Jump to content

Can we expect a killshot that knocks out all modern day communication and power systems?


Recommended Posts

Posted
A G1-class geomagnetic storm was underway on June 26, 2022. The reason for the storm is a crack that has opened in Earth's magnetic field, allowing solar wind to enter the magnetosphere. 

killshot%20sun%20emp%20(1).jpg

Immense cracks sometimes develop in Earth's magnetosphere and remain open for hours. Solar wind can pour through the gaps to fuel bright displays of Arctic lights.

Our magnetic shield takes the brunt of space storms, but some energy slips through its cracks, sometimes enough to cause problems with satellites, radio communication, and power systems. 

Now, this time the A G1-class geomagnetic storm won't do any damage to satellites, radio communication, and power systems but it is just a matter of time a "killshot" will be triggered by a super solar flare. It has happened before and soon or later it will happen again. 

killshot%20sun%20emp%20(2).jpg
Remember the solar storm of 1859—known as the Carrington Event - was a powerful geomagnetic solar storm during solar cycle 10 (1855–1867). It created strong auroral displays that were reported globally and caused damage to electric equipment worldwide, which at that time consisted mostly of telegraph stations. The geomagnetic storm was most likely the result of a coronal mass ejection (CME) from the Sun colliding with Earth's magnetosphere and induced one of the largest geomagnetic storms on record on September 1–2, 1859. 

A severe geomagnetic storm struck Earth on March 13, 1989 and caused a nine-hour outage of Hydro-Québec's electricity transmission system. The storm began on Earth with extremely intense auroras at the poles. The aurora could be seen as far south as Texas and Florida. 

The Halloween solar storms were a series of solar flares and coronal mass ejections that occurred from mid-October to early November 2003, peaking around October 28–29. One of the solar storms was compared by some scientists in its intensity to the Carrington Event of 1859. 

The solar superstorm a Carrington-class CME of July 2012 was an unusually large and strong coronal mass ejection (CME) event that occurred on July 23 that year. It missed the Earth with a margin of approximately nine days. The region that produced the outburst was thus not pointed directly towards the Earth at that time. The strength of the eruption was comparable to the 1859 Carrington event. 

In 2013, Edward A. Dames, Major, U.S. Army (ret.) well known for his remote viewing capabilities, stated that he is very concerned about unprecedented events that will take place in the near future which will affect the whole world. 

Edward A Dames - Quote from 2013: "I am far more concerned with a global pandemic breaking out, concomitant with a worldwide economic collapse, and leading to a devastating solar flare hitting the planet."

So far he has been right, We have experienced the global Covid 19 pandemic, a global economic collapse is unfolding right now, so will his 3rd prediction also come true and can we expect a "killshot" that knocks out all modern day communication and power systems? 

killshot%20sun%20emp%20(3).jpg

And although Edward A. Dames 3rd prediction points to a devastating solar flare it is not unthinkable that, with the ongoing turmoil in the world in mind, the danger of a “killshot” will come of an electromagnetic pulse (EMP) generated by the detonation of a high-altitude nuclear weapon instead of devastating solar flare hitting the planet.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Sols 4525-4526: The Day After Groundhog Day (Between Ghost Mountain and Texoli, Headed South)
      NASA’s Mars rover Curiosity acquired this image showing ChemCam/Mastcam targets “Breeze Hill” and “Laguna Mountain,” together with a rover wheel planted firmly on the Martian surface. Curiosity captured the image using its Left Navigation Camera on April 27, 2025 — Sol 4523, or Martian day 4,523 of the Mars Science Laboratory mission — at 13:23:32 UTC. NASA/JPL-Caltech Written by Lucy Lim, Planetary Scientist at NASA Goddard Space Flight Center
      Earth planning date: Monday, April 28, 2025
      Curiosity is back on the road! For sols 4525 and 4526, we have an isolated nominal plan in which the communication pass timing works out in such a way that the rover can fit in fully targeted science blocks on both sols rather than just the first sol. So in this power-hungry Martian winter season, we’re in a good position to take advantage of the power saved up during the missed uplink.
      The weekend drive went well and delivered the rover into a stable, arm-work-compatible position in a workspace with rock targets that we could brush with the DRT. Happy days! The DRT/APXS/MAHLI measurements will bring us geochemical and rock texture data from local bedrock blocks “Bradshaw Trail” and “Sweetwater River.” Further geochemical information will come from the ChemCam LIBS rasters on a more coarsely layered target, “Breeze Hill,” and an exposed layer expressing both polygonal features and a vein or coating of dark-toned material, “Laguna Mountain.”  
      Long-distance imaging with the ChemCam RMI included a mosaic to add to our coverage of the boxwork sedimentary features of the type Curiosity will soon be exploring in situ. A second RMI mosaic was planned to cover a truncated sedimentary horizon on the Texoli butte that may provide further evidence of ancient aeolian scouring events.  Meanwhile, the “Morrell Potrero” Mastcam mosaic will provide some detail on the base of the boxwork-bearing “Ghost Mountain” butte and on a ridge nearby. In the drive direction, the “Garnet Peak” mosaic will capture some potentially new rock textures and colors in the upcoming strata.
      Nearer-field imaging in the plan includes Mastcam documentation of some troughs that provide evidence for sand and dust movement in response to the modern aeolian environment. Additionally Mastcam mosaics went to “Breeze Hill” (covering the LIBS target) and “Live Oak” to document variations in bedding, color, and texture in the nearby bedrock. 
      A few observations of the modern environment were scheduled for the afternoon: a phase function sky survey to look for scattered light from thin water-ice clouds and a separate set of cloud altitude observations.
      Finally, a Mastcam documentation image was planned for the AEGIS LIBS target from the weekend plan! This reflects an update to the rover’s capability in which the AEGIS target can be determined and downlinked in time for the decisional downlink pass, so that we know where to look for it during the next planning cycle.
      Share








      Details
      Last Updated Apr 30, 2025 Related Terms
      Blogs Explore More
      4 min read Sols 4522-4524: Up on the Roof


      Article


      1 day ago
      2 min read Searching for the Dark in the Light


      Article


      5 days ago
      3 min read Sols 4520-4521: Prinzregententorte


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      NASA/JPL-Caltech A NASA spacesuit glove designed for use during spacewalks on the International Space Station is prepared for thermal vacuum testing inside a one-of-a-kind chamber called CITADEL (Cryogenic Ice Testing, Acquisition Development, and Excavation Laboratory) at NASA’s Jet Propulsion Laboratory in Southern California on Nov. 1, 2023.
      Part of a NASA spacesuit design called the Extravehicular Mobility Unit, the glove was tested at vacuum and minus 352 degrees Fahrenheit (minus 213 degrees Celsius) — temperatures as frigid as those Artemis III astronauts could experience on the Moon’s South Pole. A team from NASA JPL, NASA’s Johnson Space Center in Houston, and the NASA Engineering and Safety Center have collaborated on testing gloves and boots in CITADEL. Elbow joints are slated for testing next. In addition to spotting vulnerabilities with existing NASA suit designs, the experiments will help the agency prepare criteria for test methods for the next-generation lunar suit — being built by Axiom Space — which NASA astronauts will wear during the Artemis III mission.
      Read more about the testing needed for Artemis III.
      Text credit: Melissa Pamer
      Image credit: NASA/JPL-Caltech
      View the full article
    • By NASA
      Explore This Section RPS Home About About RPS About the Program About Plutonium-238 Safety and Reliability For Mission Planners Contact Power & Heat Overview Power Systems Thermal Systems Dynamic Radioisotope Power Missions Overview Timeline News Resources STEM FAQ 3 min read
      Nine Finalists Advance in NASA’s Power to Explore Challenge
      The logo for the 2024-2025 Radioisotope Power Systems Power to Explore student essay contest. Credits: NASA/David Lam NASA has named nine finalists out of the 45 semifinalist student essays in the Power to Explore Challenge, a national writing competition for K-12 students featuring the enabling power of radioisotopes. Contestants were challenged to explore how NASA has powered some of its most famous science missions, and to dream up how their personal “superpowers” would energize their success on their own radioisotope-powered science mission.
      I am always so impressed by quality of the essays and the creativity of the ideas that the students submit to NASA’s Power to Explore Challenge.
      Carl Sandifer II
      Program Manager, NASA Radioisotope Power Systems Program
      The competition asked students to learn about NASA’s radioisotope power systems (RPS), likened to a “nuclear battery” that the agency uses to explore some of the most extreme destinations in our solar system and beyond. Long before the early days of Apollo, our Moon has inspired explorers of all ages to push beyond known limits to realize impossible dreams. These systems have enabled NASA to discover “moonquakes” on Earth’s Moon and study some of the most extreme moons of the solar system, which have active volcanoes, methane lakes, and ice glaciers. As of March 25, NASA has discovered over 891 moons, each with secrets ready to be unlocked.
      Students were challenged to pick any moon in our solar system’s exploration could be enabled by this space power systems. In 275 words or less, they dreamed up a unique exploration mission of this moon and described their own power to achieve their mission goals.
      The Power to Explore Challenge offered students the opportunity to learn more about these reliable power systems, celebrate their own strengths, and interact with NASA’s diverse workforce. This year’s contest received 2,051 submitted entries from all 50 states, U.S. territories, and the Department of Defense Education Activity overseas.
      “I am always so impressed by quality of the essays and the creativity of the ideas that the students submit to NASA’s Power to Explore Challenge.” said Carl Sandifer, program manager of the Radioisotope Power Systems Program at NASA’s Glenn Research Center in Cleveland. “I’m looking forward to welcoming the winners to NASA’s Glenn this summer.”
      Entries were split into three categories: grades K-4, 5-8, and 9-12. Every student who submitted an entry received a digital certificate and an invitation to the Power Up virtual event held on March 21 that announced the semifinalists. Students learned about what powers the NASA workforce to dream big and work together to explore.
      Three national finalists in each grade category (nine finalists total) have been selected. In addition to receiving a NASA RPS prize pack, these participants will be invited to an exclusive virtual meeting with a NASA engineer or scientist to talk about their missions and have their space exploration questions answered. Winners will be announced on May 7.
      Grades K-4
      Mini M, Ann Arbor, Michigan Zachary Tolchin, Guilford, Connecticut Terry Xu, Arcadia, California Grades 5-8
      Lilah Coyan, Spokane, Washington Maggie Hou, Snohomish, Washington Sarabhesh Saravanakumar, Bothell, Washington Grades 9-12
      Faiz Karim, Jericho, New York Kairat Otorov, Trumbull, Connecticut Saanvi Shah, Bothell, Washington About the Challenge
      The challenge is funded by the Radioisotope Power Systems Program Office in NASA’s Science Mission Directorate and administered by Future Engineers under a Small Business Innovation Research phase III contract. This task is managed by the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.
      Kristin Jansen
      NASA’s Glenn Research Center
      View the full article
    • By NASA
      Seeing Earth as Only NASA Can
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Earth Day Poster for 2025 uses imagery from the Landsat mission — a joint mission with USGS — to celebrate our home planet. NASA/USGS/Landsat From the iconic image of Earthrise taken by Apollo 8 crew, to the famous Pale Blue Dot image of Earth snapped by Voyager I spacecraft, to state-of-the-art observations of our planet by new satellites such as PACE (Plankton, Aerosol, Cloud, ocean Ecosystem), NASA has given us novel ways to see our home. This Earth Day, NASA is sharing how — by building on decades of innovation—we use the unique vantage point of space to observe and understand our dynamic planet in ways that we cannot from the ground.

      NASA has been observing Earth from space for more than 60 years, with cutting-edge scientific technology that can revolutionize our understanding of our home planet and provide benefits to all humanity. NASA observations include land data that helps farmers improve crop production, research on the air we breathe, and studies of atmospheric layers high above us that protect every living thing on the planet.

      “NASA Science delivers every second of every day for the benefit all, and it begins with how we observe our home planet from the unique vantage point of space,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Our satellites, Mars rovers, astronauts and other NASA Science missions send back beautiful images of our planet, from the smallest of plankton to the pale blue dot, to help give us a comprehensive, detailed view of our home that we especially celebrate each Earth Day.”

      NASA data and tools are vital to federal, state, local, and international governments to monitor and manage land, air, and water resources. From mapping the ocean floor to finding critical mineral deposits to alerting land managers when fire risk is high, NASA’s data and information informs nearly every aspect of our economy and our lives.

      “Another way NASA celebrates Earth Day is by sharing information about how our science benefits the entire nation, such as by providing U.S. farmers and ranchers with ongoing measurements of water, crop health, wildfire predictions, and knowledge of what is being grown around the world,” said Karen St. Germain, director of NASA’s Earth Science Division at the agency’s headquarters in Washington. “This data informs field level farming and ranching decisions with impact felt as far as the commodity-trading floor and our grocery stores.”

      Next up for NASA’s work to help mitigate natural disasters is a mission called NISAR (NASA-ISRO Synthetic Aperture Radar) which is a partnership between NASA and ISRO (India Space Research Organization). NISAR, which is targeted to launch later this year, will measure land changes from earthquakes, landslides, and volcanos, producing more NASA science data to aid in disaster response. The mission’s radar will detect movements of the planet’s surface as small as 0.4 inches over areas about the size of half a tennis court. By tracking subtle changes in Earth’s surface, it will spot warning signs of imminent volcanic eruptions, help to monitor groundwater supplies, track the melt rate of ice sheets tied to sea level rise, and observe shifts in the distribution of vegetation around the world. 

      From our oceans to our skies, to our ice caps, to our mountains, and to our rivers and streams, NASA’s Earth observations enhance our understanding of the world around us and celebrate the incredible planet we call home.

      To download NASA’s 2025 Earth Day poster, visit:
      https://nasa.gov/earthdayposters
      Share
      Details
      Last Updated Apr 21, 2025 Related Terms
      Earth Day Earth General Landsat NISAR (NASA-ISRO Synthetic Aperture Radar) PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Explore More
      3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery
      Article 4 days ago 3 min read Testing in the Clouds: NASA Flies to Improve Satellite Data
      Article 5 days ago 7 min read NASA’s SpaceX 32nd Commercial Resupply Mission Overview
      NASA and SpaceX are targeting no earlier than 4:15 a.m. EDT on Monday, April 21,…
      Article 5 days ago Keep Exploring Discover Related Topics
      Earth Science at Work
      NASA Earth Science helps Americans respond to challenges and societal needs — such as wildland fires, hurricanes, and water supplies…
      NASA Science, Cargo Launch on 32nd SpaceX Resupply Station Mission
      Science in the News
      Featured News Stories
      Earth Science to Action
      Within a decade, NASA will advance and integrate Earth science knowledge to empower humanity to create a more resilient world. 
      View the full article
  • Check out these Videos

×
×
  • Create New...