Members Can Post Anonymously On This Site
Swiftly Moving Gas Streamer Eclipses Supermassive Black Hole
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The blazar BL Lacertae, a supermassive black hole surrounded by a bright disk and jets oriented toward Earth, provided scientists with a unique opportunity to answer a longstanding question: How are X-rays generated in extreme environments like this?
NASA’s IXPE (Imaging X-ray Polarimetry Explorer) collaborated with radio and optical telescopes to find answers. The results (preprint available here), to be published in the journal Astrophysical Journal Letters, show that interactions between fast-moving electrons and particles of light, called photons, must lead to this X-ray emission.
This artist’s concept depicts the central region of the blazar BL Lacertae, a supermassive black hole surrounded by a bright disk and a jet oriented toward Earth. The galaxy’s central black hole is surrounded by swirls of orange in various shades representing the accretion disk of material falling toward the black hole. While black holes are known for pulling in material, this accretion process can result in the ejection of jets of electrons at nearly the speed of light. The jet of matter is represented by the cone of light that starts at the center of the black hole and widens out as it reaches the bottom of the image. It is streaked with lines of white, pink and purple which represent helix-shaped magnetic fields. We can observe these jets in many wavelengths of light including radio, optical, and X-ray. NASA’s Imaging X-ray Polarimetry Explorer (IXPE) recently collaborated with radio and optical telescopes to observe this jet and determine how the X-rays are generated in these types of celestial environments.NASA/Pablo Garcia Scientists had two competing possible explanations for the X-rays, one involving protons and one involving electrons. Each of these mechanisms would have a different signature in the polarization of X-ray light. Polarization is a property of light that describes the average direction of the electromagnetic waves that make up light.
If the X-rays in a black hole’s jets are highly polarized, that would mean that the X-rays are produced by protons gyrating in the magnetic field of the jet or protons interacting with jet’s photons. If the X-rays have a lower polarization degree, it would suggest that electron-photons interactions lead to X-ray production.
IXPE, which launched Dec. 9, 2021, is the only satellite flying today that can make such a polarization measurement.
“This was one of the biggest mysteries about supermassive black hole jets” said Iván Agudo, lead author of the study and astronomer at the Instituto de Astrofísica de Andalucía – CSIC in Spain. “And IXPE, with the help of a number of supporting ground-based telescopes, finally provided us with the tools to solve it.”
Astronomers found that electrons must be the culprits through a process called Compton Scattering. Compton scattering (or the Compton effect) happens when a photon loses or gains energy after interacting with a charged particle, usually an electron. Within jets from supermassive black holes, electrons move near the speed of light. IXPE helped scientists learn that, in the case of a blazar jet, the electrons have enough energy to scatter photons of infrared light up to X-ray wavelengths.
BL Lacertae (BL Lac for short) is one of the first blazars ever discovered, originally thought to be a variable star in the Lacerta constellation. IXPE observed BL Lac at the end of November 2023 for seven days along with several ground-based telescopes measuring optical and radio polarization at the same time. While IXPE observed BL Lac in the past, this observation was special. Coincidentally, during the X-ray polarization observations, the optical polarization of BL Lac reached a high number: 47.5%.
“This was not only the most polarized BL Lac has been in the past 30 years, this is the most polarized any blazar has ever been observed!” said Ioannis Liodakis, one of the primary authors of the study and astrophysicist at the Institute of Astrophysics – FORTH in Greece.
IXPE found the X-rays were far less polarized than the optical light. The team was not able to measure a strong polarization signal and determined that the X-rays cannot be more polarized than 7.6%. This proved that electrons interacting with photons, via the Compton effect, must explain the X-rays.
The fact that optical polarization was so much higher than in the X-rays can only be explained by Compton scattering.
Steven Ehlert
Project Scientist for IXPE at Marshall Space Flight Center
“The fact that optical polarization was so much higher than in the X-rays can only be explained by Compton scattering”, said Steven Ehlert, project scientist for IXPE and astronomer at the Marshall Space Flight Center.
“IXPE has managed to solve another black hole mystery” said Enrico Costa, astrophysicist in Rome at the Istituto di Astrofísica e Planetologia Spaziali of the Istituto Nazionale di Astrofísica. Costa is one of the scientists who conceived this experiment and proposed it to NASA 10 years ago, under the leadership of Martin Weisskopf, IXPE’s first principal investigator. “IXPE’s polarized X-ray vision has solved several long lasting mysteries, and this is one of the most important. In some other cases, IXPE results have challenged consolidated opinions and opened new enigmas, but this is how science works and, for sure, IXPE is doing very good science.”
What’s next for the blazar research?
“One thing we’ll want to do is try to find as many of these as possible,” Ehlert said. “Blazars change quite a bit with time and are full of surprises.”
More about IXPE
IXPE, which continues to provide unprecedented data enabling groundbreaking discoveries about celestial objects across the universe, is a joint NASA and Italian Space Agency mission with partners and science collaborators in 12 countries. IXPE is led by NASA’s Marshall Space Flight Center in Huntsville, Alabama. BAE Systems, Inc., headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder. Learn more about IXPE’s ongoing mission here:
https://www.nasa.gov/ixpe
Elizabeth Landau
NASA Headquarters
elizabeth.r.landau@nasa.gov
202-358-0845
Lane Figueroa
Marshall Space Flight Center, Huntsville, Ala.
lane.e.figueroa@nasa.gov
256.544.0034
Share
Details
Last Updated May 06, 2025 EditorBeth RidgewayContactElizabeth R. Landauelizabeth.r.landau@nasa.govLocationMarshall Space Flight Center Related Terms
Marshall Space Flight Center IXPE (Imaging X-ray Polarimetry Explorer) Marshall Astrophysics Explore More
4 min read NASA’s Chandra Diagnoses Cause of Fracture in Galactic “Bone”
Article 5 days ago 4 min read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
Article 2 weeks ago 6 min read NASA’s Chandra Releases New 3D Models of Cosmic Objects
Article 3 weeks ago Keep Exploring Discover Related Topics
IXPE
About Marshall Science
Marshall Space Flight Center
Black Holes
Black Holes Black holes are among the most mysterious cosmic objects, much studied but not fully understood. These objects aren’t…
View the full article
-
By USH
Several days ago, a massive blackout swept across large parts of Spain, Portugal, and parts of southern France. Millions were left without power as the interconnected European energy grid experienced a rare and abrupt failure. While authorities quickly pointed to a "rare atmospheric phenomenon" as the cause, not everyone is convinced.
Here are some explanations of authorities as well as controversial theories:
According to REN, Portugal’s national electricity grid operator, the blackout was triggered by a fault originating in Spain’s power infrastructure. The disruption, they claim, was linked to "induced atmospheric variation", a term referring to extreme temperature differences that led to anomalous oscillations in high-voltage transmission lines. These oscillations reportedly caused synchronization failures between regional grid systems, ultimately sparking a chain reaction of failures across the European network.
What makes the situation even more intriguing is that just days before the blackout, Spain hit a historic energy milestone. On April 16, for the first time, the country’s electricity demand was met entirely by renewable energy sources - solar, wind, and hydro, during a weekday. It raises questions whether the outage was caused by a technical failure of this new renewable energy system.
While this achievement is noteworthy, it also exposes the fragility of a grid increasingly reliant on variable energy sources, especially solar, which can fluctuate dramatically with weather and atmospheric conditions.
Despite official explanations, some experts and observers remain skeptical. There were no solar flares or geomagnetic storms in the days leading up to the blackout, and solar activity had been relatively calm. Critics argue that while atmospheric disturbances may have played a role, they are not sufficient to explain such a widespread, synchronized failure.
Despite the fact that the blackout this time was probably not caused by solar flares or geomagnetic storms it has been proven that Earth’s magnetic shield is rapidly weakening, leaving us increasingly vulnerable to powerful solar storms. The magnetic north pole is accelerating toward Siberia, and the South Atlantic Anomaly continues to expand, ominous signs that a looming plasma event could bring consequences far beyond just technological disruption.
This has led to speculation that the blackout could have been intentional, possibly even a test run for handling future crises or threats to infrastructure.
Among the more controversial theories is the suggestion that this event might have involved the use of a graphite bomb, a non-lethal weapon designed to disable power grids. These devices disperse ultra-fine carbon filaments into high-voltage power lines, causing short circuits by creating conductive paths between lines. Such an attack would appear as a grid malfunction but could be devastating in scale.
Another controversial theory is that the outage has been caused by weather manipulation systems such as HAARP or the Ice Cube Neutrino observatory, constructed at the Amundsen–Scott South Pole Station in Antarctica.
Could this have been a covert drill or a demonstration of vulnerability? Some point to global forums, such as the World Government Summit, where figures like Klaus Schwab have warned about Black Swan: An unpredictable event that is beyond what is normally expected of a situation and has potentially severe consequences.
Whether the blackout was triggered by a rare natural event, a technical failure, or something more deliberate, it seems only a matter of time before we face a true Black Swan event. View the full article
-
By European Space Agency
The European Space Agency's XMM-Newton is playing a crucial role in investigating the longest and most energetic bursts of X-rays seen from a newly awakened black hole. Watching this strange behaviour unfold in real time offers a unique opportunity to learn more about these powerful events and the mysterious behaviour of massive black holes.
View the full article
-
By NASA
7 min read
Eclipses, Science, NASA Firsts: Heliophysics Big Year Highlights
One year ago today, a total solar eclipse swept across the United States. The event was a cornerstone moment in the Heliophysics Big Year, a global celebration of the Sun’s influence on Earth and the entire solar system. From October 2023 to December 2024 — a period encompassing two solar eclipses across the U.S., two new NASA heliophysics missions, and one spacecraft’s history-making solar flyby — NASA celebrated the Sun’s widespread influence on our lives.
An infographic showing key numbers summarizing the activities and events of the Heliophysics Big Year, which spanned from Oct. 14, 2023 – Dec. 24, 2024. NASA/Miles Hatfield/Kristen Perrin Annular Solar Eclipse
An annular (or “ring of fire”) solar eclipse occurred Oct. 14, 2023, and kicked off the Helio Big Year with a bang. Millions of people across North America witnessed the Moon crossing in front of the Sun, creating this brilliant celestial event. NASA’s live broadcast had more than 11 million views across different platforms.
On Oct. 14, 2023, an annular solar eclipse crossed North, Central, and South America. Visible in parts of the United States, Mexico, and many countries in South and Central America, millions of people in the Western Hemisphere were able to experience this “ring of fire” eclipse. NASA’s official broadcast and outreach teams were located in Kerrville, TX, and Albuquerque, NM, to capture the event and celebrate with the communities in the path of annularity.
Credit: NASA/Ryan Fitzgibbons Before the eclipse, NASA introduced the 2023 Eclipse Explorer, an interactive map to explore eclipse details for any location in the United States. NASA shared tips on eclipse safety, including through a video with NSYNC’s Lance Bass and even with an augmented reality filter.
Scientists also studied conditions during the annular eclipse with sounding rockets, balloons, and amateur radio.
Total Solar Eclipse
On April 8, 2024, millions of people across North America experienced a total solar eclipse that darkened parts of 15 U.S. states in the path of totality.
Ahead of the event, NASA hosted a widespread safety campaign, handed out over 2 million solar viewing glasses, and produced an interactive map to help viewers plan their viewing experience. On eclipse day, NASA also hosted a live broadcast from locations across the country, drawing over 38 million views.
Researchers studied the eclipse and its effects on Earth using a variety of techniques, including international radar networks, scientific rockets, weather balloons, and even high-altitude NASA WB-57 jets. Several NASA-funded citizen science projects also conducted experiments. These projects included more than 49,000 volunteers who contributed an astounding 53 million observations.
This infographic shares metrics from citizen science projects that occurred during the total solar eclipse on April 8, 2024. NASA/Kristen Perrin “We have opened a window for all Americans to discover our connection to the Sun and ignited enthusiasm for engaging with groundbreaking NASA science, whether it’s through spacecraft, rockets, balloons, or planes,” said Kelly Korreck, a Heliophysics program scientist at NASA Headquarters in Washington. “Sharing the excitement of NASA heliophysics with our fellow citizens has truly been amazing.”
Science Across the Solar System
NASA’s heliophysics missions gather data on the Sun and its effects across the solar system.
The Atmospheric Waves Experiment (AWE) mission launched from NASA’s Kennedy Space Center in Florida Nov. 9, 2023, and was installed on the International Space Station nine days later. This mission studies atmospheric gravity waves, how they form and travel through Earth’s atmosphere, and their role in space weather.
Orbital footage from the International Space Station shows NASA’s Atmospheric Waves Experiment (AWE) as it was extracted from SpaceX’s Dragon cargo spacecraft. NASA/International Space Station On Nov. 4, 2024, the Coronal Diagnostic Experiment (CODEX) mission also launched to the space station, where it studies the solar wind, with a focus on what heats it and propels it through space.
Pictured is the CODEX instrument inside the integration and testing facility at NASA’s Goddard Space Flight Center. NASA/CODEX team The Aeronomy of Ice in the Mesosphere (AIM) mission ended after 16 years studying Earth’s highest clouds, called polar mesospheric clouds.
An artist’s concept shows the Aeronomy of Ice in the Mesosphere (AIM) spacecraft orbiting Earth. NASA’s Goddard Space Flight/Center Conceptual Image Lab NASA’s Ionospheric Connection Explorer (ICON) also ended after three successful years studying the outermost layer of Earth’s atmosphere, called the ionosphere.
NASA’s ICON, shown in this artist’s concept, studied the frontiers of space, the dynamic zone high in our atmosphere where terrestrial weather from below meets space weather above. NASA’s Goddard Space Flight Center/Conceptual Image Lab Voyager has been operating for more than 47 years, continuing to study the heliosphere and interstellar space. In October 2024, the Voyager 1 probe stopped communicating. The mission team worked tirelessly to troubleshoot and ultimately reestablish communications, keeping the mission alive to continue its research.
In this artist’s conception, NASA’s Voyager 1 spacecraft has a bird’s-eye view of the solar system. The circles represent the orbits of the major outer planets: Jupiter, Saturn, Uranus, and Neptune. Launched in 1977, Voyager 1 visited the planets Jupiter and Saturn. The spacecraft is now 13 billion miles from Earth, making it the farthest and fastest-moving human-made object ever built. In fact, Voyager 1 is now zooming through interstellar space, the region between the stars that is filled with gas, dust, and material recycled from dying stars. NASA’s Hubble Space Telescope is observing the material along Voyager’s path through space. NASA/STSci While the goal of the NASA heliophysics fleet is to study the Sun and its influence, these missions often make surprising discoveries that they weren’t originally designed to. From finding 5,000 comets to studying the surface of Venus, NASA highlighted and celebrated these bonus science connections during the Helio Big Year.
Solar Maximum
Similar to Earth, the Sun has its own seasons of activity, with a solar minimum and solar maximum during a cycle that lasts about 11 years. The Helio Big Year happened to coincide with the Sun’s active period, with NASA and NOAA announcing in October 2024 that the Sun had reached solar maximum, the highest period of activity. Some of the largest solar storms on current record occurred in 2024, and the largest sunspot in nearly a decade was spotted in the spring of 2024, followed by a colossal X9.0 solar flare Oct. 3, 2024.
Sunspots are cooler, darker areas on the solar surface where the Sun’s magnetic field gets especially intense, often leading to explosive solar eruptions. This sunspot group was so big that nearly 14 Earths could fit inside it! The eruptions from this region resulted in the historic May 2024 geomagnetic storms, when the aurora borealis, or northern lights, were seen as far south as the Florida Keys.
Credit: NASA/Beth Anthony Viewers across the U.S. spotted auroras in their communities as a result of these storms, proving that you can capture amazing aurora photography without advanced equipment.
The Big Finale: Parker’s Close Approach to the Sun
NASA’s Parker Solar Probe holds the title as the closest human-made object to the Sun. On Dec. 24, 2024, Parker made history by traveling just 3.8 million miles from the Sun’s surface at a whopping 430,000 miles per hour.
“Flying this close to the Sun is a historic moment in humanity’s first mission to a star,” said Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters.
Controllers have confirmed NASA’s mission to “touch” the Sun survived its record-breaking closest approach to the solar surface on Dec. 24, 2024.
Credit: NASA/Joy Ng Parker Solar Probe’s close approach capped off a momentous Heliophysics Big Year that allowed NASA scientists to gather unprecedented data and invited everyone to celebrate how the Sun impacts us all. In the growing field of heliophysics, the Helio Big Year reminded us all how the Sun touches everything and how important it is to continue studying our star’s incredible influence.
A Big Year Ahead
Though the Helio Big Year is over, heliophysics is only picking up its pace in 2025. We remain in the solar maximum phase, so heightened solar activity will continue into the near future. In addition, several new missions are expected to join the heliophysics fleet by year’s end.
The PUNCH mission, a set of four Sun-watching satellites imaging solar eruptions in three dimensions, and EZIE, a trio of Earth-orbiting satellites tracing the electrical currents powering Earth’s auroras, have already launched. The LEXI instrument, an X-ray telescope studying Earth’s magnetosphere from the Moon, also launched through NASA’s CLPS (Commercial Lunar Payload Services) initiative.
Future missions slated for launch include TRACERS, which will investigate the unusual magnetic environment near Earth’s poles, and ESCAPADE, venturing to Mars to measure the planet’s unique magnetic environment.
The last two missions will share a ride to space. The Carruthers Geocorona Observatory will look back at home, studying ultraviolet light emitted by the outermost boundaries of our planet’s atmosphere. The IMAP mission will instead look to the outermost edges of our heliosphere, mapping the boundaries where the domain of our Sun transitions into interstellar space.
By Desiree Apodaca
NASA’s Goddard Space Flight Center
Share
Details
Last Updated Apr 08, 2025 Editor Miles Hatfield Related Terms
Heliophysics Goddard Space Flight Center Heliophysics Division NASA Centers & Facilities NASA Directorates Science & Research Science Mission Directorate The Solar System The Sun Explore More
5 min read Connected Learning Ecosystems: Educators Gather to Empower Learners and Themselves
Article
21 hours ago
2 min read Hubble Studies a Nearby Galaxy’s Star Formation
Article
4 days ago
3 min read Hubble Spots Stellar Sculptors in Nearby Galaxy
Article
4 days ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
Hubble Examines Stars Ensconced in a Cocoon of Gas
NGC 460 is an open cluster of stars within a greater collection of nebulae and star clusters known as the N83-84-85 complex. NASA, ESA, and C. Lindberg (The Johns Hopkins University); Processing: Gladys Kober (NASA/Catholic University of America)
Download this image
An open cluster of stars shines through misty, cocoon-like gas clouds in this Hubble Space Telescope image of NGC 460.
NGC 460 is located in a region of the Small Magellanic Cloud, a dwarf galaxy that orbits the Milky Way. This particular region contains a number of young star clusters and nebulae of different sizes ― all likely related to each other. The clouds of gas and dust can give rise to stars as portions of them collapse, and radiation and stellar winds from those hot, young bright stars in turn shape and compress the clouds, triggering new waves of star formation. The hydrogen clouds are ionized by the radiation of nearby stars, causing them to glow.
The NGC 460 star cluster resides in one of the youngest parts of this interconnected complex of stellar clusters and nebulae, which is also home to a number of O-type stars: the brightest, hottest and most massive of the normal, hydrogen-burning stars (called main-sequence stars) like our Sun. O-type stars are rare ― out of more than 4 billion stars in the Milky Way, only about 20,000 are estimated to be O-type stars. The area that holds NGC 460, known as N83, may have been created when two hydrogen clouds in the region collided with one another, creating several O-type stars and nebulae.
Open clusters like NGC 460 are made of anywhere from a few dozen to a few thousand stars loosely knitted together by gravity. Open clusters generally contain young stars, which may migrate outward into their galaxies as time progresses. NGC 460’s stars may someday disperse into the Small Magellanic Cloud, one of the Milky Way’s closest galactic neighbors at about 200,000 light-years away. Because it is both close and bright, it offers an opportunity to study phenomena that are difficult to examine in more distant galaxies.
Six overlapping observations from a study of the gas and dust between stars, called the interstellar medium, were combined to create this Hubble image. The study aims to understand how gravitational forces between interacting galaxies can foster bursts of star formation. This highly detailed 65 megapixel mosaic includes both visible and infrared wavelengths. Download the 400 MB file and zoom in to see some of the intricacies captured by Hubble.
Explore More
Hubble’s Star Clusters
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, MD
claire.andreoli@nasa.gov
Share
Details
Last Updated Mar 08, 2025 Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Astrophysics Astrophysics Division Goddard Space Flight Center Magellanic Clouds Star Clusters Stars The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble’s Cosmic Adventure
Hubble’s Night Sky Challenge
Hubble’s 35th Anniversary
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.