Members Can Post Anonymously On This Site
Mapping planet Earth for better positioning: ESA’s GENESIS mission
-
Similar Topics
-
By NASA
Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025. NASA/Isaac Watson NASA and the Department of Defense (DoD) teamed up June 11 and 12 to simulate emergency procedures they would use to rescue the Artemis II crew in the event of a launch emergency. The simulations, which took place off the coast of Florida and were supported by launch and flight control teams, are preparing NASA to send four astronauts around the Moon and back next year as part of the agency’s first crewed Artemis mission.
The team rehearsed procedures they would use to rescue the crew during an abort of NASA’s Orion spacecraft while the SLS (Space Launch System) rocket is still on the launch pad, as well as during ascent to space. A set of test mannequins and a representative version of Orion called the Crew Module Test Article, were used during the tests.
The launch team at NASA’s Kennedy Space Center in Florida, flight controllers in mission control at the agency’s Johnson Space Center in Houston, as well as the mission management team, all worked together, exercising their integrated procedures for these emergency scenarios.
Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025.NASA/Isaac Watson “Part of preparing to send humans to the Moon is ensuring our teams are ready for any scenario on launch day,” said Lakiesha Hawkins, NASA’s assistant deputy associate administrator for the Moon to Mars Program, and who also is chair of the mission management team for Artemis II. “We’re getting closer to our bold mission to send four astronauts around the Moon, and our integrated testing helps ensure we’re ready to bring them home in any scenario.”
The launch pad abort scenario was up first. The teams conducted a normal launch countdown before declaring an abort before the rocket was scheduled to launch. During a real pad emergency, Orion’s launch abort system would propel Orion and its crew a safe distance away and orient it for splashdown before the capsule’s parachutes would then deploy ahead of a safe splashdown off the coast of Florida.
Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025. NASA/Isaac Watson For the simulated splashdown, the test Orion with mannequins aboard was placed in the water five miles east of Kennedy. Once the launch team made the simulated pad abort call, two Navy helicopters carrying U.S. Air Force pararescuers departed nearby Patrick Space Force Base. The rescuers jumped into the water with unique DoD and NASA rescue equipment to safely approach the spacecraft, retrieve the mannequin crew, and transport them for medical care in the helicopters, just as they would do in the event of an actual pad abort during the Artemis II mission.
The next day focused on an abort scenario during ascent to space.
The Artemis recovery team set up another simulation at sea 12 miles east of Kennedy, using the Orion crew module test article and mannequins. With launch and flight control teams supporting, as was the Artemis II crew inside a simulator at Johnson, the rescue team sprung into action after receiving the simulated ascent abort call and began rescue procedures using a C-17 aircraft and U.S. Air Force pararescuers. Upon reaching the capsule, the rescuers jumped from the C-17 with DoD and NASA unique rescue gear. In an actual ascent abort, Orion would separate from the rocket in milliseconds to safely get away prior to deploying parachutes and splashing down.
Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for an ascent abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Thursday, June 12, 2025. NASA/Isaac Watson Rescue procedures are similar to those used in the Underway Recovery Test conducted off the California coast in March. This demonstration ended with opening the hatch and extracting the mannequins from the capsule, so teams stopped without completing the helicopter transportation that would be used during a real rescue.
Exercising procedures for extreme scenarios is part of NASA’s work to execute its mission and keep the crew safe. Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
View the full article
-
By European Space Agency
Image: Copernicus Sentinel-1 captured this image over part of eastern Borneo, a tropical island in Southeast Asia. View the full article
-
By NASA
A funky effect Einstein predicted, known as gravitational lensing — when a foreground galaxy magnifies more distant galaxies behind it — will soon become common when NASA’s Nancy Grace Roman Space Telescope begins science operations in 2027 and produces vast surveys of the cosmos.
This image shows a simulated observation from NASA’s Nancy Grace Roman Space Telescope with an overlay of its Wide Field Instrument’s field of view. More than 20 gravitational lenses, with examples shown at left and right, are expected to pop out in every one of Roman’s vast observations. A journal paper led by Bryce Wedig, a graduate student at Washington University in St. Louis, Missouri, estimates that of those Roman detects, about 500 from the telescope’s High-Latitude Wide-Area Survey will be suitable for dark matter studies. By examining such a large population of gravitational lenses, the researchers hope to learn a lot more about the mysterious nature of dark matter.Credit: NASA, Bryce Wedig (Washington University), Tansu Daylan (Washington University), Joseph DePasquale (STScI) A particular subset of gravitational lenses, known as strong lenses, is the focus of a new paper published in the Astrophysical Journal led by Bryce Wedig, a graduate student at Washington University in St. Louis. The research team has calculated that over 160,000 gravitational lenses, including hundreds suitable for this study, are expected to pop up in Roman’s vast images. Each Roman image will be 200 times larger than infrared snapshots from NASA’s Hubble Space Telescope, and its upcoming “wealth” of lenses will vastly outpace the hundreds studied by Hubble to date.
Roman will conduct three core surveys, providing expansive views of the universe. This science team’s work is based on a previous version of Roman’s now fully defined High-Latitude Wide-Area Survey. The researchers are working on a follow-up paper that will align with the final survey’s specifications to fully support the research community.
“The current sample size of these objects from other telescopes is fairly small because we’re relying on two galaxies to be lined up nearly perfectly along our line of sight,” Wedig said. “Other telescopes are either limited to a smaller field of view or less precise observations, making gravitational lenses harder to detect.”
Gravitational lenses are made up of at least two cosmic objects. In some cases, a single foreground galaxy has enough mass to act like a lens, magnifying a galaxy that is almost perfectly behind it. Light from the background galaxy curves around the foreground galaxy along more than one path, appearing in observations as warped arcs and crescents. Of the 160,000 lensed galaxies Roman may identify, the team expects to narrow that down to about 500 that are suitable for studying the structure of dark matter at scales smaller than those galaxies.
“Roman will not only significantly increase our sample size — its sharp, high-resolution images will also allow us to discover gravitational lenses that appear smaller on the sky,” said Tansu Daylan, the principal investigator of the science team conducting this research program. Daylan is an assistant professor and a faculty fellow at the McDonnell Center for the Space Sciences at Washington University in St. Louis. “Ultimately, both the alignment and the brightness of the background galaxies need to meet a certain threshold so we can characterize the dark matter within the foreground galaxies.”
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This video shows how a background galaxy’s light is lensed or magnified by a massive foreground galaxy, seen at center, before reaching NASA’s Roman Space Telescope. Light from the background galaxy is distorted, curving around the foreground galaxy and appearing more than once as warped arcs and crescents. Researchers studying these objects, known as gravitational lenses, can better characterize the mass of the foreground galaxy, which offers clues about the particle nature of dark matter.Credit: NASA, Joseph Olmsted (STScI) What Is Dark Matter?
Not all mass in galaxies is made up of objects we can see, like star clusters. A significant fraction of a galaxy’s mass is made up of dark matter, so called because it doesn’t emit, reflect, or absorb light. Dark matter does, however, possess mass, and like anything else with mass, it can cause gravitational lensing.
When the gravity of a foreground galaxy bends the path of a background galaxy’s light, its light is routed onto multiple paths. “This effect produces multiple images of the background galaxy that are magnified and distorted differently,” Daylan said. These “duplicates” are a huge advantage for researchers — they allow multiple measurements of the lensing galaxy’s mass distribution, ensuring that the resulting measurement is far more precise.
Roman’s 300-megapixel camera, known as its Wide Field Instrument, will allow researchers to accurately determine the bending of the background galaxies’ light by as little as 50 milliarcseconds, which is like measuring the diameter of a human hair from the distance of more than two and a half American football fields or soccer pitches.
The amount of gravitational lensing that the background light experiences depends on the intervening mass. Less massive clumps of dark matter cause smaller distortions. As a result, if researchers are able to measure tinier amounts of bending, they can detect and characterize smaller, less massive dark matter structures — the types of structures that gradually merged over time to build up the galaxies we see today.
With Roman, the team will accumulate overwhelming statistics about the size and structures of early galaxies. “Finding gravitational lenses and being able to detect clumps of dark matter in them is a game of tiny odds. With Roman, we can cast a wide net and expect to get lucky often,” Wedig said. “We won’t see dark matter in the images — it’s invisible — but we can measure its effects.”
“Ultimately, the question we’re trying to address is: What particle or particles constitute dark matter?” Daylan added. “While some properties of dark matter are known, we essentially have no idea what makes up dark matter. Roman will help us to distinguish how dark matter is distributed on small scales and, hence, its particle nature.”
Preparations Continue
Before Roman launches, the team will also search for more candidates in observations from ESA’s (the European Space Agency’s) Euclid mission and the upcoming ground-based Vera C. Rubin Observatory in Chile, which will begin its full-scale operations in a few weeks. Once Roman’s infrared images are in hand, the researchers will combine them with complementary visible light images from Euclid, Rubin, and Hubble to maximize what’s known about these galaxies.
“We will push the limits of what we can observe, and use every gravitational lens we detect with Roman to pin down the particle nature of dark matter,” Daylan said.
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc. in Boulder, Colorado; L3Harris Technologies in Melbourne, Florida; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Claire Blome
Space Telescope Science Institute, Baltimore, Md.
Share
Details
Last Updated Jun 12, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Astrophysics Dark Matter Galaxies Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research The Universe Explore More
6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
Article 2 months ago 5 min read Millions of Galaxies Emerge in New Simulated Images From NASA’s Roman
Article 2 years ago 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
Article 3 months ago View the full article
-
By NASA
Explore This Section Earth Earth Observer Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam Announcements More Archives Conference Schedules Style Guide 9 min read
The Earth Observer Editor’s Corner: April–June 2025
NASA’s Earth science missions have continued to demonstrate remarkable adaptability and innovation, balancing the legacy of long-standing satellites with the momentum of cutting-edge new technologies. The Terra platform, the first of three Earth Observing System flagship missions, has been in orbit since December 1999. Over a quarter-century later, four of its five instruments continue to deliver valuable data, despite recent power challenges. As of this writing, Terra’s Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) – Visible–Near Infrared (VNIR) and Thermal Infrared (TIR) bands, Multi-angle Imaging SpectroRadiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS), and one of the two Clouds and the Earth’s Radiant Energy Systems (CERES) instruments onboard, are all still producing science data. For reasons explained below, only the Measurement of Pollution in the Troposphere (MOPITT) instrument has been shut down completely, after 25 years of successful operations. The longevity of the Terra instruments is credited to Terra’s instrument team members, who have skillfully adjusted operations to compensate for the reduction in power and extend Terra’s scientific contributions for as long as possible.
Terra has been experiencing power-based limitations caused by platform orbital changes and solar array impacts. On November 28, 2024, one of Terra’s power-transmitting shunt units failed. A response team reviewed Terra’s status, and discussed potential impacts and options. Consequently, the team changed the battery charge rate and reduced spacecraft power demands by placing the ASTER instrument into safe mode.
In order to maintain power margins, the Terra team also moved the MOPITT instrument from science mode into safe mode on February 4, 2025, ceasing data collection. On April 9, 2025, the Terra project determined that additional power was needed for the platform and MOPITT was moved from safe mode and fully turned off, ending the instrument’s carbon monoxide data record of near-global coverage every three days.
MOPITT was the Canadian Space Agency’s (CSA) contribution to the Earth Observing System. Launched as part of Terra’s payload in 1999, it became the longest-running air quality monitor in space, and the longest continuously operating Canadian space mission in history. MOPITT’s specific focus was on the distribution, transport, sources, and sinks of carbon monoxide (CO) in the troposphere – see Figure. The spectrometer’s marquee Earthdata products have included MOPITT Near Real-Time Datasets and offerings from the MOPITT Science Investigator-led Processing System (MOPITT SIPS). From tracking pollution from wildfires to providing data that informs international climate agreements, MOPITT served as a powerful tool for gathering data about pollution in the lowest portion of Earth’s atmosphere, informing research, policies, and even helping to advance forecasting models used by scientists worldwide. Congratulations to the MOPITT team for more than 25 years of groundbreaking science and international collaboration!
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
Figure. This data visualization of total column carbon monoxide was created using MOPITT data from 2000-2019. In these maps, yellow areas have little or no carbon monoxide, while progressively higher concentrations are shown in orange, red, and dark red. Figure Credit: NASA’s Goddard Space Flight Center/SVS As chance would have it, the MOPITT Team had planned a 25th anniversary celebration in April, 10–11, 2025, at CSA headquarters in Longueuil, Quebec and online – which began one day after the instrument was shut down. The celebration was a fitting closeout to the MOPITT mission and a celebration of its accomplishments. Over the two days, more than 45 speakers shared memories and presented findings from MOPITT’s quarter-century record of atmospheric carbon monoxide monitoring. Its data showed a global decline in carbon monoxide emissions over two decades and could also track the atmospheric transport of the gas from fires and industry from individual regions. MOPITT is a testament to remarkable international collaboration and achievement. As it is officially decommissioned, its data record will continue to drive research for years to come.
The Director General of the Canadian Space Agency—a key MOPITT partner—delivered remarks, and both Ken Jucks [NASA HQ— Program Manager for the Upper Atmosphere Research Program (UARP)] and Helen Worden [National Center for Atmospheric Research— MOPITT U.S. Principal Investigator] attended representing the U.S.
More information is available in a recently-released Terra blog post and on the Canadian Space Agency MOPITT website.
After continued investigation and monitoring of platform battery status, the Terra Flight Operations Team (FOT) determined there was sufficient power to resume imaging with ASTER’s VNIR bands, and as a result, ASTER once again began collecting VNIR data on January 17, 2025. Subsequently, ASTER resumed acquisitions for the TIR bands on April 15, 2025. (The ASTER Shortwave Infrared (SWIR) bands have been shut down since 2008).
As one long-serving mission sunsets its operations, new missions are stepping in to carry forward the legacy of Earth system science with fresh capabilities and approaches. Launched on May 25, 2023, the NASA Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission provides a groundbreaking approach to studying tropical cyclones using a passive microwave sounder CubeSat constellation. TROPICS uses multiple small satellites flying in a carefully engineered formation to measure precipitation structure as well as temperature and humidity profiles both within and outside of storms.
Unlike traditional polar-orbiting satellites, TROPICS’ low-inclination orbits allow for hourly revisits over tropical regions, enabling scientists to better monitor storm structure, intensity changes, and key processes like upper-level warm core formation and convective bursts.
The mission has already significantly contributed to operational forecasting and scientific research. With over 10 billion observations to date, TROPICS data have been used to validate storm models, support early-warning systems, and improve forecasts for events like Hurricane Franklin and Typhoon Kong-rey. Collaborations with agencies like the National Hurricane Center and the Joint Typhoon Warning Center have shown the value of TROPICS channels, particularly the 204.8 GHz channel, in identifying storm structure and intensity. The data are publicly available through the Goddard Earth Sciences Data and Information Services Center (GES DISC), and TROPICS continues to set the stage for the next generation of rapid-revisit Earth observation missions. To read more about the last two years of successful science operations with TROPICS, see NASA’s TROPICS Mission: Offering Detailed Images and Analysis of Tropical Cyclones.
While some missions focus on monitoring atmospheric processes, others are expanding the frontiers of Earth observation in entirely different domains—ranging from seafloor mapping to land surface monitoring and beyond. NASA’s Ice, Clouds, and land Elevation Satellite–2 (ICESat-2) mission continues to provide critical data on Earth’s changing ice sheets, glaciers, and other environmental features. In March 2025, the satellite achieved a significant milestone by firing its two trillionth laser pulse, measuring clouds off the coast of East Antarctica. Despite challenges, such as a solar storm in May 2024 that temporarily disrupted operations, the mission has resumed full functionality, providing high-resolution data that has enabled scientists to map over 16 years of ice sheet changes. The mission’s advanced laser altimeter system, ATLAS, continues to deliver unprecedented detail in monitoring Earth’s changing ice sheets, glaciers, forests, and ocean floor.
The ICESat-2 Satellite-Derived Bathymetry (SDB) workshop, held on March 17, 2025, in conjunction with the US-Hydro meeting, brought together experts and stakeholders from government, academia, and industry to explore the current capabilities and future potential of satellite-based seafloor mapping. With over 2000 journal articles referencing ICESat-2 in the context of bathymetry, the workshop underscored the growing importance of this technology in coastal management, navigation, habitat monitoring, and disaster response. For more details, see the ICESat-2 Applications Team Hosts Satellite Bathymetry Workshop report.
As satellite technologies continue to evolve, so do the scientific communities that rely on them, bringing researchers together to share insights, refine data products, and explore new applications across a range of Earth and atmospheric science disciplines. As of early 2025, NASA’s Stratospheric Aerosol and Gas Experiment III (SAGE III) aboard the International Space Station (ISS) continues to provide critical insights into Earth’s atmospheric composition. In addition to scientific advancements, SAGE III/ISS has enhanced public accessibility to its data. In February 2025, the mission launched updates to its Quicklook and Expedited data portal, introducing a new ‘Highlights’ tab to showcase major stratospheric events and a ‘Comparisons’ tab for validating measurements with ground-based stations. These enhancements aim to make SAGE III/ISS data more accessible and increase its utilization for atmospheric research.
The most recent SAGE III/ISS Science Team Meeting took place in October 2024 at NASA Langley Research Center and was held in hybrid format. Around 50 scientists gathered to discuss recent advancements, mission updates, and future directions in upper troposphere–stratosphere (UTS) research. The SAGE III/ISS team celebrated eight years of continuous data collection aboard the ISS and presented Version 6.0 of SAGE III/ISS data products during the meeting, which addresses previous data biases and enhances aerosol profile recovery. Presentations also covered aerosol and cloud studies, lunar-based aerosol retrievals, and collaborative projects using data from multiple satellite platforms and instruments. To learn more, see the full Summary of the 2024 SAGE III/ISS Meeting.
Moving on to personnel announcements, I wish to extend my condolences to the friends and family of Dr. Stanley Sander, who passed away in March 2025. Sander devoted over 50 years to atmospheric science at NASA’s Jet Propulsion Laboratory, making groundbreaking contributions to stratospheric ozone research, air pollution, and climate science. His precise laboratory work on reaction kinetics and spectroscopy became foundational for atmospheric modeling and environmental policy, including the Montreal Protocol. Sander also played a key role in satellite calibration, mentored dozens of young scientists, and held several leadership positions at JPL. Remembered for his brilliance, humility, and kindness, his legacy endures through both his scientific achievements and the many lives he influenced. See In Memoriam: Dr. Stanley Sander.
On a happier, though bittersweet, note, my congratulations to Jack Kaye [NASA HQ—Associate Director for Research, Earth Science Division (ESD)] who retired from NASA on April 30, 2025, after 42 years of distinguished service. With a background in chemistry and atmospheric science, he played a leading role in NASA’s efforts to understand Earth’s atmosphere and climate using satellite data and modeling. Throughout his career, Kaye has held various key leadership positions, managed major missions, e.g., the series of Shuttle-based Atmospheric Laboratory of Applications and Science (ATLAS) experiments, and supported the development of early-career scientists. He also represented NASA in national and international science collaborations and advisory roles. Kaye received numerous awards, published extensively, and was widely recognized for his contributions to Earth science and global climate research. I extend my sincere thanks to Jack for his many years of vital leadership and lasting contributions to the global Earth science community!
Barry Lefer [NASA HQ—Tropospheric Composition Program Manager] has taken over as Acting Associate Director for Research in ESD. Reflecting on Kaye’s impact, Lefer said, “Jack has been a wonderful friend and mentor. The one thing about Jack that has had the biggest impact on me (besides his incredible memory) is his kindness. He has an enormous heart. He will be missed, but his impact on Earth Science will endure for a very long time!” See the full announcement, Jack Kaye Retires After a Storied Career at NASA.
Steve Platnick
EOS Senior Project Scientist
Share
Details
Last Updated Jun 11, 2025 Related Terms
Earth Science View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s F-15D research aircraft conducts a calibration flight of a shock-sensing probe near NASA’s Armstrong Flight Research Center in Edwards, California. The shock-sensing probe is designed to measure the signature and strength of shock waves in flight. The probe was validated during dual F-15 flights and will be flown behind NASA’s X-59 to measure small pressure changes caused by shock waves in support of the agency’s Quesst mission.NASA/Jim Ross High over the Mojave Desert, two NASA F-15 research jets made a series of flights throughout May to validate tools designed to measure and record the shock waves that will be produced by the agency’s X-59 quiet supersonic experimental aircraft.
The F-15s, carrying the recording tools, flew faster than the speed of sound, matching the conditions the X-59 is expected to fly. The X-59 is the centerpiece of NASA’s Quesst mission to gather data that can help lead to quiet commercial supersonic flight over land.
The team behind the successful test flight series operates under the Schlieren, Airborne Measurements, and Range Operations for Quesst (SCHAMROQ) project at NASA’s Armstrong Flight Research Center in Edwards, California. There, they developed tools that will measure and visualize the X-59’s unique shock waves when it flies at Mach 1.4 and altitudes above 50,000 feet. For a typical supersonic aircraft, those shock waves would result in a sonic boom. But thanks to the X-59’s design and technologies, it will generate just a quiet thump.
Cheng Moua, engineering project manager for SCHAMROQ, described the validation flight campaign as “a graduation exercise – it brings all the pieces together in their final configuration and proves that they will work.”
NASA began to develop the tools years ago, anchored by the arrival of one of the two F-15s – an F-15D from the U.S. Air Force – a tactical aircraft delivered without research instrumentation.
“It showed up as a former war-fighting machine without a research-capable instrumentation system – no telemetry, no HD video, no data recording,” Cheng said. “Now it’s a fully instrumented research platform.”
The team used both F-15s to validate three key tools:
A shock wave-measuring device called a near-field shock-sensing probe A guidance capability known as an Airborne Location Integrating Geospatial Navigation System An Airborne Schlieren Photography System that will allow the capture of images that render visible the density changes in air caused by the X-59 Before the F-15D’s arrival, Armstrong relied on the second F-15 flown during this campaign – an F-15B typically used to test equipment, train pilots, and support other flight projects. The SCHAMROQ project used the two aircraft to successfully complete “dual ship flights,” a series of flight tests using two aircraft simultaneously. Both aircraft flew in formation carrying near-field shock-sensing probes and collected data from one another to test the probes and validate the tools under real-world conditions. The data help confirm how shock waves form and evolve during flight.
NASA Photographer Carla Thomas holds the Airborne Schlieren Photography System (ASPS), aiming it out the window in flight. The ASPS uses a photographic method called schlieren imaging, capable of visualizing changes in air density and revealing shock waves and air flow patterns around moving objects. The system is one of several tools validated during recent dual F-15 flights at NASA’s Armstrong Flight Research Center in Edwards, California, in support of NASA’s Quesst mission, ahead of the X-59’s first flight. NASA/Carla Thomas Keeping Things ALIGNed
For the Quesst mission, the F-15D will lead data-gathering efforts using the onboard probe, while the F-15B will serve as the backup. When flown behind the X-59, the probe will help measure small pressure changes caused by the shock waves and validate predictions made years ago when the plane’s design was first created.
The schlieren photography systems aboard the F-15s will provide Quesst researchers with crucial data. Other tools, like computer simulations that predict airflow and wind tunnel tests are helpful, but schlieren imagery shows real-world airflow, especially in tricky zones like the engine and air inlet.
For that system to work correctly, the two aircraft will need to be precisely positioned during the test flights. Their pilots will be using a NASA-developed software tool called the Airborne Location Integrating Geospatial Navigation System (ALIGNS).
“ALIGNS acts as a guidance system for the pilots,” said Troy Robillos, a NASA researcher who led development of ALIGNS. “It shows them where to position the aircraft to either probe a shock wave at a specific point or to get into the correct geometry for schlieren photography.”
The schlieren system involves a handheld high-speed camera with a telescopic lens that captures hundreds of frames per second and visualizes changes in air density – but only if it can use the sun as a backdrop.
Two NASA F-15 aircraft sit on the ramp at NASA’s Armstrong Flight Research Center, in Edwards, California, ahead of dual F-15 flights that validated the integration of three tools – the Airborne Schlieren Photography System (ASPS), the Airborne Location Integrating Geospatial Navigation System (ALIGNS), and shock-sensing probe. Together these tools will measure and visualize the shock waves generated by NASA’s X-59.NASA/Genaro Vavuris “The photographer holds the camera to their chest, aiming out the side of the cockpit canopy at the sun, while the pilot maneuvers through a 100-foot-wide target zone,” said Edward Haering, a NASA aerospace engineer who leads research on schlieren. “If the sun leaves the frame, we lose that data, so we fly multiple passes to make sure we capture the shot.”
Aligning two fast-moving aircraft against the backdrop of the sun is the most challenging part. The photographer must capture the aircraft flying across the center of the sun, and even the slightest shift can affect the shot and reduce the quality of the data.
“It’s like trying to take a photo through a straw while flying supersonic,” Robillos said.
But with ALIGNS, the process is much more accurate. The software runs on ruggedized tablets and uses GPS data from both aircraft to calculate when the aircraft are in position for probing and to capture schlieren imagery. Giving pilots real-time instructions, enabling them to achieve precise positioning.
The X-59 team’s validation milestone for the schlieren imaging and other systems confirms that NASA’s core tools for measuring shock waves are ready to study the X-59 in flight, checking the aircraft’s unique acoustics to confirm its quieter sonic “thump.”
Share
Details
Last Updated Jun 10, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Aeronautics Aeronautics Research Mission Directorate Ames Research Center Commercial Supersonic Technology Glenn Research Center Integrated Aviation Systems Program Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Quesst: The Vehicle Supersonic Flight Explore More
2 min read From Garment Industry to NASA: Meet Systems Engineer Daniel Eng
Article 4 days ago 2 min read NASA Provides Hardware for Space Station DNA Repair Experiment
Article 4 days ago 9 min read ARMD Research Solicitations (Updated June 6)
Article 4 days ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Aeronautics
Earth Science
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.