Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      An unexpectedly strong solar storm rocked our planet on April 23, 2023, sparking auroras as far south as southern Texas in the U.S. and taking the world by surprise. 
      Two days earlier, the Sun blasted a coronal mass ejection (CME) — a cloud of energetic particles, magnetic fields, and solar material — toward Earth. Space scientists took notice, expecting it could cause disruptions to Earth’s magnetic field, known as a geomagnetic storm. But the CME wasn’t especially fast or massive, and it was preceded by a relatively weak solar flare, suggesting the storm would be minor. But it became severe.
      Using NASA heliophysics missions, new studies of this storm and others are helping scientists learn why some CMEs have more intense effects — and better predict the impacts of future solar eruptions on our lives.
      During the night of April 23 to 24, 2023, a geomagnetic storm produced auroras that were witnessed as far south as Arizona, Arkansas, and Texas in the U.S. This photo shows green aurora shimmering over Larimore, North Dakota, in the early morning of April 24. Copyright Elan Azriel, used with permission Why Was This Storm So Intense?
      A paper published in the Astrophysical Journal on March 31 suggests the CME’s orientation relative to Earth likely caused the April 2023 storm to become surprisingly strong.
      The researchers gathered observations from five heliophysics spacecraft across the inner solar system to study the CME in detail as it emerged from the Sun and traveled to Earth.
      They noticed a large coronal hole near the CME’s birthplace. Coronal holes are areas where the solar wind — a stream of particles flowing from the Sun — floods outward at higher than normal speeds.
      “The fast solar wind coming from this coronal hole acted like an air current, nudging the CME away from its original straight-line path and pushing it closer to Earth’s orbital plane,” said the paper’s lead author, Evangelos Paouris of the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “In addition to this deflection, the CME also rotated slightly.”
      Paouris says this turned the CME’s magnetic fields opposite to Earth’s magnetic field and held them there — allowing more of the Sun’s energy to pour into Earth’s environment and intensifying the storm.
      The strength of the April 2023 geomagnetic storm was a surprise in part because the coronal mass ejection (CME) that produced it followed a relatively weak solar flare, seen as the bright area to the lower right of center in this extreme ultraviolet image of the Sun from NASA’s Solar Dynamics Observatory. The CMEs that produce severe geomagnetic storms are typically preceded by stronger flares. However, a team of scientists think fast solar wind from a coronal hole (the dark area below the flare in this image) helped rotate the CME and made it more potent when it struck Earth. NASA/SDO Cool Thermosphere
      Meanwhile, NASA’s GOLD (Global-scale Observations of Limb and Disk) mission revealed another unexpected consequence of the April 2023 storm at Earth.
      Before, during, and after the storm, GOLD studied the temperature in the middle thermosphere, a part of Earth’s upper atmosphere about 85 to 120 miles overhead. During the storm, temperatures increased throughout GOLD’s wide field of view over the Americas. But surprisingly, after the storm, temperatures dropped about 90 to 198 degrees Fahrenheit lower than they were before the storm (from about 980 to 1,070 degrees Fahrenheit before the storm to 870 to 980 degrees Fahrenheit afterward).
      “Our measurement is the first to show widespread cooling in the middle thermosphere after a strong storm,” said Xuguang Cai of the University of Colorado, Boulder, lead author of a paper about GOLD’s observations published in the journal JGR Space Physics on April 15, 2025.
      The thermosphere’s temperature is important, because it affects how much drag Earth-orbiting satellites and space debris experience.
      “When the thermosphere cools, it contracts and becomes less dense at satellite altitudes, reducing drag,” Cai said. “This can cause satellites and space debris to stay in orbit longer than expected, increasing the risk of collisions. Understanding how geomagnetic storms and solar activity affect Earth’s upper atmosphere helps protect technologies we all rely on — like GPS, satellites, and radio communications.”
      Predicting When Storms Strike
      To predict when a CME will trigger a geomagnetic storm, or be “geoeffective,” some scientists are combining observations with machine learning. A paper published last November in the journal Solar Physics describes one such approach called GeoCME.
      Machine learning is a type of artificial intelligence in which a computer algorithm learns from data to identify patterns, then uses those patterns to make decisions or predictions.
      Scientists trained GeoCME by giving it images from the NASA/ESA (European Space Agency) SOHO (Solar and Heliospheric Observatory) spacecraft of different CMEs that reached Earth along with SOHO images of the Sun before, during, and after each CME. They then told the model whether each CME produced a geomagnetic storm.
      Then, when it was given images from three different science instruments on SOHO, the model’s predictions were highly accurate. Out of 21 geoeffective CMEs, the model correctly predicted all 21 of them; of 7 non-geoeffective ones, it correctly predicted 5 of them.
      “The algorithm shows promise,” said heliophysicist Jack Ireland of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who was not involved in the study. “Understanding if a CME will be geoeffective or not can help us protect infrastructure in space and technological systems on Earth. This paper shows machine learning approaches to predicting geoeffective CMEs are feasible.”
      The white cloud expanding outward in this image sequence is a coronal mass ejection (CME) that erupted from the Sun on April 21, 2023. Two days later, the CME struck Earth and produced a surprisingly strong geomagnetic storm. The images in this sequence are from a coronagraph on the NASA/ESA (European Space Agency) SOHO (Solar and Heliospheric Observatory) spacecraft. The coronagraph uses a disk to cover the Sun and reveal fainter details around it. The Sun’s location and size are indicated by a small white circle. The planet Jupiter appears as a bright dot on the far right. NASA/ESA/SOHO Earlier Warnings
      During a severe geomagnetic storm in May 2024 — the strongest to rattle Earth in over 20 years — NASA’s STEREO (Solar Terrestrial Relations Observatory) measured the magnetic field structure of CMEs as they passed by.
      When a CME headed for Earth hits a spacecraft first, that spacecraft can often measure the CME and its magnetic field directly, helping scientists determine how strong the geomagnetic storm will be at Earth. Typically, the first spacecraft to get hit are one million miles from Earth toward the Sun at a place called Lagrange Point 1 (L1), giving us only 10 to 60 minutes advanced warning.
      By chance, during the May 2024 storm, when several CMEs erupted from the Sun and merged on their way to Earth, NASA’s STEREO-A spacecraft happened to be between us and the Sun, about 4 million miles closer to the Sun than L1.
      A paper published March 17, 2025, in the journal Space Weather reports that if STEREO-A had served as a CME sentinel, it could have provided an accurate prediction of the resulting storm’s strength 2 hours and 34 minutes earlier than a spacecraft could at L1.
      According to the paper’s lead author, Eva Weiler of the Austrian Space Weather Office in Graz, “No other Earth-directed superstorm has ever been observed by a spacecraft positioned closer to the Sun than L1.”
      Earth’s Lagrange points are places in space where the gravitational pull between the Sun and Earth balance, making them relatively stable locations to put spacecraft. NASA By Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      View the full article
    • By NASA
      Ozone high in the stratosphere protects us from the Sun’s ultraviolet light. But ozone near the ground is a pollutant that harms people and plants. The San Joaquin Valley has some of the most polluted air in the country, and NASA scientists with the new Ozone Where We Live (OWWL) project are working to measure ozone and other pollutants there. They need your help!  
      Do you live or work in Bakersfield, CA? Sign up to host an ozone sensor! It’s like a big lunch box that you place in your yard, but it’s not packed with tuna and crackers. It’s filled with sensors that measure temperature and humidity and sniff out dangerous gases like methane, carbon monoxide, carbon dioxide, and of course, ozone. 
      Can you fly a plane? Going to the San Joaquin Valley? Sign up to take an ozone sensor on your next flight! You can help measure ozone levels in layers of the atmosphere that are hard for satellites to investigate. Scientists will combine the data you take with data from NASA’s TEMPO satellite to improve air quality models and measurements within the region. Find out more here or email: Emma.l.yates@nasa.gov
      Join the Ozone Where We Live (OWWL) project and help NASA scientists protect the people of the San Joaquin Valley! Credit: Emma Yates Share








      Details
      Last Updated Jun 24, 2025 Related Terms
      Citizen Science Earth Science Division Tropospheric Emissions: Monitoring of Pollution (TEMPO) Explore More
      4 min read c-FIRST Team Sets Sights on Future Fire-observing Satellite Constellations


      Article


      3 weeks ago
      2 min read Summer Students Scan the Radio Skies with SunRISE


      Article


      4 weeks ago
      2 min read Space Cloud Watch Needs Your Photos of Night-Shining Clouds 


      Article


      1 month ago
      View the full article
    • By NASA
      4 Min Read NASA to Gather In-Flight Imagery of Commercial Test Capsule Re-Entry
      During the September 2023 daytime reentry of the OSIRIS-REx sample return capsule, the SCIFLI team captured visual data similar to what they're aiming to capture during Mission Possible. Credits: NASA/SCIFLI A NASA team specializing in collecting imagery-based engineering datasets from spacecraft during launch and reentry is supporting a European aerospace company’s upcoming mission to return a subscale demonstration capsule from space.
      NASA’s Scientifically Calibrated In-Flight Imagery (SCIFLI) team supports a broad range of mission needs across the agency, including Artemis, science missions like OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer), and NASA’s Commercial Crew Program. The SCIFLI team also supports other commercial space efforts, helping to develop and strengthen public-private partnerships as NASA works to advance exploration, further cooperation, and open space to more science, people, and opportunities.

      Later this month, SCIFLI intends to gather data on The Exploration Company’s Mission Possible capsule as it returns to Earth following the launch on a SpaceX Falcon 9 rocket. One of the key instruments SCIFLI will employ is a spectrometer detects light radiating from the capsule’s surface, which researchers can use to determine the surface temperature of the spacecraft. Traditionally, much of this data comes from advanced Computational Fluid Dynamics modeling of what happens when objects of various sizes, shapes, and materials enter different atmospheres, such as those on Earth, Mars, or Venus.
      “While very powerful, there is still some uncertainty in these Computational Fluid Dynamics models. Real-world measurements made by the SCIFLI team help NASA researchers refine their models, meaning better performance for sustained flight, higher safety margins for crew returning from the Moon or Mars, or landing more mass safely while exploring other planets,” said Carey Scott, SCIFLI capability lead at NASA’s Langley Research Center in Hampton, Virginia.
      A rendering of a space capsule from The Exploration Company re-entering Earth’s atmosphere.
      Image courtesy of The Exploration CompanyThe Exploration Company The SCIFLI team will be staged in Hawaii and will fly aboard an agency Gulfstream III aircraft during the re-entry of Mission Possible over the Pacific Ocean.
      “The data will provide The Exploration Company with a little bit of redundancy and a different perspective — a decoupled data package, if you will — from their onboard sensors,” said Scott.
      From the Gulfstream, SCIFLI will have the spectrometer and an ultra-high-definition telescope trained on Mission Possible. The observation may be challenging since the team will be tracking the capsule against the bright daytime sky. Researchers expect to be able to acquire the capsule shortly after entry interface, the point at roughly 200,000 feet, where the atmosphere becomes thick enough to begin interacting with a capsule, producing compressive effects such as heating, a shock layer, and the emission of photons, or light.
      Real-world measurements made by the SCIFLI team help NASA researchers refine their models, meaning better performance for sustained flight, higher safety margins for crew returning from the Moon or Mars, or landing more mass safely while exploring other planets.
      Carey Scott
      SCIFLI Capability Lead

      In addition to spectrometer data on Mission Possible’s thermal protection system, SCIFLI will capture imagery of the parachute system opening. First, a small drogue chute deploys to slow the capsule from supersonic to subsonic, followed by the deployment of a main parachute. Lastly, cloud-cover permitting, the team plans to image splashdown in the Pacific, which will help a recovery vessel reach the capsule as quickly as possible.
      If flying over the ocean and capturing imagery of a small capsule as it zips through the atmosphere during the day sounds difficult, it is. But this mission, like all SCIFLI’s assignments, has been carefully modeled, choreographed, and rehearsed in the months and weeks leading up to the mission. There will even be a full-dress rehearsal in the days just before launch.
      Not that there aren’t always a few anxious moments right as the entry interface is imminent and the team is looking out for its target. According to Scott, once the target is acquired, the SCIFLI team has its procedures nailed down to a — pardon the pun — science.
      “We rehearse, and we rehearse, and we rehearse until it’s almost memorized,” he said.
      Ari Haven, left, asset coodinator for SCIFLI’s support of Mission Possible, and Carey Scott, principal engineer for the mission, in front of the G-III aircraft the team will fly on.
      Credit: NASA/Carey ScottNASA/Carey Scott The Exploration Company, headquartered in Munich, Germany, and Bordeaux,
      France, enlisted NASA’s support through a reimbursable Space Act Agreement and will use SCIFLI data to advance future capsule designs.
      “Working with NASA on this mission has been a real highlight for our team. It shows what’s possible when people from different parts of the world come together with a shared goal,” said Najwa Naimy, chief program officer at The Exploration Company. “What the SCIFLI team is doing to spot and track our capsule in broad daylight, over the open ocean, is incredibly impressive. We’re learning from each other, building trust, and making real progress together.”
      NASA Langley is known for its expertise in engineering, characterizing, and developing spacecraft systems for entry, descent, and landing. The Gulfstream III aircraft is operated by the Flight Operations Directorate at NASA’s Armstrong Flight Research Center in Edwards, California.
      Share
      Details
      Last Updated Jun 18, 2025 EditorJoe AtkinsonContactJoe Atkinsonjoseph.s.atkinson@nasa.govLocationNASA Langley Research Center Related Terms
      Langley Research Center General Space Operations Mission Directorate Explore More
      4 min read Career Exploration: Using Ingenuity and Innovation to Create ‘Memory Metals’
      Article 20 hours ago 3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 23 hours ago 2 min read NASA Seeks Commercial Feedback on Space Communication Solutions
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Megan Harvey is a utilization flight lead and capsule communicator, or capcom, in the Research Integration Office at NASA’s Johnson Space Center in Houston. She integrates science payload constraints related to vehicles’ launch and landing schedules. She is also working to coordinate logistics for the return of SpaceX vehicles to West Coast landing sites. 
      Read on to learn about Harvey’s career with NASA and more! 
      Megan Harvey talking to a flight director from the Remote Interface Officer console in the Mission Control Center at NASA’s Johnson Space Center in Houston. NASA/Mark Sowa Johnson Space Center is home to the best teams, both on and off the planet!
      Megan Harvey
      Utilization Flight Lead and Capsule Communicator
      Where are you from? 
      I am from Long Valley, New Jersey. 
      How would you describe your job to family or friends who may not be familiar with NASA?  
      Many biological experiments conducted on the space station have specific time constraints, including preparation on the ground and when crew interacts with them on orbit. I help coordinate and communicate those kinds of constraints within the International Space Station Program and with the scientific community. This is especially important because launch dates seldom stay where they are originally planned! I am also currently working in a cross-program team coordinating the logistics for the return to West Coast landings of SpaceX vehicles. 
      As a capcom, I’m the position in the Mission Control Center in Houston that talks to the crew. That would be me responding to someone saying, “Houston, we have a problem!” 
      I’ve worked in the Research Integration Office since the beginning of 2024 and have really enjoyed the change of pace after 11 years in the Flight Operations Directorate, where I supported several different consoles for the International Space Station. I’ve kept my capcom certification since 2021, and it is an absolute dream come true every time I get to sit in the International Space Station Flight Control Room. Johnson Space Center is home to the best teams, both on and off the planet! 
      How long have you been working for NASA?  
      I have been working for the agency for 13 years. 
      What advice would you give to young individuals aspiring to work in the space industry or at NASA?  
      Some things that I have found that helped me excel are: 
      1. Practice: I am surprised over and over again how simply practicing things makes you better at them, but it works! 
      2. Preparation: Don’t wing things!  
      3. Curiosity: Keep questioning! 
      4. Enthusiasm! 
      Megan Harvey and friends after biking 25 miles to work. What was your path to NASA?  
      I had a very circuitous path to NASA. Since going to Space Camp in Huntsville, Alabama, when I was 10 years old, I wanted to be a capcom and work for NASA. I also traveled to Russia in high school and loved it. I thought working on coordination between the Russian and U.S. space programs would be awesome. In pursuit of those dreams, I earned a bachelor’s degree in physics with a minor in Russian language from Kenyon College in Gambier, Ohio, but I had so much fun also participating in music extracurriculars that my grades were not quite up to the standards of working at NASA. After graduation, I worked at a technology camp for a summer and then received a research assistant position in a neuroscience lab at Princeton University in New Jersey. 
      After a year or so, I realized that independent research was not for me. I then worked in retail for a year before moving to California to be an instructor at Astrocamp, a year-round outdoor education camp. I taught a number of science classes, including astronomy, and had the opportunity to see the Perseverance Mars rover being put together at NASA’s Jet Propulsion Laboratory in Southern California. It dawned on me that I should start looking into aerospace-related graduate programs. After three years at Embry-Riddle in Daytona Beach, Florida, I received a master’s degree in engineering physics and a job offer for a flight control position, initially working for a subcontractor of United Space Alliance. I started in mission control as an attitude determination and control officer in 2012 and kept that certification until the end of 2023. Along the way, I was a Motion Control Group instructor; a Russian systems specialist and operations lead for the Houston Support Group working regularly in Moscow; a Remote Interface Officer (RIO); and supported capcom and the Vehicle Integrator team in a multipurpose support room for integration and systems engineers. I have to pinch myself when I think about how I somehow made my childhood dreams come true. 
      Is there someone in the space, aerospace, or science industry that has motivated or inspired you to work for the space program? Or someone you discovered while working for NASA who inspires you?   
      After I switched offices to Houston Support Group/RIO, most of my training was led by Sergey Sverdlin. He was a real character. Despite his gruffness, he and I got along really well. We were very different people, but we truly respected each other. I was always impressed with him and sought out his approval. 
      Megan Harvey in Red Square in Moscow, Russia. What is your favorite NASA memory?  
      The most impactful experience I’ve had at NASA was working together with the Increment 68 leads during the days and months following the Soyuz coolant leak. I was increment lead RIO and just happened to be in the Increment Management Center the day of a planned Russian spacewalk. The increment lead RIO is not typically based in the Increment Management Center, but that day, things were not going well. All of our Russian colleagues had lost access to a critical network, and I was troubleshooting with the Increment Manager and the International Space Station Mission Management Team chair. 
      I was explaining to International Space Station Deputy Program Manager Dina Contella the plan for getting our colleagues access before their off-hours spacewalk when we saw a snowstorm of flakes coming out of the Soyuz on the downlink video on her office’s wall. Those flakes were the coolant. It was incredible watching Dina switch from winding down for the day to making phone call after phone call saying, “I am calling you in.” The Increment Management Center filled up and I didn’t leave until close to midnight that day. The rest of December was a flurry (no pun intended) of intense and meaningful work with the sharpest and most caring people I know. 
      What do you love sharing about station? What’s important to get across to general audiences to help them understand the benefits to life on Earth?  
      There is so much to talk about! I love giving insight into the complexities of not only the space station systems themselves, but also the international collaboration of all the teams working to keep the systems and the science running. 
      If you could have dinner with any astronaut, past or present, who would it be?  
      I would have dinner with Mae Jemison or Sally Ride. It’s too hard to pick! 
      Do you have a favorite space-related memory or moment that stands out to you?  
      I was selected by my management a few years ago to visit a Navy aircraft carrier with the SpaceX Crew-1 crew and some of the Crew-1 team leads. We did a trap landing on the deck and were launched off to go home, both via a C-2 Greyhound aircraft. It was mind blowing! I am also very lucky that I saw the last space shuttle launch from Florida when I was in graduate school. 
      Megan Harvey and NASA colleagues on the Nimitz aircraft carrier. What are some of the key projects you’ve worked on during your time at NASA? What have been your favorite?   
      My first increment lead role was RIO for Increment 59 and there was a major effort to update all our products in case of needing to decrew the space station. It was eye-opening to work with the entire increment team in this effort. I really enjoyed all the work and learning and getting to know my fellow increment leads better, including Flight Director Royce Renfrew. 
      Also, in 2021 I was assigned as the Integration Systems Engineer (ISE) lead for the Nanorack Airlock. I had never worked on a project with so many stakeholders before. I worked close to 100 revisions of the initial activation and checkout flowchart, coordinating with the entire flight control team. It was very cool to see the airlock extracted from NASA’s SpaceX Dragon trunk and installed, but it paled in comparison to the shift when we did the first airlock trash deploy. I supported as lead ISE, lead RIO, and capcom all from the capcom console, sitting next to the lead Flight Director TJ Creamer. I gave a countdown to the robotics operations systems officer commanding the deploy on the S/G loop so that the crew and flight control team could hear, “3, 2, 1, Engage!”  
      I’ll never forget the satisfaction of working through all the complications with that stellar team and getting to a successful result while also having so much fun. 
      Megan Harvey at a bouldering gym. What are your hobbies/things you enjoy outside of work?  
      I love biking, rock climbing, cooking, board games, and singing. 
      Day launch or night launch?   
      Night launch! 
      Favorite space movie?  
      Space Camp. It’s so silly. And it was the first DVD I ever bought! 
      NASA “worm” or “meatball” logo?  
      Worm 
      Every day, we’re conducting exciting research aboard our orbiting laboratory that will help us explore further into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It’s a curated hub of space station research digital media from Johnson and other centers and space agencies.  
      Sign up for our weekly email newsletter to get the updates delivered directly to you.  
      Follow updates on social media at @ISS_Research on Twitter, and on the space station accounts on Facebook and Instagram.  
      View the full article
    • By NASA
      3 min read
      Help Classify Galaxies Seen by NASA’s James Webb Space Telescope!
      The Galaxy Zoo classification interface shows you an image from NASA’s Webb telescope and asks you questions about it. Image credit: Galaxy Zoo, Zooniverse. Inset galaxy: NASA/STScI/CEERS/TACC/S. Finkelstein/M. Bagley/Z. Levay/A. Pagan NASA needs your help identifying the shapes of thousands of galaxies in images taken by our James Webb Space Telescope with the Galaxy Zoo project. These classifications will help scientists answer questions about how the shapes of galaxies have changed over time, what caused these changes, and why. Thanks to the light collecting power of Webb, there are now over 500,000 images of galaxies on website of the Galaxy Zoo citizen science project—more images than scientists can classify by themselves. 
      “This is a great opportunity to see images from the newest space telescope,” said volunteer Christine Macmillan from Aberdeen, Scotland. “Galaxies at the edge of our universe are being seen for the first time, just as they are starting to form. Just sign up and answer simple questions about the shape of the galaxy that you are seeing. Anyone can do it, ages 10 and up!”  
      As we look at more distant objects in the universe, we see them as they were billions of years ago because light takes time to travel to us. With Webb, we can spot galaxies at greater distances than ever before. We’re seeing what some of the earliest galaxies ever detected look like, for the first time. The shapes of these galaxies tell us about how they were born, how and when they formed stars, and how they interacted with their neighbors. By looking at how more distant galaxies have different shapes than close galaxies, we can work out which processes were more common at different times in the universe’s history.   
      At Galaxy Zoo, you’ll first examine an image from the Webb telescope. Then you will be asked several questions, such as ‘Is the galaxy round?’, or ‘Are there signs of spiral arms?’. If you’re quick, you may even be the first person to see the galaxies you’re asked to classify.  
      “I’m amazed and honored to be one of the first people to actually see these images! What a privilege!” said volunteer Elisabeth Baeten from Leuven, Belgium.
      Galaxy Zoo is a citizen science project with a long history of scientific impact. Galaxy Zoo volunteers have been exploring deep space since July 2007, starting with a million galaxies from a telescope in New Mexico called the Sloan Digital Sky Survey and then, moving on to images from space telescopes like NASA’s Hubble Space Telescope and ESA (European Space Agency)’s Euclid telescope. The project has revealed spectacular mergers, taught us about how the black holes at the center of galaxies affect their hosts, and provided insight into how features like spiral arms form and grow.  
      Now, in addition to adding new data from Webb, the science team has incorporated an AI algorithm called ZooBot, which will sift through the images first and label the ‘easier ones’ where there are many examples that already exist in previous images from the Hubble Space Telescope. When ZooBot is not confident on the classification of a galaxy, perhaps due to complex or faint structures, it will show it to users on Galaxy Zoo to get their human classifications, which will then help ZooBot learn more. Working together, humans and AI can accurately classify limitless numbers of galaxies. The Galaxy Zoo science team acknowledges support from the International Space Sciences Institute (ISSI), who provided funding for the team to get together and work on Galaxy Zoo. Join the project now.  
      Share








      Details
      Last Updated Apr 29, 2025 Related Terms
      Astrophysics Division Citizen Science Get Involved James Webb Space Telescope (JWST) Explore More
      2 min read Hubble Visits Glittering Cluster, Capturing Its Ultraviolet Light


      Article


      4 days ago
      5 min read Eye on Infinity: NASA Celebrates Hubble’s 35th Year in Orbit


      Article


      6 days ago
      3 min read Nine Finalists Advance in NASA’s Power to Explore Challenge


      Article


      6 days ago
      View the full article
  • Check out these Videos

×
×
  • Create New...