Jump to content

Recommended Posts

Posted
low_keystone.png

A team of astronomers, including half a dozen from the Space Telescope Science Institute (STScI) in Baltimore, Maryland, have used the Gemini Observatory's new Gemini Planet Imager to find the most solar system-like planet ever directly imaged around another star. The planet, known as 51 Eridani b, is about two times the mass of Jupiter and orbits its host star at about 13 times the Earth-sun distance (equivalent to being between Saturn and Uranus in our solar system). The planet is located about 100 light-years away from Earth. The Gemini data provide scientists with the strongest-ever spectroscopic detection of methane in the atmosphere of an extrasolar planet, adding to its similarities to giant planets in our solar system. "This planet looks like a younger, slightly bigger version of Jupiter," said Dr. Laurent Pueyo of STScI, one of the astronomers who carefully measured the planet's light against the background glare of starlight. "That we can see so clearly the presence of methane for a planet a million times fainter than its star, even through the atmosphere, bodes very well for the future characterization of even fainter planets from space using the James Webb Space Telescope and the Wide-Field Infrared Survey Telescope."

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This SectionScience Europa Clipper Europa: Ocean World Europa Clipper Home MissionOverview Facts History Timeline ScienceGoals Team SpacecraftMeet Europa Clipper Instruments Assembly Vault Plate Message in a Bottle NewsNews & Features Blog Newsroom Replay the Launch MultimediaFeatured Multimedia Resources About EuropaWhy Europa? Europa Up Close Ingredients for Life Evidence for an Ocean   To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Scientists think there is an ocean within Jupiter’s moon Europa. NASA-JPL astrobiologist Kevin Hand explains why scientists are so excited about the potential of this ice-covered world to answer one of humanity’s most profound questions. Scientists think there is an ocean within Jupiter’s moon Europa. NASA-JPL astrobiologist Kevin Hand explains why scientists are so excited about the potential of this ice-covered world to answer one of humanity’s most profound questions.
      Keep Exploring Discover More Topics From NASA
      Europa Clipper Resources
      Jupiter
      Jupiter Moons
      Science Missions
      View the full article
    • By European Space Agency
      Thanks to its newly tilted orbit around the Sun, the European Space Agency-led Solar Orbiter spacecraft is the first to image the Sun’s poles from outside the ecliptic plane. Solar Orbiter’s unique viewing angle will change our understanding of the Sun’s magnetic field, the solar cycle and the workings of space weather. 
      View the full article
    • By NASA
      NASA NASA astronaut Franklin Chang-Diaz works with a grapple fixture during a June 2002 spacewalk outside of the International Space Station. He was partnered with CNES (Centre National d’Etudes Spatiales)  astronaut Philippe Perrin for the spacewalk – one of three that occurred during the STS-111 mission. Chang-Diaz was part of NASA’s ninth class of astronaut candidates. He became the first Hispanic American to fly in space.
      Image credit: NASA
      View the full article
    • By NASA
      Scientists have discovered a star behaving like no other seen before, giving fresh clues about the origin of a new class of mysterious objects.X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Infrared: NASA/JPL/CalTech/IPAC; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk An unusual star (circled in white at right) behaving like no other seen before and its surroundings are featured in this composite image released on May 28, 2025. A team of astronomers combined data from NASA’s Chandra X-ray Observatory and the Square Kilometer Array Pathfinder (ASKAP) radio telescope on Wajarri Country in Australia to study the discovered object, known as ASKAP J1832−0911 (ASKAP J1832 for short).
      ASKAP J1832 belongs to a class of objects called “long period radio transients” discovered in 2022 that vary in radio wave intensity in a regular way over tens of minutes. This is thousands of times longer than the length of the repeated variations seen in pulsars, which are rapidly spinning neutron stars that have repeated variations multiple times a second. ASKAP J1832 cycles in radio wave intensity every 44 minutes, placing it into this category of long period radio transients. Using Chandra, the team discovered that ASKAP J1832 is also regularly varying in X-rays every 44 minutes. This is the first time that such an X-ray signal has been found in a long period radio transient.
      Image credit: X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Infrared: NASA/JPL/CalTech/IPAC; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Sols 4541–4542: Boxwork Structure, or Just “Box-Like” Structure?
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on May 14, 2025 — Sol 4539, or Martian day 4,539 of the Mars Science Laboratory mission — at 00:57:26 UTC. NASA/JPL-Caltech Written by Ashley Stroupe, Mission Operations Engineer at NASA’s Jet Propulsion Laboratory
      Earth planning date: Wednesday, May 14, 2025
      Today we came into another strange and interesting workspace (see image above) that is as exciting as the one we had on Monday. This is our first arrival at a potential boxwork structure — a series of web-like, resistant ridges visible in orbital images that we have been looking forward to visiting since we first saw them. Today’s observations will be the first step to figure out if these ridges (at least the one in front of us) is part of a boxwork structure. Unfortunately, we can’t quite reach their targets safely today because one of the rover’s front wheels is perched on a small pebble and might slip off if we move the arm. Instead, we will take a lot of remote sensing observations and reposition the rover slightly so that we can try again on Friday. 
      But before repositioning, Curiosity will start off by taking a huge Mastcam mosaic of all terrain around the rover to help us document how it is changing along our path and with elevation. Mastcam then will look at “Temblor Range,” which is a nearby low and resistant ridge that also has some rover tracks from where we previously crossed it. Mastcam is also imaging a trough that is similar to the other troughs we have been seeing locally and that have multiple possible origins. Then, Mastcam will image the AEGIS target from the prior plan. ChemCam is taking a LIBS observation of “Glendale Peak,” a rugged top portion of the ridge defining the potential boxwork structure, which is to the right of the workspace, and an RMI mosaic of Texoli butte. Mastcam follows up the ChemCam observation of Glendale Peak by imaging it. 
      In parallel with all the imaging is our monthly test and maintenance of our backup pump for the Heat Rejection System (the HRS) The HRS is a fluid loop that distributes the heat from the rover’s power source to help keep all the subsystems within reasonable temperatures. We need to periodically make sure it stays in good working order just in case our primary pump has issues. 
      After all the imaging, the rover will bump 30 centimeters backwards (about 12 inches)  to come down off the pebble and put the interesting science targets in the arm workspace. This should leave us in a position where it is safe to unstow the arm and put instruments down on the surface.
      On the second, untargeted sol of the plan, we have some additional atmospheric science including a large dust-devil survey, as well as a Navcam suprahorizon movie and a Mastcam solar tau to measure the dust in the atmosphere. We finish up with another autonomous targeting of ChemCam with AEGIS.
      Share








      Details
      Last Updated May 19, 2025 Related Terms
      Blogs Explore More
      1 min read Sols 4539-4540: Back After a Productive Weekend Plan


      Article


      6 days ago
      2 min read Sols 4536-4538: Dusty Martian Magnets


      Article


      6 days ago
      2 min read Sols 4534-4535: Last Call for the Layered Sulfates? (West of Texoli Butte, Headed West)


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...