Jump to content

Recommended Posts

Posted
low_keystone.png

Though astronomers have discovered thousands of planets orbiting other stars, very little is known about how they are born. The conventional wisdom is that planets coagulate inside a vast disk of gas and dust encircling newborn stars. But the details of the process are not well understood because it takes millions of years to happen as the disk undergoes numerous changes until it finally dissipates.

The young, nearby star AU Microscopii (AU Mic) is an ideal candidate to get a snapshot of planet birthing because the disk is tilted nearly edge on to our view from Earth. This very oblique perspective offers an opportunity to see structure in the disk that otherwise might go unnoticed. Astronomers are surprised to uncover fast-moving, wave-like features embedded in the disk that are unlike anything ever observed, or even predicted. Whatever they are, these ripples are moving at 22,000 miles per hour – fast enough to escape the star's gravitational pull. This parade of blob-like features stretches farther from the star than Pluto is from our sun. They are so mysterious it's not known if they are somehow associated with planet formation, or some unimagined, bizarre activity inside the disk.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      The Curiosity rover continues to capture fascinating anomalies on the Martian surface. In this instance, researcher Jean Ward has examined a particularly intriguing discovery: a disc-shaped object embedded in the side of a mound or hill. 
      The images were taken by the Curiosity rover’s Mast Camera (Mastcam) on April 30, 2025 (Sol 4526). To improve clarity, Ward meticulously removed the grid overlay from the photographs, enhancing the visibility of the object. 
      To provide better spatial context for the disc’s location, Ward assembled two of the images into a collage. In the composite, you can see the surrounding area including a ridge, and the small mound where the disc appears partially embedded, possibly near the entrance of an opening. 

      The next image offers the clearest view of the anomaly. Ward again removed the grid overlay and subtly enhanced the contrast to bring out finer details, as the original image appeared overly bright and washed out. 
      In the close-up, displayed at twice the original scale, the smooth arc of the disc is distinctly visible. Its texture seems unusual, resembling stone or a slab-like material, flat yet with a defined curvature. 

      Might this disc-like structure have been engineered as a gateway, part of a hidden entrance leading to an architectural complex embedded within the hillside, hinting at a long-forgotten subterranean stronghold once inhabited by an extraterrestrial civilization? 
      Links original NASA images: https://mars.nasa.gov/raw_images/1461337/ https://mars.nasa.gov/raw_images/1461336/https://mars.nasa.gov/raw_images/1461335/
        View the full article
    • By NASA
      3 Min Read NASA Invests in Future STEM Workforce Through Space Grant Awards 
      NASA is awarding up to $870,000 annually to 52 institutions across the United States, the District of Columbia, and Puerto Rico over the next four years. The investments aim to create opportunities for the next generation of innovators by supporting workforce development, science, technology, engineering and math education, and aerospace collaboration nationwide. 
      The Space Grant College and Fellowship Program (Space Grant), established by Congress in 1989, is a workforce development initiative administered through NASA’s Office of STEM Engagement (OSTEM). The program’s mission is to produce a highly skilled workforce prepared to advance NASA’s mission and bolster the nation’s aerospace sector. 
      “The Space Grant program exemplifies NASA’s commitment to cultivating a new generation of STEM leaders,” said Torry Johnson, deputy associate administrator of the STEM Engagement Program at NASA Headquarters in Washington. “By partnering with institutions across the country, we ensure that students have the resources, mentorship, and experiences needed to thrive in the aerospace workforce.” 
      The following is a complete list of awardees: 
      University of Alaska, Fairbanks  University of Alabama, Huntsville  University of Arkansas, Little Rock  University of Arizona  University of California, San Diego  University of Colorado, Boulder  University of Hartford, Connecticut  American University, Washington, DC  University of Delaware  University of Central Florida  Georgia Institute of Technology  University of Hawaii, Honolulu  Iowa State University, Ames  University of Idaho, Moscow  University of Illinois, Urbana-Champaign  Purdue University, Indiana  Wichita State University, Kansas  University of Kentucky, Lexington  Louisiana State University and A&M College  Massachusetts Institute of Technology  Johns Hopkins University, Maryland  Maine Space Grant Consortium  University of Michigan, Ann Arbor  University of Minnesota  Missouri University of Science and Technology  University of Mississippi  Montana State University, Bozeman  North Carolina State University  University of North Dakota, Grand Forks  University of Nebraska, Omaha  University of New Hampshire, Durham  Rutgers University, New Brunswick, New Jersey  New Mexico State University  Nevada System of Higher Education  Cornell University, New York  Ohio Aerospace Institute  University of Oklahoma  Oregon State University  Pennsylvania State University  University of Puerto Rico  Brown University, Rhode Island  College of Charleston, South Carolina  South Dakota School of Mines & Technology  Vanderbilt University, Tennessee  University of Texas, Austin  University of Utah, Salt Lake City  Old Dominion University Research Foundation, Virginia  University of Vermont, Burlington  University of Washington, Seattle  Carthage College, Wisconsin  West Virginia University  University of Wyoming  Space Grant operates through state-based consortia, which include universities, university systems, associations, government agencies, industries, and informal education organizations engaged in aerospace activities. Each consortium’s lead institution coordinates efforts within its state, expanding opportunities for students and researchers while promoting collaboration with NASA and aerospace-related industries nationwide. 
      To learn more about NASA’s missions, visit: https://www.nasa.gov/ 

      View the full article
    • By USH
      UVB-76, widely known by its nickname "The Buzzer," is a mysterious shortwave Russian radio station radio broadcasts in the world. It began broadcasting in the mid-1970s and is still active today, broadcasting cryptic signals at 4625 kHz. 
      This Russian shortwave station usual broadcast consists of a monotonous buzzing tone that occasionally breaks for cryptic voice messages in Russian. The station is widely believed to be operated by the Russian military, possibly as part of the Strategic Rocket Forces’ communication network. 
      The use of shortwave radio enables the signal to travel vast distances, potentially covering all of Russia and extending far beyond its borders. 
      Due to the high transmission power of UVB-76’s antenna, some theorize that the station’s signals could even reach outer space. This possibility opens the door to even more extraordinary speculation: that satellites might receive these signals and relay them to submarines, remote military units, or even unidentified aerial phenomena (UFOs). One theory even posits that UVB-76 could be part of an experimental system designed to scan or communicate with extraterrestrial life. 
      Under normal circumstances, UVB-76’s broadcasts are infrequent and minimal, just the repetitive buzz and the rare coded message. However, something highly unusual happened just ten hours ago. Within a single day, the station transmitted four coded voice messages, an event considered extremely rare and potentially significant. 
      These are the messages: NZHTI - 33 702 - NEPTUN - 66-52-20-75 NZHTI - 8002 361 - TIMUS - 56-85 NZHTI - 7000 0 8002 - LISOPLASH - 67-203-0808-0809 NZHTI - 62 505 - NUTOBAKS - 78 15 92 71 
      While the true meaning of these messages remains classified or unknown, some analysts believe they could be activation codes, operational signals, or test messages for military units. The repeated prefix "NZHTI" could be a call sign or an authentication marker. The names—NEPTUN, TIMUS, LISOPLASH, and NUTOBAKS, might refer to code-named operations, geographic regions, or military assets. The numeric sequences could represent coordinates, timestamps, or identification numbers. 
      Given the timing and unusual frequency of these messages, some suspect that UVB-76 is ramping up activity in preparation for a significant event. While there's no confirmation of any immediate threat, the sudden uptick in coded communications suggests that something serious could be developing. 
      Many experts believe UVB-76 is maintained as a wartime contingency channel, ready to relay commands in the event of nuclear war or a catastrophic loss of national communications. Its consistent presence, even during peacetime, supports the theory that it serves as an emergency or fail-safe communication method for defense forces. 
      The sudden surge of messages within one day suggests that something serious is happening, or about to. But who are they intended for? And more importantly, what comes next?" View the full article
    • By NASA
      Explore This Section Science Science Activation Exploring the Universe Through… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   3 min read
      Exploring the Universe Through Sight, Touch, and Sound
      For the first time in history, we can explore the universe through a rich blend of senses—seeing, touching, and hearing astronomical data—in ways that deepen our understanding of space. While three-dimensional (3D) models are essential tools for scientific discovery and analysis, their potential extends far beyond the lab.
      Space can often feel distant and abstract, like watching a cosmic show unfold on a screen light-years away. But thanks to remarkable advances in technology, software, and science, we can now transform telescope data into detailed 3D models of objects millions or even billions of miles away. These models aren’t based on imagination—they are built from real data, using measurements of motion, light, and structure to recreate celestial phenomena in three dimensions.
      What’s more, we can bring these digital models into the physical world through 3D printing. Using innovations in additive manufacturing, data becomes something you can hold in your hands. This is particularly powerful for children, individuals who are blind or have low vision, and anyone with a passion for lifelong learning. Now, anyone can quite literally grasp a piece of the universe.
      These models also provide a compelling way to explore concepts like scale. While a 3D print might be just four inches wide, the object it represents could be tens of millions of billions of times larger—some are so vast that a million Earths could fit inside them. Holding a scaled version of something so massive creates a bridge between human experience and cosmic reality.
      In addition to visualizing and physically interacting with the data, we can also listen to it. Through a process called sonification, telescope data is translated into sound, making information accessible and engaging in a whole new way. Just like translating a language, sonification conveys the essence of astronomical data through audio, allowing people to “hear” the universe.
      To bring these powerful experiences to communities across the country, NASA’s Universe of Learning, in collaboration with the Library of Congress, NASA’s Chandra X-ray Observatory, and the Space Telescope Science Institute, has created Mini Stars 3D Kits that explore key stages of stellar evolution. These kits have been distributed to Library of Congress state hubs across the United States to engage local learners through hands-on and multisensory discovery.
      Each Mini Stars Kit includes:
      Three 3D-printed models of objects within our own Milky Way galaxy: Pillars of Creation (M16/Eagle Nebula) – a stellar nursery where new stars are born Eta Carinae – a massive, unstable star system approaching the end of its life Crab Nebula – the aftermath of a supernova, featuring a dense neutron star at its core Audio files with data sonifications for each object—mathematical translations of telescope data into sound Descriptive text to guide users through each model’s scientific significance and sensory interpretation These kits empower people of all ages and abilities to explore the cosmos through touch and sound—turning scientific data into a deeply human experience. Experience your universe through touch and sound at: https://chandra.si.edu/tactile/ministar.html
      Credits:
      3D Prints Credit: NASA/CXC/ K. Arcand, A. Jubett, using software by Tactile Universe/N. Bonne & C. Krawczyk & Blender
      Sonifications: Dr. Kimberly Arcand (CXC), astrophysicist Dr. Matt Russo, and musician Andrew Santaguida (both of the SYSTEM Sounds project)
      3D Model: K. Arcand, R. Crawford, L. Hustak (STScI)
      Photo of NASA’s Universe of Learning (UoL) 3D printed mini star kits sent to the Library of Congress state library hubs. The kits include 3D printed models of stars, sonifications, data converted into sound, and descriptive handouts available in both text and braille. Share








      Details
      Last Updated Apr 14, 2025 Editor NASA Science Editorial Team Related Terms
      Science Activation 3D Resources Astrophysics Manufacturing, Materials, 3-D Printing The Universe Explore More
      5 min read With NASA’s Webb, Dying Star’s Energetic Display Comes Into Full Focus


      Article


      5 hours ago
      4 min read GLOBE Mission Earth Supports Career Technical Education


      Article


      3 days ago
      2 min read Hubble Captures a Star’s Swan Song


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By European Space Agency
      Image: Spying a spiral through a cosmic lens (Webb telescope image) View the full article
  • Check out these Videos

×
×
  • Create New...