Jump to content

Recommended Posts

Posted
low_keystone.png

Though astronomers have discovered thousands of planets orbiting other stars, very little is known about how they are born. The conventional wisdom is that planets coagulate inside a vast disk of gas and dust encircling newborn stars. But the details of the process are not well understood because it takes millions of years to happen as the disk undergoes numerous changes until it finally dissipates.

The young, nearby star AU Microscopii (AU Mic) is an ideal candidate to get a snapshot of planet birthing because the disk is tilted nearly edge on to our view from Earth. This very oblique perspective offers an opportunity to see structure in the disk that otherwise might go unnoticed. Astronomers are surprised to uncover fast-moving, wave-like features embedded in the disk that are unlike anything ever observed, or even predicted. Whatever they are, these ripples are moving at 22,000 miles per hour – fast enough to escape the star's gravitational pull. This parade of blob-like features stretches farther from the star than Pluto is from our sun. They are so mysterious it's not known if they are somehow associated with planet formation, or some unimagined, bizarre activity inside the disk.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA’s Webb Rounds Out Picture of Sombrero Galaxy’s Disk
      NASA’s James Webb Space Telescope’s new image of the famous Sombrero galaxy in near-infrared wavelengths shows dust from the outer ring blocking stellar light from the inner portions of the galaxy. Credits:
      NASA, ESA, CSA, STScI After capturing an image of the iconic Sombrero galaxy at mid-infrared wavelengths in late 2024, NASA’s James Webb Space Telescope has now followed up with an observation in the near-infrared. In the newest image, the Sombrero galaxy’s huge bulge, the tightly packed group of stars at the galaxy’s center, is illuminated, while the dust in the outer edges of the disk blocks some stellar light.
      Image A: Sombrero Galaxy (NIRCam)
      NASA’s James Webb Space Telescope’s new image of the famous Sombrero galaxy in near-infrared wavelengths shows dust from the outer ring blocking stellar light from the inner portions of the galaxy. NASA, ESA, CSA, STScI Studying galaxies like the Sombrero at different wavelengths, including the near-infrared and mid-infrared with Webb, as well as the visible with NASA’s Hubble Space Telescope, helps astronomers understand how this complex system of stars, dust, and gas formed and evolved, along with the interplay of that material.
      When compared to Hubble’s visible light image, the dust disk doesn’t look as pronounced in the new near-infrared image from Webb’s NIRCam (Near-Infrared Camera) instrument. That’s because the longer, redder wavelengths of infrared light emitted by stars slip past dust more easily, so less of that stellar light is blocked. In the mid-infrared image, we actually see that dust glow.
      Image B: Sombrero Galaxy (NIRCam/MIRI)
      The Sombrero galaxy is split diagonally in this image: near-infrared observations from NASA’s James Webb Space Telescope are at the left, and mid-infrared observations from Webb are at the right. NASA, ESA, CSA, STScI The Sombrero galaxy is located about 30 million light-years away from Earth at the edge of the Virgo galaxy cluster, and has a mass equal to about 800 billion Suns. This galaxy sits “edge on” to us, meaning we see it from its side.
      Studies have indicated that hiding behind the galaxy’s smooth dust lane and calming glow is a turbulent past. A few oddities discovered over the years have hinted this galaxy was once part of a violent merger with at least one other galaxy.
      The Sombrero is home to roughly 2,000 globular clusters, or collections of hundreds of thousands of old stars held together by gravity. Spectroscopic studies have shown the stars within these globular clusters are unexpectedly different from one another.
      Stars that form around the same time from the same material should have similar chemical ‘fingerprints’ – for example, the same amounts of elements like oxygen or neon. However, this galaxy’s globular clusters show noticeable variation. A merger of different galaxies over billions of years would explain this difference.
      Another piece of evidence supporting this merger theory is the warped appearance of the galaxy’s inner disk.
      While our view is classified as “edge on,” we’re actually seeing this nearly edge on. Our view six degrees off the galaxy’s equator means we don’t see it directly from the side, but a little bit from above. From this view, the inner disk appears tilted inward, like the beginning of a funnel, instead of flat.
      Video A: Sombrero Galaxy Fade (Visible, Near-Infrared, Mid-Infrared)
      This video compares images of the Sombrero galaxy, also known as Messier 104 (M104). The first image shows visible light observed by the Hubble Space Telescope’s Advanced Camera for Surveys. The second is in near-infrared light and shows NASA’s Webb Space Telescope’s look at the galaxy using NIRCam (Near-Infrared Instrument). The final image shows mid-infrared light observed by Webb’s MIRI (Mid-Infrared Instrument).
      Credit: NASA, ESA, CSA, STScI The powerful resolution of Webb’s NIRCam also allows us to resolve individual stars outside of, but not necessarily at the same distance as, the galaxy, some of which appear red. These are called red giants, which are cooler stars, but their large surface area causes them to glow brightly in this image. These red giants also are detected in the mid-infrared, while the smaller, bluer stars in the near-infrared “disappear” in the longer wavelengths.
      Also in the NIRCam image, galaxies of diverse shapes and colors are scattered throughout the backdrop of space. The variety of their colors provides astronomers with clues about their characteristics, such as their distance from Earth.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hannah Braun – hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Article: Types of Galaxies
      Video: Different types of galaxies
      Article: Sombrero Galaxy’s Halo Suggests Turbulent Past
      More Images: Images of the Sombrero Galaxy in different types of light
      Video: Sonification of Sombrero Galaxy images
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Galaxies Stories



      Universe


      Share








      Details
      Last Updated Jun 02, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Galaxies Goddard Space Flight Center Science & Research Spiral Galaxies The Universe View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of MaRS ICICLE concept.NASA/Aaswath Pattabhi Raman Aaswath Pattabhi Raman
      University of California, Los Angeles
      Exploration of Mars has captivated the public in recent decades with high-profile robotic missions and the images they have acquired seeding our collective imagination. NASA is actively planning for human exploration of Mars and laid out some of the key capabilities that must be developed to execute successful, cost-effective programs that would put human beings on the surface of another planet and bring them home safely. Efficient, flexible and productive round-trip missions will be key to further human exploration of Mars. New round-trip mission concepts however need substantially improved long-duration storage of cryogenic propellants in various space environments; relevant propellants include liquid Hydrogen (LH2) for high specific impulse Nuclear Thermal Propulsion (NTP) which can be deployed in strategic locations in advance of a mission. If enabled, such LH2 storage tanks could be used to refill a crewed Mars Transfer Vehicle (MTV) to send and bring astronauts home quickly, safely, and cost-effectively. A well-designed cryogenic propellant storage tank can reflect the vast majority of photons incident on the spacecraft, but not all. In thermal environments like Low Earth Orbit (LEO), there is residual heating due to light directly from the Sun, sunlight reflected off Earth, and blackbody thermal radiation from Earth. Over time, this leads to some of the propellant molecules absorbing the requisite latent heat of vaporization, entering the gas phase, and ultimately being released into space to prevent an unsustainable build-up of pressure in the tank. This slow “boil-off” process leads to significant losses of the cryogenic liquid into space, potentially leaving it with insufficient mass and greatly limiting Mars missions. We propose a breakthrough mission concept: an ultra-efficient round-trip Mars mission with zero boil off of propellants. This will be enabled by low-cost, efficient cryogenic liquid storage capable of storing LH2 and LOx with ZBO even in the severe and fluctuating thermal environment of LEO. To enable this capability, the propellant tanks in our mission will employs thin, lightweight, all-solid-state panels attached to the tank’s deep-space-facing surfaces that utilize a long-understood but as-yet-unrealized cooling technology known as Electro-Luminescent Cooling (ELC) to reject heat from cold solid surfaces as non-equilibrium thermal radiation with significantly more power density than Planck’s Law permits for equilibrium thermal radiation. Such a propellant tank would drastically lower the cost and complexity of propulsion systems for crewed Mars missions and other deep space exploration by allowing spacecraft to refill propellant tanks after reaching orbit rather than launching on the much larger rocket required to lift the spacecraft in a single-use stage. To achieve ZBO, a storage spacecraft must keep the storage tank’s temperature below the boiling point of the cryogen (e.g., < 90 K for LOx and < 20 K for liquid H2). Achieving this in LEO-like thermal environments requires both excellent reflectivity toward sunlight and thermal radiation from the Earth, Mars and other nearby bodies as well as a power-efficient cooling mechanism to remove what little heat inevitably does leak in, a pair of conditions ideally suited to the ELC cooling systems that will makes our full return-trip mission to Mars a success.
      2025 Selections
      Facebook logo @NASATechnology @NASA_Technology


      Share
      Details
      Last Updated May 27, 2025 EditorLoura Hall Related Terms
      NIAC Studies NASA Innovative Advanced Concepts (NIAC) Program Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
    • By USH
      On the night of Friday, May 16, something extraordinary lit up the skies over the American Southwest. A brilliant, fast-moving streak of light that captivated onlookers from Arizona to Colorado. 

      Witnesses in towns such as Safford, Fountain Hills, and Payson, as well as regions of New Mexico and Colorado, were left asking the same question: What exactly did we just see? 
      Speculation spread rapidly. Some suggested a Chinese rocket launch earlier that day could be responsible, possibly placing satellites into orbit. Others floated more exotic theories: perhaps STEVE, a rare atmospheric light phenomenon similar to the aurora borealis, or even a “light pillar,” formed when light reflects off high-altitude ice crystals. 
      Attempts to reach officials at Luke Air Force Base near Phoenix, Davis-Monthan Air Force Base in southern Arizona, and Kirtland Air Force Base in Albuquerque have so far yielded no response. 

      What if it wasn’t a rocket plume from a Chinese launch at all? What if something entirely different passed near our planet, like a comet or UFO, or perhaps it was a test of a space-based weapon or a directed-energy system? 
      Whatever it may have been, it remains a strange phenomenon, leaving many to wonder what truly streaked across the sky.
        View the full article
    • By NASA
      NASA, ESA, CSA, Ralf Crawford (STScI) This artist’s concept illustration, released on May 14, 2025, shows a Sun-like star encircled by a disk of dusty debris containing crystalline water ice. Astronomers long expected that frozen water was scattered in systems around stars. By using detailed data known as spectra from NASA’s James Webb Space Telescope, researchers confirmed the presence of crystalline water ice — definitive evidence of what astronomers expected. Water ice is a vital ingredient in disks around young stars — it heavily influences the formation of giant planets and may also be delivered by small bodies like comets and asteroids to fully formed rocky planets.
      Read more about what this discovery means.
      Image credit: NASA, ESA, CSA, Ralf Crawford (STScI)
      View the full article
    • By USH
      In a groundbreaking development, advances in quantum data analysis have led to a discovery no scientist could have foreseen. NASA’s deep space monitoring system, upgraded with a quantum processor designed to filter cosmic noise and decode interstellar signals, produced something startling: an image.
      A conceptual interpretation of the Voyager 1 image.
      But this wasn’t an input, a simulation, or a product of algorithmic imagination. It wasn’t the result of random noise or a misfired pattern recognition process. The quantum system returned a coherent, structured, and symmetrical image, undeniably artificial. And the data it derived from? None other than Voyager 1. 
      Renowned physicist Michio Kaku addressed the anomaly in a recent interview: “We may be witnessing the first whisper of a new intelligence, something not man-made, not terrestrial, and certainly not random.” 
      The image, reconstructed via entangled qubit networks, depicted a figure: humanoid in silhouette, yet composed of geometric segments that defied any known biological or mechanical blueprint. It seemed deliberately crafted to challenge human comprehension, alien, yet eerily familiar enough to spark recognition.
      Not long ago, NASA pushed the boundaries of computation by launching an experimental quantum computer, capable of processing vast, multidimensional data streams. But after this revelation, NASA abruptly shut down the system following the unexpected and unsettling incident, in 2023, though some believe the research continued in secret. 
      Meanwhile, Voyager 1—the most distant human-made object in space, still traveling beyond our solar system after 45 years—has been transmitting strange, inexplicable data. According to NASA engineers, the spacecraft’s Attitude Articulation and Control System (AACS) began sending signals that “do not reflect what’s actually happening onboard.” 
      Instead of useful telemetry, Voyager 1 has been broadcasting a puzzling sequence: a repeating pattern of ones and zeros. Initially dismissed as a glitch, engineers traced the anomaly to the Flight Data Subsystem (FDS), pinpointing a malfunctioning chip. Yet, despite their efforts, the signal persisted, a digital enigma from 24 billion kilometers away. 
      Is this merely a failing system showing its age? Or is something, or someone, intentionally altering the data? 
      What if this “error” is a message? And if so, who’s sending it?
        View the full article
  • Check out these Videos

×
×
  • Create New...