres in GSFC’s Earth Sciences Division from January 2015–July 2024.
      Dr. Steve Platnick Image credit: NASA During his time at NASA, Steve played an integral role in the sustainability and advancement of NASA’s Earth Observing System platforms and data. In 2008, he took over as the Earth Observing System (EOS) Senior Project Scientist from Michael King. In this role, he led the EOS Project Science Office, which included support for related EOS facility airborne sensors, ground networks, and calibration labs. The office also supported The Earth Observer newsletter, the NASA Earth Observatory, and other outreach and exhibit activities on behalf of NASA Headquarter’s Earth Science Division and Science Mission Directorate (further details below). From January 2003 – February 2010, Steve served as the Aqua Deputy Project Scientist.
      Improving Imager Cloud Algorithms
      Steve was actively involved in the Moderate Resolution Imaging Spectroradiometer (MODIS) Science Team serving as the Lead for the MODIS Atmosphere Discipline Team (cloud, aerosol and clear sky products) since 2008 and as the NASA Suomi National Polar-orbiting Partnership (Suomi NPP)/JPSS Atmosphere Discipline Lead/co-Lead from 2012–2020. His research team enhanced, maintained, and evaluated MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) cloud algorithms that included Level-2 (L2) Cloud Optical/Microphysical Properties components (MOD06 and MYD06 for MODIS on Terra and Aqua, respectively) and the Atmosphere Discipline Team Level-3 (L3) spatial/temporal products (MOD08, MYD08). The L2 cloud algorithms were developed to retrieve thermodynamic phase, optical thickness, effective particle radius, and derived water path for liquid and ice clouds, among other associated datasets. Working closely with longtime University of Wisconsin-Madison colleagues, the team also developed the CLDPROP continuity products designed to bridge the MODIS and VIIRS cloud data records by addressing differences in the spectral coverage between the two sensors; this product is currently in production for VIIRS on Suomi NPP and NOAA-20, as well as MODIS Aqua. The team also ported their CLDPROP code to Geostationary Operational Environmental Satellites (GOES) R-series Advanced Baseline Imager (ABI) and sister sensors as a research demonstration effort.
      Steve’s working group participation included the Global Energy and Water Exchanges (GEWEX) Cloud Assessment Working Group (2008–present); the International Cloud Working Group (ICWG), which is part of the Coordination Group for Meteorological Satellites (CGMS), and its original incarnation, the Cloud Retrieval Evaluation Working (CREW) since 2009; and the NASA Observations for Modeling Intercomparison Studies (obs4MIPs) Working Group (2011–2013). Other notable roles included Deputy Chair of the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Science Definition Team (2011–2012) and membership in the Advanced Composition Explorer (ACE) Science Definition Team (2009–2011), the ABI Cloud Team (2005–2009), and the Climate Absolute Radiance and Refractivity Observatory (CLARREO) Mission Concept Team (2010-2011).
      Steve has participated in numerous major airborne field campaigns over his career. His key ER-2 flight scientist and/or science team management roles included the Monterey Area Ship Track experiment (MAST,1994), First (International Satellite Cloud Climatology Project (ISCCP) Regional Experiment – Arctic Cloud Experiment [FIRE-ACE, 1998], Southern Africa Fire-Atmosphere Research Initiative (SAFARI-2000), Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cirrus Experiment (CRYSTAL-FACE, 2002), and Tropical Composition, Cloud and Climate Coupling (TC4, 2007).
      Supporting Earth Science Communications
      Through his EOS Project Science Office role, Steve has been supportive of the activities of NASA’s Science Support Office (SSO) and personally participated in many NASA Science exhibits at both national and international scientific conferences, including serving as a Hyperwall presenter numerous times.
      For The Earth Observer newsletter publication team in particular, Steve replaced Michael King as Acting EOS Senior Project Scientist in June 2008, taking over the authorship of “The Editor’s Corner” beginning with the May–June 2008 issue [Volume 20, Issue 3]. The Acting label was removed beginning with the January–February 2010 issue [Volume 22, Issue 1]. Steve has been a champion of continuing to retain a historical record of NASA science team meetings to maintain a chronology of advances made by different groups within the NASA Earth Science community. He was supportive of the Executive Editor’s efforts to create a series called “Perspectives on EOS,” which ran from 2008–2011 and told the stories of the early years of the EOS Program from the point of view of those who lived them. He also supported the development of articles to commemorate the 25th and 30th anniversary of The Earth Observer. Later, Steve helped guide the transition of the newsletter from a print publication – the November–December 2022 issue was the last printed issue – to fully online by July 2024, a few months after the publication’s 35th anniversary. The Earth Observer team will miss Steve’s keen insight, historical perspective, and encouragement that he has shown through his leadership for the past 85 issues of print and online publications.
      A Career Recognized through Awards and Honors
      Throughout his career, Steve has amassed numerous honors, including the Goddard William Nordberg Memorial Award for Earth Science in 2023 and the Verner E. Suomi Award from the American Meteorological Society (AMS) in 2016. He was named an AMS Fellow that same year. He received two NASA Agency Honor Awards – the Exceptional Achievement Medal in 2008 and the Exceptional Service Medal in 2015.
      Steve received his bachelor’s degree and master’s degree in electrical engineering from Duke University and the University of California, Berkeley, respectively. He earned a Ph.D. in atmospheric sciences from the University of Arizona.
      View the full article
    • By NASA
      Dr. Steven “Steve” Platnick stepped down from his role at NASA on August 8, 2025, after more than three decades of public service. Steve began his career at NASA as a physical scientist at Goddard Space Flight Center in 2002. He moved to the Earth Science Division in 2009, where he has served in various senior management roles, including as the Earth Observing System (EOS) Senior Project Scientist. In this role, he led the EOS Project Science Office and continued periodic meetings of the EOS Project Scientists, initiated by Michael King during his tenure. Steve expanded these meetings to include representatives of non-EOS Earth observing missions and representatives from Earth Science Mission Operations (ESMO). In addition, Steve was named Deputy Director for Atmospheres in the Earth Science Division in January 2015 and served in this position until July 2024.
      Dr. Steve Platnick Image credit: NASA During his time at NASA, Steve played an integral role in the development, sustainability, and advancement of NASA’s Earth Observing System platforms. From January 2003 – February 2010, Steve served as Deputy Project Scientist for Aqua. In this role, he applied his expertise in theoretical and experimental studies of satellite, aircraft, and ground-based cloud remote sensing to improve algorithms to benefit the data gathered from remote observing systems.
      Taking the Lead to Improve Algorithms
      Steve was actively involved in the Moderate Resolution Imaging Spectroradiometer (MODIS) Science Team, serving as the MODIS Atmosphere Team Lead. Steve helped advance several key components of the MODIS instrument, which flies on NASA’s Terra and Aqua platforms. He led a team that enhanced, maintained, and evaluated MODIS algorithms that support the Level-2 (L2) Cloud Optical/Microphysical Properties components (e.g., COD06 and MYD06) for MODIS on Terra and Aqua. The algorithms were designed to retrieve thermodynamic phase, optical thickness, effective particle radius, and water path for liquid and ice clouds. The team’s work also contributes to L3 products that address cloud mask, aerosols, clouds, and clear sky radiance for data within  1° grids over one-day, eight-day, and one-month repeat cycles. Under Steve’s leadership, the team also developed L2 products (e.g., MODATML2 and MYDATML2) that include essential atmosphere datasets of samples collected at 5–10 km (3–6 mi) that is consistent with L3 products to ease storage requirements of core atmospheric data.
      Steve is also a member of the Suomi-National Polar-orbiting Partnership (Suomi NPP) Atmosphere Team, working on operational cloud optical and microphysical products. In this role, he contributed to algorithm development and refinement for the Cloud Product. In particular, he helped address a critical gap in the Visible Infrared Imaging Radiometer Suite (VIIRS) spectral channel, which was not designed to collect information for carbon dioxide (CO2) slicing and water vapor data in the same way as MODIS. Steve and his colleagues developed a suite of L2 algorithms for the spectral channels that were common to both MODIS and VIIRS to address cloud mask and cloud optical/microphysical properties. Through these efforts, the project has established a continuous cloud data record gathered from both instruments from 2017 to the present.
      Steve also participated in numerous other working groups during the past 30 years. He participated in the Global Energy and Water Exchanges (GEWEX) Cloud Assessment Working Group (2008–present), Arctic Radiation-Cloud-Aerosol-Surface Interaction Experiment (ARCSIX) Science Team (2023–present), ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) Earth–Venture Suborbital (EVS)-2 Science Team (2014–2023), Deep Space Climate Observatory (DSCOVR) Science Team (2014–present), Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Science Team (2014–2023), PACE Science Definition Team, Deputy Chair (2011–2012), Glory Science Team (2010–2014) NASA Observations for Modeling Intercomparison Studies (obs4MIPs) Working Group (2011), Advanced Composition Explorer (ACE) Science Definition Team (2009–2011), and Geostationary Operational Environmental Satellites (GOES) R-series Advanced Baseline Imager (ABI) Cloud Team (2005–2009).
      Steve has also participated in numerous major airborne field campaigns in various roles, including: GSFC Lidar Observation and Validation Experiment (GLOVE, 2025), PACE Postlaunch Airborne eXperiment (PAX, 2024), the Westcoast & Heartland Hyperspectral Microwave Sensor Intensive Experiment (WH2yMSIE, 2024), ORACLES Science Team (2015–2019), Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) Science Team (2011–2015), Tropical Composition, Cloud and Climate Coupling (TC4) Management Team (2007), Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cirrus Experiment (CRYSTAL-FACE) Science Management Team (2002), Southern Africa Fire-Atmosphere Research Initiative (SAFARI, 2000), First ISCCP Regional Experiment (FIRE) Arctic Cloud Experiment (ACE) (1998), Mikulski Archive for Space Telescopes (MAST, 1994), and ACE (1992).
      Supporting Earth Science Communications
      Through his senior leadership roles within ESD Steve has been supportive of the activities of NASA’s Science Support Office (SSO). He has participated in many NASA Science exhibits at both national and international scientific conferences, including serving as a Hyperwall presenter numerous times. He has met with task leaders frequently and has advocated on behalf of the SSO to management at NASA Headquarters, GSFC, and Global Sciences & Technology Inc.
      For The Earth Observer newsletter publication team in particular, Steve replaced Michael King as Acting EOS Senior Project Scientist in June 2008, taking over the authorship of “The Editor’s Corner” beginning with the May–June 2008 issue [Volume 20, Issue 3]. The Acting label was removed beginning with the January–February 2010 issue [Volume 22, Issue 1]. Steve has been a champion of continuing to retain a historical record of NASA meetings to maintain a chronology of advances made by different groups within the NASA Earth Science community. He was supportive of the Executive Editor’s efforts to create a series called “Perspectives on EOS,” which ran from 2008–2011 and told the stories of the early years of the EOS Program from the point of view of those who lived them. He also supported the development of articles to commemorate the 25th and 30th anniversary of The Earth Observer. Later, Steve helped guide the transition of the newsletterfrom a print publication – the November–December 2022 issue was the last printed issue – to fully online by July 2024, a few months after the publication’s 35th anniversary. The Earth Observer team will miss Steve’s keen insight, historical perspective, and encouragement that he has shown through his leadership for the past 85 issues of print and online publications.
      A Career Recognized through Awards and Honors
      Throughout his career, Steve has amassed numerous honors, including the Robert H. Goddard Award for Science: MODIS/VIIRS Cloud Products Science Team (2024) and the William Nordberg Memorial Award for Earth Science in 2023. He received the Verner E. Suomi Award from the American Meteorological Society (AMS) in 2016 and was named an AMS Fellow that same year.
      Steve has received numerous NASA Group Achievement Awards, including for the Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex) Field Campaign Team (2020), Fire Influence of Regional to Global Environments and Air Quality (FIREX-AQ) Field Campaign Team (2020), ORACLES Field Campaign Team (2019), obs4MIPs Working Group (2015), SEAC4RS Field Campaign Team (2015), Advanced Microwave Scanning Radiometer for EOS (AMSR-E) Instrument Recovery Team (2013), Climate Absolute Radiance and Refractivity Observatory (CLARREO) Mission Concept Team (2012), Earth Science Constellation Red Team (2011), Science Mission Directorate ARRA Team (2011), TC4 Team (2009), MODIS Science Data Support Team (2007), Aqua Mission Team (2003), CRYSTAL-FACE Science Team (2003), and SAFARI 2000 International Leadership Team (2002).
      Steve received two NASA Agency Honor Awards – the Exceptional Service Medal in 2015 and the Exceptional Achievement Medal in 2008. He was also part of the NASA Agency Team Excellence Award in 2017 for his work with the Satellite Needs Assessment Team. The Laboratory for Atmospheres honored him with the Best Senior Author Publication Award in 2001 and the Scientific Research Peer Award in 2005.
      Steve received his bachelor’s degree and master’s degree in electrical engineering from Duke University and the University of California, Berkeley, respectively. He earned a Ph.D. in atmospheric sciences from the University of Arizona. He began his career at the Joint Center for Earth Systems Technology (JCET) at University of Maryland Baltimore County in 1996 as a research associate professor. He held this appointment until 2002. Steve has published more than 150 scholarly articles.
      View the full article
  • Check out these Videos

×
×
  • Create New...