Members Can Post Anonymously On This Site
Earthset as Orion Prepares for Outbound Powered Flyby
-
Similar Topics
-
By NASA
4 Min Read NASA Student Challenge Prepares Future Designers for Lunar Missions
At NASA’s Johnson Space Center in Houston, the next generation of lunar explorers and engineers are already hard at work. Some started with sketchbooks and others worked with computer-aided design files, but all had a vision of how design could thrive in extreme environments.
Thanks to NASA’s Student Design Challenge, Spacesuit User Interface Technologies for Students (SUITS), those visions are finding their way into real mission technologies.
NASA’s Spacesuit User Interface Technologies for Students (SUITS) teams test their augmented reality devices at the Mars Rock Yard during the 2025 test week at Johnson Space Center in Houston.
Credit: NASA/James Blair The SUITS challenge invites university and graduate students from across the U.S. to design, build, and test interactive displays integrated into spacesuit helmets, continuing an eight-year tradition of hands-on field evaluations that simulate conditions astronauts may face on the lunar surface. The technology aims to support astronauts with real-time navigation, task management, and scientific data visualization during moonwalks. While the challenge provides a unique opportunity to contribute to future lunar missions, for many participants, SUITS offers something more: a launchpad to aerospace careers.
The challenge fosters collaboration between students in design, engineering, and computer science—mirroring the teamwork needed for real mission development.
NASA SUITS teams test their augmented reality devices at Johnson’s Mars Rock Yard on May 21, 2025.
Credit: NASA/Robert Markowitz SUITS taught me how design can be pushed to solve for the many niche challenges that come with an environment as unique and unforgiving as space.
Keya Shah
Softgoods Engineering Technologist
Keya Shah, now a softgoods engineering technologist in Johnson’s Softgoods Laboratory, discovered her path through SUITS while studying industrial design at the Rhode Island School of Design (RISD).
“SUITS taught me how design can be pushed to solve for the many niche challenges that come with an environment as unique and unforgiving as space,” Shah said. “Whether applied to digital or physical products, it gave me a deep understanding of how intuitive and thoughtfully designed solutions are vital for space exploration.”
As chief designer for her team’s 2024 Mars spacewalk project, Shah led more than 30 designers and developers through rounds of user flow mapping, iterative prototyping, and interface testing.
“Design holds its value in making you think beyond just the ‘what’ to solve a problem and figure out ‘how’ to make the solution most efficient and user-oriented,” she said, “SUITS emphasized that, and I continually strive to highlight these strengths with the softgoods I design.”
Shah now works on fabric-based flight hardware at Johnson, including thermal and acoustic insulation blankets, tool stowage packs, and spacesuit components.
“There’s a very exciting future in human space exploration at the intersection of softgoods with hardgoods and the digital world, through innovations like smart textiles, wearable technology, and soft robotics,” Shah said. “I look forward to being part of it.”
Softgoods Engineering Technologist Keya Shah evaluates the SUITS interface design during the 2025 test week.
Credit: NASA/James Blair For RISD alumnus Felix Arwen, now a softgoods engineer at Johnson, the challenge offered invaluable hands-on experience. “It gave me the opportunity to take projects from concept to a finished, tested product—something most classrooms didn’t push me to do,” Arwen said.
Serving as a technical adviser and liaison between SUITS designers and engineers, Arwen helped bridge gaps between disciplines—a skill critical to NASA’s team-based approach.
“It seems obvious now, but I didn’t always realize how much design contributes to space exploration,” Arwen said. “The creative, iterative process is invaluable. Our work isn’t just about aesthetics—it’s about usability, safety, and mission success.”
Arwen played a key role in expanding RISD’s presence across multiple NASA Student Design Challenges, including the Human Exploration Rover Challenge, the Micro-g Neutral Buoyancy Experiment Design Teams, and the Breakthrough, Innovative, and Game-changing Idea Challenge. The teams, often partnering with Brown University, demonstrated how a design-focused education can uniquely contribute to solving complex engineering problems.
“NASA’s Student Design Challenges gave me the structure to focus my efforts on learning new skills and pursuing projects I didn’t even know I’d be interested in,” he said.
It seems obvious now, but I didn’t always realize how much design contributes to space exploration. The creative, iterative process is invaluable. Our work isn’t just about aesthetics—it’s about usability, safety, and mission success.
Felix Arwen
Softgoods Engineer
Softgoods Engineer Felix Arwen tests hardware while wearing pressurized gloves inside a vacuum glovebox. Both Arwen and Shah remain involved with SUITS as mentors and judges, eager to support the next generation of space designers.
Their advice to current participants? Build a portfolio that reflects your passion, seek opportunities outside the classroom, and do not be afraid to apply for roles that might not seem to fit a designer.
“While the number of openings for a designer at NASA might be low, there will always be a need for good design work, and if you have the portfolio to back it up, you can apply to engineering roles that just might not know they need you yet,” Arwen said.
SUIT teams test their augmented reality devices during nighttime activities on May 21, 2025.
Credit: NASA/Robert MarkowitzNASA/Robert Markowitz As NASA prepares for lunar missions, the SUITS challenge continues to bridge the gap between student imagination and real-world innovation, inspiring a new wave of space-ready problem-solvers.
“Design pushes you to consistently ask ‘what if?’ and reimagine what’s possible,” Shah said. “That kind of perspective will always stay core to NASA.”
Are you interested in joining the next NASA SUITS challenge? Find more information here.
The next challenge will open for proposals at the end of August 2025.
About the Author
Sumer Loggins
Share
Details
Last Updated Jun 10, 2025 Related Terms
Johnson Space Center Spacesuits STEM Engagement at NASA Explore More
4 min read Laser Focused: Keith Barr Leads Orion’s Lunar Docking Efforts
Article 5 hours ago 3 min read NASA, ISRO Research Aboard Fourth Private Astronaut Mission to Station
Article 6 days ago 4 min read Future Engineers Shine at NASA’s 2025 Lunabotics Robotics Competition
Article 7 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Keith Barr was born only months before the historic Apollo 11 landing in 1969. While he was too young to witness that giant leap for mankind, the moment sparked a lifelong fascination that set him on a path to design technology that will carry astronauts farther into space than ever before.
Today, Barr serves as a chief engineer and Orion Docking Lidar Field Test lead at NASA’s Johnson Space Center in Houston. He spearheads the field testing of docking lidars for the Orion spacecraft, which will carry astronauts to the Moon on the Artemis III mission. These lidars are critical to enabling Orion to autonomously dock with the human landing system on Artemis III — the mission that will land astronauts near the Moon’s South Pole for the first time in history.
Keith Barr prepares for a wind lidar test flight in one of the U.S. Navy’s Twin Otter aircraft in support of the AC-130 Gunship lidar program. “The Mercury, Gemini, and Apollo missions are some of humanity’s greatest technical achievements,” he said. “To be part of the Artemis chapter is a profound honor.”
In recognition of his contributions, Barr was selected as a NASA Space Flight Awareness Honoree in 2025 for his exceptional dedication to astronaut safety and mission success. Established in 1963, NASA’s Space Flight Awareness Program celebrates individuals who play a vital role in supporting human spaceflight. The award is one of the highest honors presented to the agency’s workforce.
With a career spanning over 25 years at Lockheed Martin, Barr is now recognized as a renowned leader in lidar systems—technologies that use laser light to measure distances. He has led numerous lidar deployments and test programs across commercial aviation, wind energy, and military markets.
In 2019, Barr and his team began planning a multi-phase field campaign to validate Orion’s docking lidars under real-world conditions. They repurposed existing hardware, developed a drone-based simulation system, and conducted dynamic testing at Lockheed Martin facilities in Littleton, Colorado, and Santa Cruz, California.
In Littleton, the team conducted two phases of testing at the Space Operations Simulation Center, evaluating performance across distances ranging from 50 meters to docking. At the Santa Cruz facility, they began much farther out at 6,500 meters and tested down to 10 meters, just before the final docking phase.
Of all these efforts, Barr is especially proud of the ingenuity behind the Santa Cruz tests. To simulate a spacecraft docking scenario, he repurposed a lidar pointing gimbal and test trailer from previous projects and designed a drone-based test system with unprecedented accuracy.
“An often-overlooked portion of any field campaign is the measurement and understanding of truth,” he said. “The system I designed allowed us to record lidar and target positions with accuracy never before demonstrated in outdoor docking lidar testing.”
Testing at the Santa Cruz Facility in California often began before sunrise and continued past sunset to complete the full schedule. Here, a drone hovers at the 10-meter station-keeping waypoint as the sun sets in the background. The test stand at the Santa Cruz Facility had once been used for Agena upper stage rockets—a key piece of hardware used during the Gemini program in the 1960s. “We found a Gemini-era sticker on the door of the test bunker—likely from the time of Gemini VIII, the first space docking completed by Neil Armstrong and David Scott,” Barr said. “This really brought it home to me that we are simply part of the continuing story.”
Keith Barr operates a wind lidar during a live fire test in an AC-130 Gunship aircraft. He is seated next to an open door while flying at 18,000 feet over New Mexico in January 2017. Barr spent more than two decades working on WindTracer—a ground-based Doppler wind lidar system used to measure wind speed and turbulence at airports, wind farms, and in atmospheric research.
The transition from WindTracer to Orion presented new challenges. “Moving onto a space program has a steep learning curve, but I have found success in this new arena and I have learned that I can adapt and I shouldn’t be nervous about the unknown,” he said. “Learning new technologies, applications, and skills keeps my career fun and exciting and I look forward to the next giant leap—whatever it is.”
Keith Barr stands beside the Piper Cherokee 6 aircraft during his time as a captain for New England Airlines. Barr’s passion for flight moves in tandem with his pursuit of innovation. Over his career, he has flown over 1.6 million miles on commercial airlines. “I often joke that I’m on my fourth trip to the Moon and back—just in economy class,” he said.
Before specializing in lidar systems, Barr flew as a captain and assistant chief pilot at New England Airlines, operating small aircraft like the Piper Cherokee 6 and the Britten-Norman Islander.
He also worked at the National Center for Atmospheric Research, contributing to several NASA airborne missions aimed at unraveling the science behind global ozone depletion.
Keith Barr boards NASA’s DC-8 aircraft at Ames Research Center in California before heading to Salina, Kansas, to support a 1996 research mission studying how airplane emissions affect clouds and the atmosphere. As Barr reflects on his journey, he hopes to pass along a sense of legacy to the Artemis Generation. “We are in the process of writing the next chapter of human space exploration history, and our actions, successes, and troubles will be studied and analyzed well into the future,” he said. “We all need to consider how our actions will shape history.”
Explore More
3 min read NASA, ISRO Research Aboard Fourth Private Astronaut Mission to Station
Article 6 days ago 3 min read I Am Artemis: Lili Villarreal
Lili Villarreal fell in love with space exploration from an early age when her and…
Article 6 days ago 6 min read NASA Tests New Ways to Stick the Landing in Challenging Terrain
Article 2 weeks ago View the full article
-
By NASA
During the Piston Powered Auto-Rama at the I-X Center in Cleveland on Monday, March 31, 2025, NASA Glenn Research Center’s Salvadore Oriti, right, discusses the technology behind free-piston Stirling cycle machines. Credit: NASA/Kristin Jansen NASA Glenn Research Center’s work in power and propulsion was on full display at the Piston Powered Auto-Rama at the I-X Center in Cleveland, March 28-30. The event is the largest indoor showcase of cars, trucks, motorcycles, tractors, and other engine-powered vehicles.
Center staff introduced guests to NASA’s Stirling engine technology, a free-piston Stirling power convertor that set records for accomplishing 14 years of maintenance-free operation at NASA Glenn in 2020. Attendees also explored how NASA is using space nuclear power to reach the deepest, dustiest, darkest, and most distant regions of our solar system through radioisotope power systems.
More than 57,500 people attended the event.
Return to Newsletter Explore More
1 min read NASA Glenn Engineer Highlights Research for Hubble Servicing Missions
Article 31 mins ago 1 min read NASA Glenn Hosts Slovenian Delegation and Ohio Governor’s Office
Article 31 mins ago 1 min read Specialty NASA Glenn License Plates Available
Article 32 mins ago View the full article
-
By European Space Agency
Video: 00:02:14 On 12 March 2025, ESA’s Hera spacecraft soared just 5000 km above Mars and passed within 300 km of its distant moon, Deimos. Captured by Hera’s 1020x1020 pixel Asteroid Framing Camera, this video sequence offers a rare view of the red planet and its enigmatic moon. The original greyscale images have been colour-enhanced based on known surface features.
View the full article
-
By NASA
NASA’s Lucy spacecraft is 6 days and less than 50 million miles (80 million km) away from its second close encounter with an asteroid; this time, the small main belt asteroid Donaldjohanson.
Download high-resolution video and images from NASA’s Scientific Visualization Studio.
NASA/Dan Gallagher This upcoming event represents a comprehensive “dress rehearsal” for Lucy’s main mission over the next decade: the exploration of multiple Trojan asteroids that share Jupiter’s orbit around the Sun. Lucy’s first asteroid encounter – a flyby of the tiny main belt asteroid Dinkinesh and its satellite, Selam, on Nov. 1, 2023 – provided the team with an opportunity for a systems test that they will be building on during the upcoming flyby.
Lucy’s closest approach to Donaldjohanson will occur at 1:51pm EDT on April 20, at a distance of 596 miles (960 km). About 30 minutes before closest approach, Lucy will orient itself to track the asteroid, during which its high-gain antenna will turn away from Earth, suspending communication. Guided by its terminal tracking system, Lucy will autonomously rotate to keep Donaldjohanson in view. As it does this, Lucy will carry out a more complicated observing sequence than was used at Dinkinesh. All three science instruments – the high-resolution greyscale imager called L’LORRI, the color imager and infrared spectrometer called L’Ralph, and the far infrared spectrometer called L’TES – will carry out observation sequences very similar to the ones that will occur at the Trojan asteroids.
However, unlike with Dinkinesh, Lucy will stop tracking Donaldjohanson 40 seconds before the closest approach to protect its sensitive instruments from intense sunlight.
“If you were sitting on the asteroid watching the Lucy spacecraft approaching, you would have to shield your eyes staring at the Sun while waiting for Lucy to emerge from the glare. After Lucy passes the asteroid, the positions will be reversed, so we have to shield the instruments in the same way,” said encounter phase lead Michael Vincent of Southwest Research Institute (SwRI) in Boulder, Colorado. “These instruments are designed to photograph objects illuminated by sunlight 25 times dimmer than at Earth, so looking toward the Sun could damage our cameras.”
Fortunately, this is the only one of Lucy’s seven asteroid encounters with this challenging geometry. During the Trojan encounters, as with Dinkinesh, the spacecraft will be able to collect data throughout the entire encounter.
After closest approach, the spacecraft will “pitch back,” reorienting its solar arrays back toward the Sun. Approximately an hour later, the spacecraft will re-establish communication with Earth.
“One of the weird things to wrap your brain around with these deep space missions is how slow the speed of light is,” continued Vincent. “Lucy is 12.5 light minutes away from Earth, meaning it takes that long for any signal we send to reach the spacecraft. Then it takes another 12.5 minutes before we get Lucy’s response telling us we were heard. So, when we command the data playback after closest approach, it takes 25 minutes from when we ask to see the pictures before we get any of them to the ground.”
Once the spacecraft’s health is confirmed, engineers will command Lucy to transmit the science data from the encounter back to Earth, which is a process that will take several days.
Donaldjohanson is a fragment from a collision 150 million years ago, making it one of the youngest main belt asteroids ever visited by a spacecraft.
“Every asteroid has a different story to tell, and these stories weave together to paint the history of our solar system,” said Tom Statler, Lucy mission program scientist at NASA Headquarters in Washington. “The fact that each new asteroid we visit knocks our socks off means we’re only beginning to understand the depth and richness of that history. Telescopic observations are hinting that Donaldjohanson is going to have an interesting story, and I’m fully expecting to be surprised – again.”
NASA’s Goddard Space Flight Center in Greenbelt, Maryland, designed and built the L’Ralph instrument and provides overall mission management, systems engineering and safety and mission assurance for Lucy. Hal Levison of SwRI’s office in Boulder, Colorado, is the principal investigator. SwRI, headquartered in San Antonio, also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft, designed the original orbital trajectory and provides flight operations. Goddard and KinetX Aerospace are responsible for navigating the Lucy spacecraft. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, designed and built the L’LORRI (Lucy Long Range Reconnaissance Imager) instrument. Arizona State University in Tempe, Arizona, designed and build the L’TES (Lucy Thermal Emission Spectrometer) instrument. Lucy is the thirteenth mission in NASA’s Discovery Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama.
By Katherine Kretke, Southwest Research Institute
Media Contact:
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Apr 14, 2025 EditorMadison OlsonContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
Lucy Goddard Space Flight Center Planetary Science Explore More
4 min read New Modeling Assesses Age of Next Target Asteroid for NASA’s Lucy
Article 4 weeks ago 3 min read NASA’s Lucy Spacecraft Takes Its 1st Images of Asteroid Donaldjohanson
Article 2 months ago 3 min read NASA’s Lucy Asteroid Target Gets a Name
Article 2 years ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.