Jump to content

NASA Builds on Investments in US Small Business’ Beneficial Technologies


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Robert Williams is a senior mechanical design engineer and the structures subject matter expert in the Engineering and Test Directorate at NASA’s Stennis Space Center.NASA/Danny Nowlin Living up to, and maintaining, the standard of excellence associated with NASA is what drives Robert Williams at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.
      A native of Gulfport, Mississippi, Williams said he has had the opportunity to work with and be mentored by “some truly exceptional” engineers, some with careers reaching back to the Apollo era.
      “I cannot overstate the vast amount of practical knowledge and experience we have at NASA Stennis,” Williams said. “We know how to get things done, and if we do not know, I can guarantee we will figure it out.”
      Williams is a senior mechanical design engineer and the structures subject matter expert for the NASA Stennis Engineering and Test Directorate.
      He provides technical oversight related to engineering mechanics and machine design by reviewing analysis and design packages from NASA Stennis contractors and NASA engineers for ongoing projects.
      Williams also supports projects by performing analysis and creating detailed models, drawings, and system level designs, mostly at the versatile four-stand E Test Complex, where NASA Stennis has 12 active test cells capable of various component, engine, and stage test activities to support the agency and commercial companies.
      In support of NASA’s Artemis campaign of returning astronauts to the Moon, Williams also has reviewed structural and pipe stress analysis for the exploration upper stage project that will test a new SLS (Space Launch System) rocket stage to fly on future Artemis missions.
      He performed similar review work for Green Run testing of the SLS core stage at NASA Stennis ahead of the successful launch of the Artemis I uncrewed mission around the Moon. 
      Overall, Williams has been a part of projects on every test stand throughout more than eight years with NASA and five years as a contractor. He has been tasked with solving challenging problems, both individually and as a part of teams.
      There were times when he was not sure if he or the team would be able to solve the problem or address it effectively, but each time, the NASA Stennis team found a way.
      “Over the span of my career, I have yet to be in a situation where the challenge was not met,” he said.
      The opportunity to work with “pretty much all the major space companies in some capacity” is most interesting to Williams. “The best thing is that being a small organization within a relatively small center, there are always opportunities to develop new skills and capabilities to help fill a need or gap,” he said.
      No matter the task, Williams looks forward to supporting space innovation while living up to, and maintaining, the standard of excellence associated with NASA for the benefit of all. 
      Explore More
      3 min read Lagniappe for April 2025
      Article 4 weeks ago 4 min read Lagniappe for March 2025
      Article 2 months ago 6 min read NASA Stennis Flashback: Learning About Rocket Engine Exhaust for Safe Space Travel
      Article 2 months ago View the full article
    • By NASA
      X-ray: NASA/CXC/Northwestern Univ./F. Yusef-Zadeh et al; Radio: NRF/SARAO/MeerKat; Image Processing: NASA/CXC/SAO/N. Wolk Astronomers have discovered a likely explanation for a fracture in a huge cosmic “bone” in the Milky Way galaxy, using NASA’s Chandra X-ray Observatory and radio telescopes.
      The bone appears to have been struck by a fast-moving, rapidly spinning neutron star, or pulsar. Neutron stars are the densest known stars and form from the collapse and explosion of massive stars. They often receive a powerful kick from these explosions, sending them away from the explosion’s location at high speeds.
      Enormous structures resembling bones or snakes are found near the center of the galaxy. These elongated formations are seen in radio waves and are threaded by magnetic fields running parallel to them. The radio waves are caused by energized particles spiraling along the magnetic fields.
      X-ray: NASA/CXC/Northwestern Univ./F. Yusef-Zadeh et al; Radio: NRF/SARAO/MeerKat; Image Processing: NASA/CXC/SAO/N. Wolk This new image shows one of these cosmic “bones” called G359.13142-0.20005 (G359.13 for short), with X-ray data from Chandra (colored blue) and radio data from the MeerKAT radio array in South Africa (colored gray). Researchers also refer to G359.13 as the Snake.
      Examining this image closely reveals the presence of a break, or fracture, in the otherwise continuous length of G359.13 seen in the image. The combined X-ray and radio data provides clues to the cause of this fracture.
      Astronomers have now discovered an X-ray and radio source at the location of the fracture, using the data from Chandra and MeerKAT and the National Science Foundation’s Very Large Array. A likely pulsar responsible for these radio and X-ray signals is labeled. A possible extra source of X-rays located near the pulsar may come from electrons and positrons (the anti-matter counterparts to electrons) that have been accelerated to high energies.
      The researchers think the pulsar likely caused the fracture by smashing into G359.13 at a speed between one million and two million miles per hour. This collision distorted the magnetic field in the bone, causing the radio signal to also become warped.
      At about 230 light-years long, G359.13 is one of the longest and brightest of these structures in the Milky Way. To put this into context, there are more than 800 stars within that distance from Earth. G359.13 is located about 26,000 light-years from Earth, near the center of the Milky Way.
      A paper describing these results appeared in the May 2024 issue of the Monthly Notices of the Royal Astronomical Society and is available here. The authors of the study are Farhad Yusuf-Zadeh (Northwestern University), Jun-Hui Zhao (Center for Astrophysics | Harvard & Smithsonian), Rick Arendt (University of Maryland, Baltimore County), Mark Wardle (Macquarie University, Australia), Craig Heinke (University of Alberta), Marc Royster (College of the Sequoias, California), Cornelia Lang (University of Iowa), and Joseph Michail (Northwestern).
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Learn More
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features two composite images of a long, thin, cosmic structure. With the structure’s vertical orientation, seemingly fragile dimensions, and pale grey color against the blackness of space, the images resemble medical X-rays of a long, thin, bone. The main image shows the structure in its entirety. The inset image is an annotated close-up highlighting an apparent fracture in the bone-like structure.
      The structure, called G359.13, or “The Snake”, is a Galactic Center Filament. These filament formations are threaded by parallel magnetic fields, and spiraling, energized particles. The particles cause radio waves, which can be detected by radio arrays, in this case by the MeerKAT array in South Africa.
      In the first composite image, the largely straight filament stretches from the top to the bottom of the vertical frame. At each end of the grey filament is a hazy grey cloud. The only color in the image is neon blue, found in a few specks which dot the blackness surrounding the structure. The blue represents X-rays seen by NASA’s Chandra X-ray Observatory.
      In the annotated close-up, one such speck appears to be interacting with the structure itself. This is a fast-moving, rapidly spinning neutron star, otherwise known as a pulsar. Astronomers believe that this pulsar has struck the filament halfway down its length, distorting the magnetic field and radio signal.
      In both images, this distortion resembles a small break, or spur, in the bone-like filament.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      3 Min Read NASA Invests in Future STEM Workforce Through Space Grant Awards 
      NASA is awarding up to $870,000 annually to 52 institutions across the United States, the District of Columbia, and Puerto Rico over the next four years. The investments aim to create opportunities for the next generation of innovators by supporting workforce development, science, technology, engineering and math education, and aerospace collaboration nationwide. 
      The Space Grant College and Fellowship Program (Space Grant), established by Congress in 1989, is a workforce development initiative administered through NASA’s Office of STEM Engagement (OSTEM). The program’s mission is to produce a highly skilled workforce prepared to advance NASA’s mission and bolster the nation’s aerospace sector. 
      “The Space Grant program exemplifies NASA’s commitment to cultivating a new generation of STEM leaders,” said Torry Johnson, deputy associate administrator of the STEM Engagement Program at NASA Headquarters in Washington. “By partnering with institutions across the country, we ensure that students have the resources, mentorship, and experiences needed to thrive in the aerospace workforce.” 
      The following is a complete list of awardees: 
      University of Alaska, Fairbanks  University of Alabama, Huntsville  University of Arkansas, Little Rock  University of Arizona  University of California, San Diego  University of Colorado, Boulder  University of Hartford, Connecticut  American University, Washington, DC  University of Delaware  University of Central Florida  Georgia Institute of Technology  University of Hawaii, Honolulu  Iowa State University, Ames  University of Idaho, Moscow  University of Illinois, Urbana-Champaign  Purdue University, Indiana  Wichita State University, Kansas  University of Kentucky, Lexington  Louisiana State University and A&M College  Massachusetts Institute of Technology  Johns Hopkins University, Maryland  Maine Space Grant Consortium  University of Michigan, Ann Arbor  University of Minnesota  Missouri University of Science and Technology  University of Mississippi  Montana State University, Bozeman  North Carolina State University  University of North Dakota, Grand Forks  University of Nebraska, Omaha  University of New Hampshire, Durham  Rutgers University, New Brunswick, New Jersey  New Mexico State University  Nevada System of Higher Education  Cornell University, New York  Ohio Aerospace Institute  University of Oklahoma  Oregon State University  Pennsylvania State University  University of Puerto Rico  Brown University, Rhode Island  College of Charleston, South Carolina  South Dakota School of Mines & Technology  Vanderbilt University, Tennessee  University of Texas, Austin  University of Utah, Salt Lake City  Old Dominion University Research Foundation, Virginia  University of Vermont, Burlington  University of Washington, Seattle  Carthage College, Wisconsin  West Virginia University  University of Wyoming  Space Grant operates through state-based consortia, which include universities, university systems, associations, government agencies, industries, and informal education organizations engaged in aerospace activities. Each consortium’s lead institution coordinates efforts within its state, expanding opportunities for students and researchers while promoting collaboration with NASA and aerospace-related industries nationwide. 
      To learn more about NASA’s missions, visit: https://www.nasa.gov/ 

      View the full article
    • By NASA
      Inside a laboratory in the Space Systems Processing Facility at NASA’s Kennedy Space Center in Florida, a payload implementation team member harvests ‘Outredgeous’ romaine lettuce growing in the Advanced Plant Habitat ground unit on Thursday, April 24, 2025. The harvest is part of the ground control work supporting Plant Habitat-07, which launched to the International Space Station aboard NASA’s SpaceX 31st commercial resupply services mission.
      The experiment focuses on studying how optimal and suboptimal moisture conditions affect plant growth, nutrient content, and the plant microbiome in microgravity. Research like this continues NASA’s efforts to grow food that is not only safe but also nutritious for astronauts living and working in the harsh environment of space.
      The ‘Outredgeous’ romaine lettuce variety was first grown aboard the space station in 2014, and Plant Habitat-07 builds on that legacy, using the station’s Advanced Plant Habitat to expand understanding of how plants adapt to spaceflight conditions. Findings from this work will support future long-duration missions to the Moon, Mars, and beyond, and could also lead to agricultural advances here on Earth.
      Image credit: NASA/Kim Shiflett
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Gary Laier, center liaison for the Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) program at NASA’s Armstrong Flight Research Center in Edwards, California, teaches students about aeronautics during Aero Fair at Tropico Middle School in Rosamond, California, on April 9, 2025.NASA/Genaro Vavuris When curiosity takes flight, learning knows no bounds. The impact of supporting STEM education extends far beyond the classroom, shaping the future of innovation and exploration. NASA Engages is the agency’s outreach website that connects NASA experts and resources with communities, educators, and students across the country. Led by NASA’s Office of STEM Engagement, the platform fosters collaboration between educators, organizations, and NASA employees to inspire the next generation.
      Giovanna Camacho, Pathways systems engineering intern from NASA’s Armstrong Flight Research Center in Edwards, California, teaches students about aeronautics during Aero Fair at Tropico Middle School in Rosamond, California, on April 9, 2025.NASA/Genaro Vavuris Bringing NASA to the Classroom
      NASA employees dedicate their time and expertise through NASA Engages, whether they’re passionate about robotics, flight research, or inspiring young minds to pursue STEM careers. One example of this is Aero Fair, a STEM program led by the California Office of STEM Engagement at NASA’s Armstrong Flight Research Center in Edwards, California. This initiative brings aeronautics directly to students, with NASA Armstrong professionals visiting classrooms – both in person and virtually – to engage students during three-day experiences that allow them to learn about aeronautics, meet NASA professionals, and explore potential career paths they might not have previously considered.
      “When volunteers step up to help inspire and facilitate learning in the classroom, they are benefiting not only the students they interact with, but our future generation as well,” says Giovanna Camacho, Pathways systems engineering intern at NASA Armstrong, who volunteered at the event.
      Chloe Day, a student at Tropico Middle School in Rosamond, California, said Aero Fair inspired her to consider a STEM career. “When NASA employees were talking about what they do and how they help our world today, it made me feel like I want to do it too.”
      Educators can request an Aero Fair experience through NASA’s STEM Gateway. These programs “give students a chance to see themselves as real problem-solvers and innovators,” said Shauna Tinich, a Tropico Middle School teacher. “The most beneficial part of Aero Fair is the real-world connection to STEM. The connection to NASA makes it real and exciting for the students.”
      Students from Tropico Middle School in Rosamond, California, build their own paper planes as part of a project during NASA Aero Fair on April 9, 2025.NASA/Genaro Vavuris A Program for Impact
      The NASA Engages website matches outreach opportunities to employee skills and interests, while educators and community organizations can use the website to request public speakers, classroom visits, and educational support at events.
      For many volunteers, the experience is just as inspiring as it is for the students. “Every time I volunteer, I walk out inspired,” Camacho said. “It motivates me to continue my pursuit of making a difference.”
      Gary Laier, center liaison for the Small Business Innovation Research and Small Business Technology Transfer programs at NASA Armstrong, and Aero Fair volunteer, agreed: “It’s a rewarding experience for students, teachers, and NASA volunteers alike. I enjoy the opportunity to inspire youth and get them excited about their futures.”
      By participating in outreach activities like Aero Fair, career panels, or events, NASA employees not only help ignite curiosity and provide knowledge to students and the community but also strengthen NASA’s connection to the communities it serves.
      Gary Laier, center liaison for the Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) program at NASA’s Armstrong Flight Research Center in Edwards, California, teaches students about aeronautics during Aero Fair at Tropico Middle School in Rosamond, California, on April 9, 2025.NASA/Genaro Vavuris Explore NASA STEM Opportunities
      Educators, organizations, and community groups can connect with NASA in two ways. Through NASA Engages, external groups can request NASA support for their own events – such as inviting a NASA speaker or arranging classroom visits and providing outreach materials. Meanwhile, NASA STEM Gateway provides opportunities for individuals to participate in NASA-developed STEM events, internships, and programs like Aero Fair. To request NASA participation in an event or to learn more about NASA STEM opportunities, visit https://stemgateway.nasa.gov/nasaengages/s/.
      Giovanna Camacho, Pathways systems engineering intern at NASA’s Armstrong Flight Research Center in Edwards, California, teaches students about aeronautics during Aero Fair at Tropico Middle School in Rosamond, California, on April 9, 2025.NASA/Genaro Vavuris Share
      Details
      Last Updated Apr 30, 2025 Related Terms
      Armstrong Flight Research Center Learning Resources NASA STEM Projects STEM Engagement at NASA Explore More
      7 min read ¿Qué es una caminata espacial? (Grados 5.o a 8.o)
      Article 4 hours ago 4 min read Robots, Rovers, and Regolith: NASA Brings Exploration to FIRST Robotics 2025 
      Article 1 day ago 3 min read NASA Tracks Snowmelt to Improve Water Management
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...