Jump to content

Most Earth-Like Worlds Have Yet to Be Born, According to Theoretical Study


Recommended Posts

Posted
low_keystone.png

Astronomers are conducting extensive observations to estimate how many planets in our Milky Way galaxy might be potential abodes for life. These are collectively called "Earth-like" – in other words, Earth-sized worlds that are at the right distances from their stars for moderate temperatures to nurture the origin of life. The search for extraterrestrial intelligent life in the universe (SETI) is based on the hypothesis that some fraction of worlds, where life originates, go on to evolve intelligent technological civilizations. Until we ever find such evidence, Earth is the only known abode of life in the universe. But the universe is not only vastly big, it has a vast future. There is so much leftover gas from galaxy evolution available that the universe will keep cooking up stars and planets for a very long time to come. In fact, most of the potentially habitable Earth-like planets have yet to be born. This theoretical conclusion is based on an assessment of star-birth data collected by the Hubble Space Telescope and exoplanet surveys made by the planet-hunting Kepler space observatory.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 Min Read Upcoming Launch to Boost NASA’s Study of Sun’s Influence Across Space
      Soon, there will be three new ways to study the Sun’s influence across the solar system with the launch of a trio of NASA and National Oceanic and Atmospheric Administration (NOAA) spacecraft. Expected to launch no earlier than Tuesday, Sept. 23, the missions include NASA’s IMAP (Interstellar Mapping and Acceleration Probe), NASA’s Carruthers Geocorona Observatory, and NOAA’s SWFO-L1 (Space Weather Follow On-Lagrange 1) spacecraft. 
      The three missions will launch together aboard a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida. From there, the spacecraft will travel together to their destination at the first Earth-Sun Lagrange point (L1), around one million miles from Earth toward the Sun.
      The missions will each focus on different effects of the solar wind — the continuous stream of particles emitted by the Sun — and space weather — the changing conditions in space driven by the Sun — from their origins at the Sun to their farthest reaches billions of miles away at the edge of our solar system. Research and observations from the missions will help us better understand the Sun’s influence on Earth’s habitability, map our home in space, and protect satellites and voyaging astronauts and airline crews from space weather impacts. 
      The IMAP and Carruthers missions add to NASA’s heliophysics fleet of spacecraft. Together, NASA’s heliophysics missions study a vast, interconnected system from the Sun to the space surrounding Earth and other planets to the farthest limits of the Sun’s constantly flowing streams of solar wind. The SWFO-L1 mission, funded and operated by NOAA, will be the agency’s first satellite designed specifically for and fully dedicated to continuous, operational space weather observations.
      Mapping our home in space: IMAP
      The IMAP mission will study the heliosphere, our home in space.
      NASA/Princeton University/Patrick McPike As a modern-day celestial cartographer, IMAP will investigate two of the most important overarching issues in heliophysics: the interaction of the solar wind at its boundary with interstellar space and the energization of charged particles from the Sun.
      The IMAP mission will principally study the boundary of our heliosphere — a huge bubble created by the solar wind that encapsulates our solar system — and study how the heliosphere interacts with the local galactic neighborhood beyond. The heliosphere protects the solar system from dangerous high-energy particles called galactic cosmic rays. Mapping the heliosphere’s boundaries helps scientists understand our home in space and how it came to be habitable. 
      “IMAP will revolutionize our understanding of the outer heliosphere,” said David McComas, IMAP mission principal investigator at Princeton University in New Jersey. “It will give us a very fine picture of what’s going on out there by making measurements that are 30 times more sensitive and at higher resolution than ever before.”
      The IMAP mission will also explore and chart the vast range of particles in interplanetary space. The spacecraft will provide near real-time observations of the solar wind and energetic particles, which can produce hazardous conditions not only in the space environment near Earth, but also on the ground. The mission’s data will help model and improve prediction capabilities of the impacts of space weather ranging from power-line disruptions to loss of satellites. 
      Imaging Earth’s exosphere: Carruthers Geocorona Observatory
      An illustration shows the Carruthers Geocorona Observatory spacecraft. NASA/BAE Systems Space & Mission Systems The Carruthers Geocorona Observatory, a small satellite, will launch with IMAP as a rideshare. The mission was named after Dr. George Carruthers, creator of the Moon-based telescope that captured the first images of Earth’s exosphere, the outermost layer of our planet’s atmosphere. 
      The Carruthers mission will build upon Dr. Carruthers’ legacy by charting changes in Earth’s exosphere. The mission’s vantage point at L1 offers a complete view of the exosphere not visible from the Moon’s relatively close distance to Earth. From there, it will address fundamental questions about the nature of the region, such as its shape, size, density, and how it changes over time.
      The exosphere plays an important role in Earth’s response to space weather, which can impact our technology, from satellites in orbit to communications signals in the upper atmosphere or power lines on the ground. During space weather storms, the exosphere mediates the energy absorption and release throughout the near-Earth space environment, influencing strength of space weather disturbances. Carruthers will help us better understand the fundamental physics of our exosphere and improve our ability to predict the impacts of the Sun’s activity.
      “We’ll be able to create movies of how this atmospheric layer responds when a solar storm hits, and watch it change with the seasons over time,” said Lara Waldrop, the principal investigator for the Carruthers Geocorona Observatory at the University of Illinois at Urbana-Champaign. 
      New space weather station: SWFO-L1
      SWFO-L1 will provide real-time observations of the Sun’s corona and solar wind to help forecast the resulting space weather.
      NOAA/BAE Systems Space & Mission Systems Distinct from NASA’s research satellites, SWFO-L1 will be an operational satellite, designed to observe solar activity and the solar wind in real time to provide critical data in NOAA’s mission to protect the nation from environmental hazards. SWFO-L1 will serve as an early-warning beacon for potentially damaging space weather events that could impact our technology on Earth. SWFO-L1 will observe the Sun’s outer atmosphere for large eruptions, called coronal mass ejections, and measure the solar wind upstream from Earth with a state-of-the-art suite of instruments and processing system.
      This mission is the first of a new generation of NOAA space weather observatories dedicated to 24/7 operations, working to avoid gaps in continuity. 
      “SWFO-L1 will be an amazing deep-space mission for NOAA,” said Dimitrios Vassiliadis, SWFO program scientist at NOAA. “Thanks to its advantageous location at L1, it will continuously monitor the solar atmosphere while measuring the solar wind and its interplanetary magnetic fields well before it impacts Earth — and transmit these data in record time.”
      With SWFO-L1’s enhanced performance, unobstructed views, and minimal delay between observations and data return, NOAA’s Space Weather Prediction Center forecasters will give operators improved lead time required to take precautionary actions that protect vital infrastructure, economic interests, and national security on Earth and in space.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Sep 04, 2025 Related Terms
      Carruthers Geocorona Observatory (GLIDE) Heliophysics Heliosphere IMAP (Interstellar Mapping and Acceleration Probe) NOAA (National Oceanic and Atmospheric Administration) Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More
      3 min read Juno Detected the Final Missing Auroral Signature from Jupiter’s Four Largest Moons


      Article


      2 days ago
      6 min read NASA, IBM’s ‘Hot’ New AI Model Unlocks Secrets of Sun


      Article


      2 weeks ago
      3 min read Sun at the Center: Teacher Ambassadors Bring Heliophysics to Classrooms Nationwide


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By USH
      Everything we know about 3I/ATLAS to date: 
      On July 1, 2025, the Asteroid Terrestrial-impact Last Alert System (ATLAS) station at Río Hurtado, Chile, detected something extraordinary: a fast-moving object flagged with the provisional designation A11pl3Z, later named 3I/ATLAS, also cataloged as C/2025 N1 (ATLAS). 
      At first glance, it was classified as a comet. But almost immediately, astronomers realized that this visitor was anything but ordinary.  
      3I/ATLAS imaged by the James Webb Space Telescope's NIRSpec on 6 August 2025. 
      Why 3I/ATLAS is different. 
      1. Interstellar Origins Like ʻOumuamua (1I/2017 U1) and Borisov (2I/2019 Q4) before it, 3I/ATLAS is only the third confirmed interstellar object to enter our solar system. Its steep hyperbolic orbit—with an eccentricity greater than 1.02—proves it is not gravitationally bound to the Sun. 
      2. A Composition Unlike Any Comet Most comets are rich in water ice. Not 3I/ATLAS. Spectroscopic analysis from both the Hubble Space Telescope and James Webb Space Telescope (JWST) revealed it is dominated by carbon dioxide with one of the highest CO₂-to-water ratios ever measured. This makes it chemically alien compared to the comets that formed in our own solar system. 
      3. A Tail That Breaks the Rules Comets typically sprout tails pointing away from the Sun, driven by sublimating ice. 3I/ATLAS, however, displays a dust plume angled toward the Sun—a tail in the “wrong” direction. This phenomenon has never been observed in a natural comet and suggests either unusual physics or engineered behavior. 
      4. Perfectly Aligned Trajectory Instead of cutting randomly across the solar system, 3I/ATLAS travels almost exactly along the ecliptic plane, the flat orbital path where Earth, Mars, and most of the planets reside. Statistically, the odds of a random interstellar object aligning this precisely are less than 0.005%. 
      5. Unexplained Acceleration Data from radar tracking and JWST confirm subtle but persistent non-gravitational acceleration. Normally, such changes are explained by outgassing jets. Yet Webb detects no coma, no jets, no thermal signature to explain the push. Instead, the acceleration resembles controlled propulsion, similar to how an ion engine expels dust or gas for thrust.  
      6. Forward-Facing Glow: Instead of a tail behind it, 3I/ATLAS shines with a glow ahead of its motion, almost as if it were illuminating its path. 
      7. Stabilized Rotation: Unlike natural tumbling comets, it appears to maintain attitude control, consistent with artificial stabilization. 
      8. Speculations of nuclear propulsion: Harvard astrophysicist Avi Loeb, already known for his bold ʻOumuamua interpretations, has highlighted its non-gravitational acceleration and trajectory. He even speculated that 3I/ATLAS might be nuclear-powered technology, perhaps venting dust as thrust. 
      9. 3I/ATLAS will not simply zip past and leave. Its calculated path takes it past several key planets:  Venus flyby – August 2025 Mars encounter – September 2025 Jupiter flyby – late 2026 

      Tilted view of 3I/ATLAS's trajectory through the Solar System, with orbits and positions of planets shown. Such a sequence of planetary passes looks less like coincidence and more like a deliberate survey trajectory. 
      Finally, on October 30, 2025, the object will reach perihelion, its closest approach to the Sun. Crucially, at that moment it will be hidden directly behind the Sun from Earth’s perspective, a perfect opportunity for a stealth maneuver if it is indeed under intelligent control. 
      10. And the latest news on this object is that 3I/ATLAS shows signs of alien electroplating.  Astronomers using the Very Large Telescope (VLT) in Chile have detected something never before seen in a natural comet, a plume of pure nickel gas, laced with cyanide, but completely lacking iron. 
      This is not how comets behave. In every known case, nickel and iron are paired together in space rocks, asteroids, and cosmic debris. The absence of iron in 3I/ATLAS makes it impossible to explain through natural processes. 
      The nickel-cyanide combination looks eerily familiar to something we know from human technology: nickel-cyanide electroplating. This industrial process is used to coat and protect metals like iron, creating a corrosion-resistant shell. When heated, such a coating releases nickel vapor and cyanide gas, the exact chemical fingerprint astronomers now see venting from 3I/ATLAS. 
      Renowned astrophysicist Avi Loeb has already highlighted this bizarre discovery, stressing that the nickel-only signature matches industrial alloy production rather than anything we’d expect from natural comet chemistry. 
      Pure nickel without iron: impossible in natural comets. Nickel + cyanide plume: matches electroplated coatings. Artificial signature: hallmark of industrial processes. 
      Putting it all together, so far: It is an interstellar visitor on a hyperbolic escape path. It has a carbon dioxide–dominated composition, nearly devoid of water. It has a dust plume points toward the Sun, breaking cometary rules. It has a trajectory which is perfectly aligned with the ecliptic plane. It shows mysterious acceleration without visible outgassing. It exhibits a forward glow, possible radio emissions, and signs of stabilization. It will perform planetary flybys. It probably has nuclear propulsion. It has an electroplated shell. 

      Mainstream astronomers remain cautious, still labeling 3I/ATLAS as a comet, but with mounting evidence, we may be staring at the first tangible proof of alien technology crossing our solar system, a probe from another civilization on a reconnaissance mission, silently mapping habitable worlds before making contact.View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Dwarf planet Ceres is shown in these enhanced-color renderings that use images from NASA’s Dawn mission. New thermal and chemicals models that rely on the mission’s data indicate Ceres may have long ago had conditions suitable for life.NASA/JPL-Caltech/UCLA/MPS/DLR/IDA The dwarf planet is cold now, but new research paints a picture of Ceres hosting a deep, long-lived energy source that may have maintained habitable conditions in the past.
      New NASA research has found that Ceres may have had a lasting source of chemical energy: the right types of molecules needed to fuel some microbial metabolisms. Although there is no evidence that microorganisms ever existed on Ceres, the finding supports theories that this intriguing dwarf planet, which is the largest body in the main asteroid belt between Mars and Jupiter, may have once had conditions suitable to support single-celled lifeforms.
      Science data from NASA’s Dawn mission, which ended in 2018, previously showed that the bright, reflective regions on Ceres’ surface are mostly made of salts left over from liquid that percolated up from underground. Later analysis in 2020 found that the source of this liquid was an enormous reservoir of brine, or salty water, below the surface. In other research, the Dawn mission also revealed evidence that Ceres has organic material in the form of carbon molecules — essential, though not sufficient on its own, to support microbial cells.
      The presence of water and carbon molecules are two critical pieces of the habitability puzzle on Ceres. The new findings offer the third: a long-lasting source of chemical energy in Ceres’ ancient past that could have made it possible for microorganisms to survive. This result does not mean that Ceres had life, but rather, that there likely was “food” available should life have ever arisen on Ceres.
      This illustration depicts the interior of dwarf planet Ceres, including the transfer of water and gases from the rocky core to a reservoir of salty water. Carbon dioxide and methane are among the molecules carrying chemical energy beneath Ceres’ surface.NASA/JPL-Caltech In the study, published in Science Advances on Aug. 20, the authors built thermal and chemical models mimicking the temperature and composition of Ceres’ interior over time. They found that 2.5 billion years or so ago, Ceres’ subsurface ocean may have had a steady supply of hot water containing dissolved gases traveling up from metamorphosed rocks in the rocky core. The heat came from the decay of radioactive elements within the dwarf planet’s rocky interior that occurred when Ceres was young — an internal process thought to be common in our solar system.
      “On Earth, when hot water from deep underground mixes with the ocean, the result is often a buffet for microbes — a feast of chemical energy. So it could have big implications if we could determine whether Ceres’ ocean had an influx of hydrothermal fluid in the past,” said Sam Courville, lead author of the study. Now based at Arizona State University in Tempe, he led the research while working as an intern at NASA’s Jet Propulsion Laboratory in Southern California, which also managed the Dawn mission.
      Catching Chill
      The Ceres we know today is unlikely to be habitable. It is cooler, with more ice and less water than in the past. There is currently insufficient heat from radioactive decay within Ceres to keep the water from freezing, and what liquid remains has become a concentrated brine.
      The period when Ceres would most likely have been habitable was between a half-billion and 2 billion years after it formed (or about 2.5 billion to 4 billion years ago), when its rocky core reached its peak temperature. That’s when warm fluids would have been introduced into Ceres’ underground water.
      The dwarf planet also doesn’t have the benefit of present-day internal heating generated by the push and pull of orbiting a large planet, like Saturn’s moon Enceladus and Jupiter’s moon Europa do. So Ceres’ greatest potential for habitability-fueling energy was in the past.
      This result has implications for water-rich objects throughout the outer solar system, too. Many of the other icy moons and dwarf planets that are of similar size to Ceres (about 585 miles, or 940 kilometers, in diameter) and don’t have significant internal heating from the gravitational pull of planets could have also had a period of habitability in their past.
      More About Dawn
      A division of Caltech in Pasadena, JPL managed Dawn’s mission for NASA’s Science Mission Directorate in Washington. Dawn was a project of the directorate’s Discovery Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. JPL was responsible for overall Dawn mission science. Northrop Grumman in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute were international partners on the mission team.
      For a complete list of mission participants, visit:
      https://solarsystem.nasa.gov/missions/dawn/overview/
      News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      2025-108
      Share
      Details
      Last Updated Aug 20, 2025 Related Terms
      Dawn Asteroids Ceres Jet Propulsion Laboratory The Solar System Vesta Explore More
      6 min read NASA, IBM’s ‘Hot’ New AI Model Unlocks Secrets of Sun
      Editor’s Note: This article was updated Aug. 20, 2025, to correct the number of years of…
      Article 5 hours ago 4 min read NASA’s Psyche Captures Images of Earth, Moon
      Article 1 day ago 3 min read Summer Triangle Corner: Altair
      Altair is the last stop on our trip around the Summer Triangle! The last star…
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      A member of the space crop production team prepares materials for Veggie seed pillows inside the Space Systems Processing Facility at NASA’s Kennedy Space Center. NASA/Cory S Huston When the Crew-11 astronauts launched to the International Space Station on August 1, 2025, they carried with them another chapter in space farming: the latest VEG-03 experiments, complete with seed pillows ready for planting.
      Growing plants provides nutrition for astronauts, as well as psychological benefits that help maintain crew morale during missions.
      During VEG-03 MNO, astronauts will be able to choose what they want to grow from a seed library including Wasabi mustard greens, Red Russian Kale, and Dragoon lettuce.
      From Seed to Space Salad
      The experiment takes place inside Veggie, a chamber about the size of carry-on luggage. The system uses red, blue, and green LED lights to provide the right spectrum for plant growth. Clear flexible bellows — accordion-like walls that expand to accommodate maturing plants — create a semi-controlled environment around the growing area.
      Astronauts plant thin strips containing their selected seeds into fabric “seed pillows” filled with a special clay-based growing medium and controlled-release fertilizer. The clay, similar to what’s used on baseball fields, helps distribute water and air around the roots in the microgravity environment. 
      Crew members will monitor the plants, add water as needed, and document growth through regular photographs. At harvest time, astronauts will eat some of the fresh produce while freezing other samples for return to Earth, where scientists will analyze their nutritional content and safety.
      How this benefits space exploration
      Fresh food will become critical as astronauts venture farther from Earth on missions to the Moon and Mars. NASA aims to validate different kinds of crops to add variety to astronaut diets during long-duration space exploration missions, while giving crew members more control over what they grow and eat.
      How this benefits humanity
      The techniques developed for growing crops in space’s challenging conditions may also improve agricultural practices on Earth. Indoor crop cultivation approaches similar to what astronauts do in Veggie might also be adapted for horticultural therapy programs, giving elderly or disabled individuals new ways to experience gardening when traditional methods aren’t accessible.
      Related Resources
      VEG-03 MNO on the Space Station Research Explorer
      Veggie Vegetable Product System
      Veggie Plant Growth System Activated on International Space Station
      About BPS
      NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
      View the full article
    • By NASA
      Explore Hubble Science Hubble Space Telescope As NASA Missions Study… Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities   4 min read
      As NASA Missions Study Interstellar Comet, Hubble Makes Size Estimate
      Hubble captured this image of the interstellar comet 3I/ATLAS on July 21, 2025, when the comet was 277 million miles from Earth. Hubble shows that the comet has a teardrop-shaped cocoon of dust coming off its solid, icy nucleus.  Image: NASA, ESA, David Jewitt (UCLA); Image Processing: Joseph DePasquale (STScI) A team of astronomers has taken the sharpest-ever picture of the unexpected interstellar comet 3I/ATLAS using the crisp vision of NASA’s Hubble Space Telescope. Hubble is one of many missions across NASA’s fleet of space telescopes slated to observe this comet, together providing more information about its size and physical properties. While the comet poses no threat to Earth, NASA’s space telescopes help support the agency’s ongoing mission to find, track, and better understand near-Earth objects.
      Hubble’s observations allow astronomers to more accurately estimate the size of the comet’s solid, icy nucleus. The upper limit on the diameter of the nucleus is 3.5 miles (5.6 kilometers), though it could be as small as 1,000 feet (320 meters) across, researchers report. Though the Hubble images put tighter constraints on the size of the nucleus compared to previous ground-based estimates, the solid heart of the comet presently cannot be directly seen, even by Hubble. Observations from other NASA missions including the James Webb Space Telescope, TESS (Transiting Exoplanet Survey Satellite), and the Neil Gehrels Swift Observatory, as well as NASA’s partnership with the W.M. Keck Observatory, will help further refine our knowledge about the comet, including its chemical makeup.
      Hubble also captured a dust plume ejected from the Sun-warmed side of the comet, and the hint of a dust tail streaming away from the nucleus. Hubble’s data yields a dust-loss rate consistent with comets that are first detected around 300 million miles from the Sun. This behavior is much like the signature of previously seen Sun-bound comets originating within our solar system.
      The big difference is that this interstellar visitor originated in some other solar system elsewhere in our Milky Way galaxy.
      3I/ATLAS is traveling through our solar system at a staggering 130,000 miles (209,000 kilometers) per hour, the highest velocity ever recorded for a solar system visitor. This breathtaking sprint is evidence that the comet has been drifting through interstellar space for many billions of years. The gravitational slingshot effect from innumerable stars and nebulae the comet passed added momentum, ratcheting up its speed. The longer 3I/ATLAS was out in space, the higher its speed grew.
      “No one knows where the comet came from. It’s like glimpsing a rifle bullet for a thousandth of a second. You can’t project that back with any accuracy to figure out where it started on its path,” said David Jewitt of the University of California, Los Angeles, science team leader for the Hubble observations.
      The paper will be published in The Astrophysical Journal Letters. It is already available on Astro-ph.
      New Evidence for Population of Wandering Space Relics
      “This latest interstellar tourist is one of a previously undetected population of objects bursting onto the scene that will gradually emerge,” said Jewitt. “This is now possible because we have powerful sky survey capabilities that we didn’t have before. We’ve crossed a threshold.”
      This comet was discovered by the NASA-funded Asteroid Terrestrial-impact Last Alert System (ATLAS) on July 1, 2025, at a distance of 420 million miles from the Sun. ATLAS is an asteroid impact early warning system developed by the University of Hawai’i. 
      In the meantime, other NASA missions will provide new insight into this third interstellar interloper, helping refine our understanding of these objects for the benefit of all. 3I/ATLAS should remain visible to ground-based telescopes through September, after which it will pass too close to the Sun to observe, and is expected to reappear on the other side of the Sun by early December.
      The Hubble Space Telescope has been operating for more than three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      To learn more about Hubble, visit: https://science.nasa.gov/hubble
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble  
       
      Related Images & Videos
      Comet 3I/ATLAS
      Hubble captured this image of the interstellar comet 3I/ATLAS on July 21, 2025, when the comet was 277 million miles from Earth. Hubble shows that the comet has a teardrop-shaped cocoon of dust coming off its solid, icy nucleus.


      Comet 3I/ATLAS Compass Image
      This image of interstellar comet 3I/ATLAS was captured by the Hubble Space Telescope’s Wide Field Camera on July 21, 2025. The scale bar is labeled in arcseconds, which is a measure of angular distance on the sky. One arcsecond is equal an angular measurement of 1/3600 of o…




      Share








      Details
      Last Updated Aug 07, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute
      Baltimore, Maryland
      Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Comets Goddard Space Flight Center Small Bodies of the Solar System The Solar System
      Related Links and Documents
      Science Paper: Hubble Space Telescope Observations of the Interstellar Interloper 3I/ATLAS, PDF (1.57 MB)

      Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble Images



      Hubble News


      View the full article
  • Check out these Videos

×
×
  • Create New...