Jump to content

Recommended Posts

Posted
Swarm reveals magnetic waves across Earth’s outer core

While volcanic eruptions and earthquakes serve as immediate reminders that Earth’s insides are anything but tranquil, there are also other, more elusive, dynamic processes happening deep down below our feet. Using information from ESA’s Swarm satellite mission, scientists have discovered a completely new type of magnetic wave that sweeps across the outermost part of Earth’s outer core every seven years. This fascinating finding, presented today at ESA’s Living Planet Symposium, opens a new window into a world we can never see.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      On 31 May 2025, the European Space Agency (ESA) made history by transmitting a live performance of The Blue Danube Waltz into space from its Cebreros deep space antenna in Spain. This symbolic gesture elevated Johann Strauss II’s famous waltz, often considered the unofficial ‘anthem of space’, to its rightful place among the stars.
      View the full article
    • By European Space Agency
      The European Space Agency (ESA) has inaugurated the European Space Deep-Tech Innovation Centre (ESDI), the first ESA presence in Switzerland, created in close collaboration with the Paul Scherrer Institute (PSI). The new centre is located at the Switzerland Innovation Park Innovaare in Villigen. The opening highlights the growing role of deep tech in space exploration and its potential to boost Europe's growth and competitiveness.
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The SWOT satellite is helping scientists size up flood waves on waterways like the Yellowstone River, pictured here in October 2024 in Montana. SWOT measures the height of surface waters, including the ocean, and hundreds of thousands of rivers, lakes, and reservoirs in the U.S. alone.NPS In a first, researchers from NASA and Virginia Tech used satellite data to measure the height and speed of potentially hazardous flood waves traveling down U.S. rivers. The three waves they tracked were likely caused by extreme rainfall and by a loosened ice jam. While there is currently no database that compiles satellite data on river flood waves, the new study highlights the potential of space-based observations to aid hydrologists and engineers, especially those working in communities along river networks with limited flood control structures such as levees and flood gates.
      Unlike ocean waves, which are ordinarily driven by wind and tides, and roll to shore at a steady clip, river waves (also called flood or flow waves) are temporary surges stretching tens to hundreds of miles. Typically caused by rainfall or seasonal snowmelt, they are essential to shuttling nutrients and organisms down a river. But they can also pose hazards: Extreme river waves triggered by a prolonged downpour or dam break can produce floods.
      “Ocean waves are well known from surfing and sailing, but rivers are the arteries of the planet. We want to understand their dynamics,” said Cedric David, a hydrologist at NASA’s Jet Propulsion Laboratory in Southern California and a coauthor of a new study published May 14 in Geophysical Research Letters.
      SWOT is depicted in orbit in this artist’s concept, with sunlight glinting off one of its solar panels and both antennas of its key instrument — the Ka-band Radar Interferometer (KaRIn) — extended. The antennas collect data along a swath 30 miles (50 kilometers) wide on either side of the satellite.CNES Measuring Speed and Size
      To search for river waves for her doctoral research, lead author Hana Thurman of Virginia Tech turned to a spacecraft launched in 2022. The SWOT (Surface Water and Ocean Topography) satellite is a collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales). It is surveying the height of nearly all of Earth’s surface waters, both fresh and salty, using its sensitive Ka-band Radar Interferometer (KaRIn). The instrument maps the elevation and width of water bodies by bouncing microwaves off the surface and timing how long the signal takes to return.
      “In addition to monitoring total storage of waters in lakes and rivers, we zoom in on dynamics and impacts of water movement and change,” said Nadya Vinogradova Shiffer, SWOT program scientist at NASA Headquarters in Washington.
      Thurman knew that SWOT has helped scientists track rising sea levels near the coast, spot tsunami slosh, and map the seafloor, but could she identify river height anomalies in the data indicating a wave on the move?
      She found that the mission had caught three clear examples of river waves, including one that arose abruptly on the Yellowstone River in Montana in April 2023. As the satellite passed overhead, it observed a 9.1-foot-tall (2.8-meter-tall) crest flowing toward the Missouri River in North Dakota. It was divided into a dramatic 6.8-mile-long (11-kilometer-long) peak followed by a more drawn‐out tail. These details are exciting to see from orbit and illustrate the KaRIn instrument’s uniquely high spatial resolution, Thurman said.
      Sleuthing through optical Sentinel-2 imagery of the area, she determined that the wave likely resulted from an ice jam breaking apart upstream and releasing pent-up water.
      The other two river waves that Thurman and the team found were triggered by rainfall runoff. One, spotted by SWOT starting on Jan. 25, 2024, on the Colorado River south of Austin, Texas, was associated with the largest flood of the year on that section of river. Measuring over 30 feet (9 meters) tall and 166 miles (267 kilometers) long, it traveled around 3.5 feet (1.07 meters) per second for over 250 miles (400 kilometers) before discharging into Matagorda Bay.
      The other wave originated on the Ocmulgee River near Macon, Georgia, in March 2024. Measuring over 20 feet (6 meters) tall and extending more than 100 miles (165 kilometers), it traveled about a foot (0.33 meters) per second for more than 124 miles (200 kilometers).
      “We’re learning more about the shape and speed of flow waves, and how they change along long stretches of river,” Thurman said. “That could help us answer questions like, how fast could a flood get here and is infrastructure at risk?”
      Complementary Observations
      Engineers and water managers measuring river waves have long relied on stream gauges, which record water height and estimate discharge at fixed points along a river. In the United States, stream gauge networks are maintained by agencies including the U.S. Geological Survey. They are sparser in other parts of the world.
      “Satellite data is complementary because it can help fill in the gaps,” said study supervisor George Allen, a hydrologist and remote sensing expert at Virginia Tech.
      If stream gauges are like toll booths clocking cars as they pass, SWOT is like a traffic helicopter taking snapshots of the highway.
      The wave speeds that SWOT helped determine were similar to those calculated using gauge data alone, Allen said, showing how the satellite could help monitor waves in river basins without gauges. Knowing where and why river waves develop can help scientists tracking changing flood patterns around the world.
      Orbiting Earth multiple times each day, SWOT is expected to observe some 55% of large-scale floods at some stage in their life cycle. “If we see something in the data, we can say something,” David said of SWOT’s potential to flag dangerous floods in the making. “For a long time, we’ve stood on the banks of our rivers, but we’ve never seen them like we are now.”
      More About SWOT
      The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      Written by Sally Younger
      2025-074




      Share
      Details
      Last Updated May 21, 2025 Related Terms
      SWOT (Surface Water and Ocean Topography) Jet Propulsion Laboratory Explore More
      3 min read Devil’s in Details in Selfie Taken by NASA’s Mars Perseverance Rover
      Article 2 hours ago 5 min read NASA’s Perseverance Mars Rover to Take Bite Out of ‘Krokodillen’
      Article 2 days ago 6 min read NASA, French SWOT Satellite Offers Big View of Small Ocean Features
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Dave Gallagher will become the director of NASA’s Jet Propulsion Laboratory in Southern California on Sunday, June 1. NASA/JPL-Caltech Laurie Leshin has decided to step down as director of NASA’s Jet Propulsion Laboratory on Sunday, June 1. David Gallagher, who has been serving as the Lab’s associate director for Strategic Integration, has been selected by Caltech to lead the federally funded research and development center. Caltech manages JPL for NASA.
      A distinguished geochemist, Leshin was named by Caltech to lead the lab in early 2022. Her career has spanned academia and senior positions at NASA. Several NASA missions managed by JPL have launched under her leadership, including EMIT, SWOT, Psyche, PREFIRE, Europa Clipper, and SPHEREx, with the NASA-Indian Earth satellite NISAR set for a June launch. In addition, JPL has advanced the development of NASA’s asteroid-hunting NEO Surveyor mission as well as the trio of CADRE lunar rovers, and it delivered the Coronagraph Instrument, a technology demonstration with NASA’s forthcoming Roman Space Telescope.
      “I am proud of the many things JPL has accomplished over the past three years,” said Leshin. “In addition to the long list of missions that have launched or moved toward launch during that time, we saved Voyager more than once and flew into history on Mars with Ingenuity. We have made more amazing scientific discoveries than I can name, including finding potential ancient Martian biomarkers with Perseverance. And we’ve driven the forefront of technology on Earth and in space. I know those achievements will continue under Dave’s capable leadership.”
      Leshin, who has also served as Caltech vice president, is stepping down for personal reasons and will remain a Bren Professor of Geochemistry and Planetary Science at Caltech.
      “While we respect Laurie’s decision to step away from her leadership position at JPL, we will miss her drive, compassion, and dedication,” Caltech President Thomas Rosenbaum said. “At the same time, we are grateful to Dave Gallagher for his devotion to JPL and his continuing leadership and partnership going forward. Dave’s experience working across multiple government and private sector entities will help secure ongoing support for America’s agenda in space, with JPL continuing to play an essential role.”
      Gallagher will draw on his deep experience at JPL to lead the lab into the future. He arrived at JPL 36 years ago, in 1989, and went on to hold numerous leadership positions. Along with having served as the director and deputy director for Astronomy, Physics, and Space Technology, he was manager of JPL’s Advanced Optical Systems Program Office. An electrical engineer, Gallagher also managed the Spitzer Space Telescope and, among other roles, led the team that built and tested the Wide Field/Planetary Camera 2 (WF/PC-2) — a critical instrument that corrected the spherical aberration on NASA’s Hubble Space Telescope.
      “Laurie has made a significant impact on energizing and focusing the lab, guiding it back on track after the Covid-19 pandemic. I wish her great success in this next chapter of her career, and I look forward to a very smooth transition at the lab,” said Gallagher. “We have exciting opportunities ahead helping to advance our nation’s space agenda and a fantastic team to help realize them.”
      Founded by Caltech faculty and students in 1936, JPL has been managed by Caltech on behalf of NASA since 1958.
      News Media Contacts
      Matthew Segal / Veronica McGregor
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-8307 / 818-354-9452
      matthew.j.segal@jpl.nasa.gov / veronica.c.mcgregor@jpl.nasa.gov

      View the full article
    • By European Space Agency
      As the new Biomass satellite settles into life in orbit following its launch on 29 April, ESA has released its most extensive satellite-based maps of above-ground forest carbon to date. Spanning nearly two decades, the dataset offers the clearest global picture yet of how forest carbon stocks have changed over time.
      Developed through ESA’s Climate Change Initiative, this new long-term record integrates data from multiple satellite missions – and will soon be further enhanced by data from the Biomass mission itself.
      View the full article
  • Check out these Videos

×
×
  • Create New...