Jump to content

Recommended Posts

Posted
In recent weeks, many strange UFO-like objects have been observed by the various solar satellites. 

sun%20ufo%20docking%20station.jpg

Besides hexagon and circular objects, a huge rectangular craft with possible docking station for incoming and outgoing smaller UFOs at the rear of the mothership has been caught at the moment it passing the sun. 

The video show some of these possible alien craft.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      LIVE : Sun Live stream - close up Video Of The Sun / Lunt Telescope - Backyard Astronomy
    • By NASA
      Inside a laboratory in the Space Systems Processing Facility at NASA’s Kennedy Space Center in Florida, a payload implementation team member harvests ‘Outredgeous’ romaine lettuce growing in the Advanced Plant Habitat ground unit on Thursday, April 24, 2025. The harvest is part of the ground control work supporting Plant Habitat-07, which launched to the International Space Station aboard NASA’s SpaceX 31st commercial resupply services mission.
      The experiment focuses on studying how optimal and suboptimal moisture conditions affect plant growth, nutrient content, and the plant microbiome in microgravity. Research like this continues NASA’s efforts to grow food that is not only safe but also nutritious for astronauts living and working in the harsh environment of space.
      The ‘Outredgeous’ romaine lettuce variety was first grown aboard the space station in 2014, and Plant Habitat-07 builds on that legacy, using the station’s Advanced Plant Habitat to expand understanding of how plants adapt to spaceflight conditions. Findings from this work will support future long-duration missions to the Moon, Mars, and beyond, and could also lead to agricultural advances here on Earth.
      Image credit: NASA/Kim Shiflett
      View the full article
    • By NASA
      Crew members are kicking off operations for several biological experiments that recently launched to the International Space Station aboard NASA’s 32nd SpaceX commercial resupply services mission. These include examining how microgravity affects production of protein by microalgae, testing a microscope to capture microbial activity, and studying genetic activity in biofilms.
      Microalgae in microgravity
      Sophie’s BioNutrients This ice cream is one of several products made with a protein powder created from Chorella microalgae by researchers for the SOPHONSTER investigation, which looks at whether the stress of microgravity affects the algae’s protein yield. Microalgae are nutrient dense and produce proteins with essential amino acids, beneficial fatty acids, B vitamins, iron, and fiber. These organisms also can be used to make fuel, cooking oil, medications, and materials. Learning more about microalgae growth and protein production in space could support development of sustainable alternatives to meat and dairy. Such alternatives could provide a food source on future space voyages and for people on Earth and be used to make biofuels and bioactive compounds in medicines.
      Microscopic motion
      Portland State University These swimming microalgae are visible thanks to the Extant Life Volumetric Imaging System or ELVIS, a fluorescent 3D imaging microscope that researchers are testing aboard the International Space Station. The investigation studies both active behaviors and genetic changes of microscopic algae and marine bacteria in response to spaceflight. ELVIS is designed to autonomously capture microscopic motion in 3D, a capability not currently available on the station. The technology could be useful for a variety of research in space and on Earth, such as monitoring water quality and detecting potentially infectious organisms.
      Genetics of biofilms
      BioServe This preflight image shows sample chambers for the Genetic Exchange in Microgravity for Biofilm Bioremediation (GEM-B2) investigation, which examines the mechanisms of gene transfer within biofilms under microgravity conditions. Biofilms are communities of microorganisms that collect and bind to a surface. They can clog and foul water systems, often leave a residue that can cause infections, and may become resistant to antibiotics. Researchers could use results from this work to develop genetic manipulations that inhibit biofilm formation, helping to maintain crew health and safety aboard the International Space Station and on future missions.
      Learn more about microgravity research and technology development aboard the space station on this webpage.
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Latest News from Space Station Research
      Space Station Research Results
      NASA Science, Cargo Launch on 32nd SpaceX Resupply Station Mission
      View the full article
    • By Amazing Space
      LIVE NOW: Close Up Video Of The Sun 30thApril - Backyard Astronomy
    • By Amazing Space
      LIVE NOW: Live Close Up Video Of The Sun 29thApril - Backyard Astronomy
  • Check out these Videos

×
×
  • Create New...