Members Can Post Anonymously On This Site
Scientists choose first Mars samples worthy of return to Earth
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ICON’s next generation Vulcan construction system 3D printing a simulated Mars habitat for NASA’s Crew Health and Performance Exploration Analog (CHAPEA) missions.ICON One of the keys to a sustainable human presence on distant worlds is using local, or in-situ, resources which includes building materials for infrastructure such as habitats, radiation shielding, roads, and rocket launch and landing pads. NASA’s Space Technology Mission Directorate is leveraging its portfolio of programs and industry opportunities to develop in-situ, resource capabilities to help future Moon and Mars explorers build what they need. These technologies have made exciting progress for space applications as well as some impacts right here on Earth.
The Moon to Mars Planetary Autonomous Construction Technology (MMPACT) project, funded by NASA’s Game Changing Development program and managed at the agency’s Marshall Space Flight Center in Huntsville, Alabama, is exploring applications of large-scale, robotic 3D printing technology for construction on other planets. It sounds like the stuff of science fiction, but demonstrations using simulated lunar and Martian surface material, known as regolith, show the concept could become reality.
Lunar 3D printing prototype.Contour Crafting With its partners in industry and academic institutions, MMPACT is developing processing technologies for lunar and Martian construction materials. The binders for these materials, including water, could be extracted from the local regolith to reduce launch mass. The regolith itself is used as the aggregate, or granular material, for these concretes. NASA has evaluated these materials for decades, initially working with large-scale 3D printing pioneer, Dr. Behrokh Khoshnevis, a professor of civil, environmental and astronautical engineering at the University of Southern California in Los Angeles.
Khoshnevis developed techniques for large-scale extraterrestrial 3D printing under the NASA Innovative Advanced Concepts (NIAC) program. One of these processes is Contour Crafting, in which molten regolith and a binding agent are extruded from a nozzle to create infrastructure layer by layer. The process can be used to autonomously build monolithic structures like radiation shielding and rocket landing pads.
Continuing to work with the NIAC program, Khoshnevis also developed a 3D printing method called selective separation sintering, in which heat and pressure are applied to layers of powder to produce metallic, ceramic, or composite objects which could produce small-scale, more-precise hardware. This energy-efficient technique can be used on planetary surfaces as well as in microgravity environments like space stations to produce items including interlocking tiles and replacement parts.
While NASA’s efforts are ultimately aimed at developing technologies capable of building a sustainable human presence on other worlds, Khoshnevis is also setting his sights closer to home. He has created a company called Contour Crafting Corporation that will use 3D printing techniques advanced with NIAC funding to fabricate housing and other infrastructure here on Earth.
Another one of NASA’s partners in additive manufacturing, ICON of Austin, Texas, is doing the same, using 3D printing techniques for home construction on Earth, with robotics, software, and advanced material.
Construction is complete on a 3D-printed, 1,700-square-foot habitat that will simulate the challenges of a mission to Mars at NASA’s Johnson Space Center in Houston, Texas. The habitat will be home to four intrepid crew members for a one-year Crew Health and Performance Analog, or CHAPEA, mission. The first of three missions begins in the summer of 2023. The ICON company was among the participants in NASA’s 3D-Printed Habitat Challenge, which aimed to advance the technology needed to build housing in extraterrestrial environments. In 2021, ICON used its large-scale 3D printing system to build a 1,700 square-foot simulated Martian habitat that includes crew quarters, workstations and common lounge and food preparation areas. This habitat prototype, called Mars Dune Alpha, is part of NASA’s ongoing Crew Health and Performance Exploration Analog, a series of Mars surface mission simulations scheduled through 2026 at NASA’s Johnson Space Center in Houston.
With support from NASA’s Small Business Innovation Research program, ICON is also developing an Olympus construction system, which is designed to use local resources on the Moon and Mars as building materials.
The ICON company uses a robotic 3D printing technique called Laser Vitreous Multi-material Transformation, in which high-powered lasers melt local surface materials, or regolith, that then solidify to form strong, ceramic-like structures. Regolith can similarly be transformed to create infrastructure capable of withstanding environmental hazards like corrosive lunar dust, as well as radiation and temperature extremes.
The company is also characterizing the gravity-dependent properties of simulated lunar regolith in an experiment called Duneflow, which flew aboard a Blue Origin reusable suborbital rocket system through NASA’s Flight Opportunities program in February 2025. During that flight test, the vehicle simulated lunar gravity for approximately two minutes, enabling ICON and researchers from NASA to compare the behavior of simulant against real regolith obtained from the Moon during an Apollo mission.
Learn more: https://www.nasa.gov/space-technology-mission-directorate/
Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More …
Space Technology Mission Directorate
NASA Innovative Advanced Concepts
STMD Solicitations and Opportunities
Technology
Share
Details
Last Updated May 13, 2025 EditorLoura Hall Related Terms
Space Technology Mission Directorate NASA Innovative Advanced Concepts (NIAC) Program Technology View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This picture of Mars is a composite of several images captured by Europa Clipper’s thermal imager on March 1. Bright regions are relatively warm, with temperatures of about 32 degrees Fahrenheit (0 degrees Celsius). Darker areas are colder. The darkest region at the top is the northern polar cap and is about minus 190 F (minus 125 C).NASA/JPL-Caltech/ASU Headed for Jupiter’s moon Europa, the spacecraft did some sightseeing, using a flyby of Mars to calibrate its infrared imaging instrument.
On its recent swing by Mars, NASA’s Europa Clipper took the opportunity to capture infrared images of the Red Planet. The data will help mission scientists calibrate the spacecraft’s thermal imaging instrument so they can be sure it’s operating correctly when Europa Clipper arrives at the Jupiter system in 2030.
The mission’s sights are set on Jupiter’s moon Europa and the global ocean hidden under its icy surface. A year after slipping into orbit around Jupiter, Europa Clipper will begin a series of 49 close flybys of the moon to investigate whether it holds conditions suitable for life.
A key element of that investigation will be thermal imaging — global scans of Europa that map temperatures to shed light on how active the surface is. Infrared imaging will reveal how much heat is being emitted from the moon; warmer areas of the ice give off more energy and indicate recent activity.
The imaging also will tell scientists where the ocean is closest to the surface. Europa is crisscrossed by dramatic ridges and fractures, which scientists believe are caused by ocean convection pulling apart the icy crust and water rising up to fill the gaps.
This picture of Mars is a colorized composite of several images captured by Europa Clipper’s thermal imager. Warm colors represent relatively warm temperatures; red areas are about 32 degrees Fahrenheit (0 degrees Celsius), and purple regions are about minus 190 F (minus 125 C).NASA/JPL-Caltech/ASU “We want to measure the temperature of those features,” said Arizona State University’s Phil Christensen, principal investigator of Europa Clipper’s infrared camera, called the Europa Thermal Imaging System (E-THEMIS). “If Europa is a really active place, those fractures will be warmer than the surrounding ice where the ocean comes close to the surface. Or if water erupted onto the surface hundreds to thousands of years ago, then those surfaces could still be relatively warm.”
Why Mars
On March 1, Europa Clipper flew just 550 miles (884 kilometers) above the surface of Mars in order to use the planet’s gravitational pull to reshape the spacecraft’s trajectory. Ultimately, the assist will get the mission to Jupiter faster than if it made a beeline for the gas giant, but the flyby also offered a critical opportunity for Europa Clipper to test E-THEMIS.
For about 18 minutes on March 1, the instrument captured one image per second, yielding more than a thousand grayscale pictures that were transmitted to Earth starting on May 5. After compiling these images into a global snapshot of Mars, scientists applied color, using hues with familiar associations: Warm areas are depicted in red, while colder areas are shown as blue.
By comparing E-THEMIS images with those made from established Mars data, scientists can judge how well the instrument is working.
“We wanted no surprises in these new images,” Christensen said. “The goal was to capture imagery of a planetary body we know extraordinarily well and make sure the dataset looks exactly the way it should, based on 20 years of instruments documenting Mars.”
NASA’s Mars Odyssey orbiter, launched in 2001, carries a sister instrument named THEMIS that has been capturing its own thermal images of the Red Planet for decades. To be extra thorough, the Odyssey team collected thermal images of Mars before, during, and after Europa Clipper’s flyby so that Europa scientists can compare the visuals as an additional gauge of how well E-THEMIS is calibrated.
Europa Clipper also took advantage of the close proximity to Mars to test all the components of its radar instrument in unison for the first time. The radar antennas and the wavelengths they produce are so long that it wasn’t possible for engineers to can do that in a clean room before launch. The radar data will be returned and analyzed in the coming weeks and months, but preliminary assessments of the real-time telemetry indicate that the test went well.
To leverage the flyby even further, the science team took the opportunity to ensure that the spacecraft’s telecommunication equipment will be able to conduct gravity experiments at Europa. By transmitting signals to Earth while passing through Mars’ gravity field, they were able to confirm that a similar operation is expected to work at Europa.
Europa Clipper launched from NASA’s Kennedy Space Center in Florida on Oct. 14, 2024, via a SpaceX Falcon Heavy, embarking on a 1.8 billion-mile (2.9 billion-kilometer) journey to Jupiter, which is five times farther from the Sun than Earth is. Now that the probe has harnessed the gravity of Mars, its next gravity assist will be from Earth in 2026.
More About Europa Clipper
Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory in Southern California leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at NASA Marshall executes program management of the Europa Clipper mission. NASA’s Launch Services Program, based at NASA Kennedy, managed the launch service for the Europa Clipper spacecraft.
Find more information about Europa Clipper here:
News Media Contacts
Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
818-287-4115
gretchen.p.mccartney@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-065
Share
Details
Last Updated May 12, 2025 Related Terms
Europa Clipper Europa Jet Propulsion Laboratory Mars Explore More
3 min read Dave Gallagher Named 11th Director of JPL as Laurie Leshin Steps Down
Article 5 days ago 6 min read NASA’s SPHEREx Space Telescope Begins Capturing Entire Sky
Article 2 weeks ago 4 min read Robots, Rovers, and Regolith: NASA Brings Exploration to FIRST Robotics 2025
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
When most people think of NASA, they picture rockets, astronauts, and the Moon. But behind the scenes, a group of inventors is quietly rewriting the rules of what’s possible — on Earth, in orbit, and beyond. Their groundbreaking inventions eventually become technology available for industry, helping to shape new products and services that improve life around the globe. For their contributions to NASA technology, we welcome four new inductees into the 2024-2025 NASA Inventors Hall of Fame
A robot for space and the workplace
Myron (Ron) Diftler led the team behind Robonaut 2 (R2), a humanoid robot developed with General Motors. The goal was to create a robot that could help humans both in space and on the factory floor. The R2 robot became the first humanoid robot in space aboard the International Space Station, and part of its technology was licensed for use on Earth, leading to a grip-strengthening robotic glove to help humans with strenuous, repetitive tasks. From factories to space exploration, Diftler’s work has real-world impact.
Some of the toughest electronic chips on and off Earth
Technology developed to one day explore the surface of Venus has to be tough enough to survive the planet where temperatures hit 860°F and the atmosphere is akin to battery acid. Philip Neudeck’s silicon carbide integrated circuits don’t just work — they ran for over 60 days in simulated Venus-like conditions. On Earth, these chips can boost efficiency in wireless communication systems, help make drilling for oil safer, and enable more practical electric vehicles.
From developing harder chip materials to unlocking new planetary missions, Neudeck is proving that the future of electronics isn’t just about speed — it’s about survival.
Hydrogen sensors that could go the distance on other worlds
Gary Hunter helped develop a hydrogen sensor so advanced it’s being considered for a future mission to Titan, Saturn’s icy moon. These and a range of other sensors he’s helped developed have applications that go beyond space exploration, such as factory floors here on Earth.
With new missions on the horizon and smarter sensors in development, Hunter is still pushing the boundaries of what NASA technology can do. Whether it’s Titan, the surface of Venus, or somewhere we haven’t dreamed of yet, this work could help shape the way to get there.
Advanced materials research to make travel safer
Advanced materials, such as foams and composites, are key to unlocking the next generation of manufacturing. From space exploration to industry, Erik Weiser spent years contributing his expertise to the development of polymers, ceramics, metals, nanomaterials, and more. He is named on more than 20 patents. During this time, he provided his foam expertise to the Space Shuttle Columbia accident investigation, the Shuttle Discovery Return-to-Flight Investigation and numerous teams geared toward improving the safety of the shuttle.
Today, Weiser serves as director of the Facilities and Real Estate Division at NASA Headquarters, overseeing the foundation of NASA’s missions. Whether it’s advancing research or optimizing real estate across the agency, he’s helping launch the future, one facility at a time.
Want to learn more about NASA’s game changing innovations? Visit the NASA Inventors Hall of Fame.
Read More Share
Details
Last Updated May 09, 2025 Related Terms
Technology Technology Transfer Technology Transfer & Spinoffs Explore More
3 min read Key Portion of NASA’s Roman Space Telescope Clears Thermal Vacuum Test
Article 2 days ago 4 min read NASA Enables SPHEREx Data Return Through Commercial Partnership
Article 3 days ago 6 min read NASA Data Helps Map Tiny Plankton That Feed Giant Right Whales
In the waters off New England, one of Earth’s rarest mammals swims slowly, mouth agape.…
Article 4 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Image: Part of the Italian island of Sardinia is featured in this image captured by the Copernicus Sentinel-2 mission. View the full article
-
By NASA
Editor’s Note: The following is one of three related articles about the NASA Data Acquisition System and related efforts. Please visit Stennis News – NASA to access accompanying articles.
NASA software engineer Brandon Carver updates how the main data acquisition software processes information at NASA’s Stennis Space Center, where he has contributed to the creation of the center’s first-ever open-source software.NASA/Danny Nowlin Syncom Space Services software engineer Shane Cravens, the chief architect behind the first-ever open-source software at NASA’s Stennis Space Center, verifies operation of the site’s data acquisition hardware.NASA/Danny Nowlin NASA’s Stennis Space Center near Bay St. Louis, Mississippi, has released its first-ever open-source software, a peer review tool to facilitate more efficient and collaborative creation of systems applications, such as those used in its frontline government and commercial propulsion test work.
“Everyone knows NASA Stennis as the nation’s premier rocket propulsion test site,” said David Carver, acting chief of the Office of Test Data and Information Management. “We also are engaged in a range of key technology efforts. This latest open-source tool is an exciting example of that work, and one we anticipate will have a positive and widespread impact.”
The new NASA Data Acquisition System Peer Review Tool was developed over several years, built on lessons learned as site developers and engineers created software tools for use across the center’s sprawling test complex. It is designed to simplify and amplify the collaborative review process, allowing developers to build better and more effective software applications.
The new NASA Stennis Peer Review tool was developed using the same software processes that built NDAS. As center engineers and developers created software to monitor and analyze data from rocket propulsion tests, they collaborated with peers to optimize system efficiency. What began as an internal review process ultimately evolved into the open-source code now available to the public.
“We refined it (the peer review tool) over a period of time, and it has improved our process significantly,” said Brandon Carver (no relation), a NASA Stennis software engineer. “In early efforts, we were doing reviews manually, now our tool handles some of these steps for us. It has allowed us to focus more on reviewing key items in our software.”
Developers can improve time, efficiency, and address issues earlier when conducting software code reviews. The result is a better, more productive product.
The NASA Stennis tool is part of the larger NASA Data Acquisition System created at the center to help monitor and collect propulsion test data. It is designed to work with National Instruments LabVIEW, which is widely used by systems engineers and scientists to design applications. LabVIEW is unique in using graphics (visible icon objects) instead of a text-based programming language to create applications. The graphical approach makes it more challenging to compare codes in a review process.
“You cannot compare your code in the same way you do with a text-based language,” Brandon Carver said. “Our tool offers a process that allows developers to review these LabVIEW-developed programs and to focus more time on reviewing actual code updates.”
LabVIEW features a comparison tool, but NASA Stennis engineers identified ways they could improve the process, including by automating certain steps. The NASA Stennis tool makes it easier to post comments, pictures, and other elements in an online peer review to make discussions more effective.
The result is what NASA Stennis developers hope is a more streamlined, efficient process. “It really optimizes your time and provides everything you need to focus on right in front of you,” Brandon Carver said. “That’s why we wanted to open source this because when we were building the tool, we did not see anything like it, or we did not see anything that had features that we have.”
“By providing it to the open-source community, they can take our tool, find better ways of handling things, and refine it,” Brandon Carver said. “We want to allow those groups to modify it and become a community around the tool, so it is continuously improved. Ultimately, a peer review is to make stronger software or a stronger product and that is also true for this peer review tool.
“It is a good feeling to be part of the process and to see something created at the center now out in the larger world across the agency,” Brandon Carver said. “It is pretty exciting to be able to say that you can go get this software we have written and used,” he acknowledged. “NASA engineers have done this. I hope we continue to do it.”
To access the peer review tool developed at NASA Stennis, visit NASA GitHub.
Read More Share
Details
Last Updated May 08, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.