Members Can Post Anonymously On This Site
Space agencies provide global view of our changing environment
-
Similar Topics
-
By Space Force
The inaugural class of Guardian officers graduates from the Officer Training Course at Peterson Space Force Base.
View the full article
-
By European Space Agency
Video: 00:09:30 In Tenerife, Spain, stands a unique duo: ESA’s Izaña-1 and Izaña-2 laser-ranging stations. Together, they form an optical technology testbed of the European Space Agency that takes the monitoring of space debris and satellites to a new level while maturing new technologies for commercialisation.
Space debris is a threat to satellites and is rapidly becoming a daily concern for satellite operators. The Space Safety Programme, part of ESA Operations, managed from ESOC in Germany, helps develop new technologies to detect and track debris, and to prevent collisions in orbit in new and innovative ways.
One of these efforts takes place at the Izaña station in Tenerife. There, ESA and partner companies are testing how to deliver precise orbit data on demand with laser-based technologies. The Izaña-2 station was recently finalised by the German company DiGOS and is now in use.
To perform space debris laser ranging, Izaña-2 operates as a laser transmitter, emitting high-power laser pulses towards objects in space. Izaña-1 then acts as the receiver of the few photons that are reflected back. The precision of the laser technology enables highly accurate data for precise orbit determination, which in turn is crucial for actionable collision avoidance systems and sustainable space traffic management.
With the OMLET (Orbital Maintenance via Laser momEntum Transfer) project, ESA combines different development streams and possibilities for automation to support European industry with getting two innovative services market-ready: on-demand ephemeris provision and laser-based collision avoidance services for end users such as satellite operators.
A future goal is to achieve collision avoidance by laser momentum transfer, where instead of the operational satellite, the piece of debris will be moved out of the way. This involves altering the orbit of a piece of space debris slightly by applying a small force to the object through laser illumination.
The European Space Agency actively supports European industry in capitalising on the business opportunities that not only safeguard our satellites but also pave the way for the sustainable use of space.
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Robert Mosher, HIAD materials and processing lead at NASA Langley, holds up a piece of webbing material, known as Zylon, which comprise the straps of the HIAD.NASA/Joe Atkinson Components of a NASA technology that could one day help crew and cargo enter harsh planetary environments, like that of Mars, are taking an extended trip to space courtesy of the United States Space Force.
On Aug. 21, several pieces of webbing material, known as Zylon, which comprise the straps of the HIAD (Hypersonic Inflatable Aerodynamic Decelerator) aeroshell developed by NASA’s Langley Research Center in Hampton, Virginia, launched to low Earth orbit along with other experiments aboard the Space Force’s X-37B Orbital Test Vehicle. This trip will help researchers characterize how the Zylon webbing responds to long-duration exposure to the harsh vacuum of space.
The strap material on the HIAD aeroshell serves two purposes – short strap lengths hold together HIAD’s inflatable rings and longer pieces help to distribute the load more evenly across the cone-shaped structure. The HIAD aeroshell technology could allow larger spacecraft to safely descend through the atmospheres of celestial bodies like Mars, Venus, and even Saturn’s moon, Titan.
“We’re researching how HIAD technology could help get humans to Mars. We want to look at the effects of long-term exposure to space – as if the Zylon material is going for a potential six to nine-month mission to Mars,” said Robert Mosher, HIAD materials and processing lead at NASA Langley. “We want to make sure we know how to protect those structural materials in the long term.”
The Zylon straps are visible here during the inflation of LOFTID as part of a November 2022 orbital flight test. LOFTID was a version of the HIAD aeroshell — a technology that could allow larger spacecraft to safely descend through the atmospheres of celestial bodies like Mars, Venus, and even Saturn’s moon, Titan.NASA Flying Zylon material aboard the Space Force’s X-37B mission will help NASA researchers understand what kind of aging might occur to the webbing on a long space journey before it experiences the extreme environments of atmospheric entry, during which it has to retain strength at high temperatures.
Multiple samples are in small canisters on the X-37B. Mosher used two different techniques to put the strap material in the canisters. Some he tightly coiled up, others he stuffed in.
“Typically, we pack a HIAD aeroshell kind of like you pack a parachute, so they’re compressed,” he said. “We wanted to see if there was a difference between tightly coiled material and stuff-packed material like you would normally see on a HIAD.”
Some of the canisters also include tiny temperature and humidity sensors set to collect readings at regular intervals. When the Space Force returns the samples from the X-37B flight, Mosher will compare them to a set of samples that have remained in canisters here on Earth to look for signs of degradation.
The material launched to space aboard the Space Force’s X-37B Orbital Test Vehicle, seen here earlier this year.Courtesy of the United States Space Force “Getting this chance to have the Zylon material exposed to space for an extended period of time will begin to give us some data on the long-term packing of a HIAD,” Mosher said.
Uninflated HIAD aeroshells can be packed into small spaces within a spacecraft. This results in a decelerator that can be much larger than the diameter of its launch vehicle and can therefore land much heavier loads and deliver them to higher elevations on a planet or other celestial body.
Rigid aeroshells, the sizes of which are dictated by the diameters of their launch vehicles, typically 4.5 to 5 meters, are capable of landing well-equipped, car-sized rovers on Mars. By contrast, an inflatable HIAD, with an 18-20m diameter, could land the equivalent of a small, fully furnished ranch house with a car in the garage on Mars.
NASA’s HIAD aeroshell developments build on the success of the agency’s LOFTID (Low-Earth Orbit Flight Test of an Inflatable Decelerator) mission that launched on Nov. 10, 2022, resulting in valuable insights into how this technology performs under the stress of re-entering Earth’s atmosphere after being exposed to space for a short time period.
Learn more: https://www.nasa.gov/space-technology-mission-directorate/tdm/
About the Author
Joe Atkinson
Public Affairs Officer, NASA Langley Research Center
Share
Details
Last Updated Aug 27, 2025 Related Terms
Langley Research Center Space Technology Mission Directorate Technology Demonstration Missions Program Explore More
4 min read Washington State Student Wins 2025 NASA Art Contest
Article 2 days ago 2 min read NASA Tests Tools to Assess Drone Safety Over Cities
Article 5 days ago 4 min read NASA Challenge Winners Cook Up New Industry Developments
Article 1 week ago View the full article
-
By European Space Agency
In the past decade, the European Space Agency’s Gaia mission has revealed the nature, history, and behaviour of billions of stars. Our pioneering stargazer has reshaped our view of the skies around us like no other, revealing that star clusters are more connected than expected over vast distances.
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Lunar Environment Structural Test Rig simulates the intense cold of the lunar night, ranging from 40 Kelvin (K) to 125 K while maintaining a vacuum environment. This creates a tool by which scientists and engineers can test materials, electronics, and flight hardware for future Moon and Mars missions, characterizing their behaviors at these temperatures while also validating their ability to meet design requirements.
Cryogenic engineer Adam Rice tests the Lunar Environment Structural Test Rig to simulate the thermal-vacuum conditions of the lunar night on Thursday, May 22, 2025.NASA/Jef Janis Facility Overview
The Lunar Environment Structural Test Rig (LESTR) approaches the problem of creating a simulated lunar environment by departing from typical fluid immersion or jacketed-and-chilled chamber systems. It does this by using a cryocooler to reject heat and bring the test section to any point desired by the test engineer, as low as 40 K or as high as 125 K in a vacuum environment. By combining high vacuum and cryogenic temperatures, LESTR enables safe, accurate, and cost-effective testing of materials and hardware destined for the Moon and beyond. Its modular setup supports a wide range of components — from spacesuits to rover wheels to electronics — while laying the foundation for future Moon and Mars mission technologies.
Quick Facts
LESTR is a cryogenic mechanical test system built up within a conventional load frame with the goal of providing a tool to simulate the thermal-vacuum conditions of the lunar night to engineers tasked with creating the materials, tools, and machinery to succeed in NASA’s missions.
LESTR replicates extreme lunar night environments — including temperatures as low as 40 K and high vacuum (<5×10⁻⁷ Torr) — enabling true-to-space testing without liquid cryogens. Unlike traditional “wet” methods, LESTR uses a cryocooler and vacuum system to create an environment accurate to the lunar surface. From rover wheels to spacesuits to electronics, LESTR supports static and dynamic testing across a wide range of Moon and Mars mission hardware. With scalable architecture and precision thermal control, LESTR lays critical groundwork for advancing the technologies of NASA’s Artemis missions and beyond. Capabilities
Specifications
Temperature Range: 40 K to 125 K Load Capacity: ~10 kN Vacuum Level: <5×10⁻⁷ Torr Test Volume (Cold Box Dimensions): 7.5 by 9.5 by 11.5 inches Maximum Cycle Rate: 100 Hz Time to Vacuum:10⁻⁵ Torr in less than one hour 10⁻⁶ Torr in four hours Features
Dry cryogenic testing (no fluid cryogen immersion) “Dial-a-temperature” control for precise thermal conditions Integrated optical extensometer for strain imaging Digital image correlation and electrical feedthroughs support a variety of data collection methods Native support for high-duration cyclic testing Applications
Cryogenic Lifecycle Testing: fatigue, fracture, and durability assessments Low-Frequency Vibration Testing: electronics qualification for mobility systems Static Load Testing: material behavior characterization in lunar-like environments Suspension and Drivetrain Testing: shock absorbers, wheels, springs, and textiles Textiles Testing: evaluation of spacesuits and habitat fabrics Dynamic Load Testing: up to 10 kN linear capacity, 60 mm stroke Contact
Cryogenic and Mechanical Evaluation Lab Manager: Andrew Ring
216-433-9623
Andrew.J.Ring@nasa.gov
LESTR Technical Lead: Ariel Dimston
216-433-2893
Ariel.E.Dimston@nasa.gov
Using Our Facilities
NASA’s Glenn Research Center in Cleveland provides ground test facilities to industry, government, and academia. If you are considering testing in one of our facilities or would like further information about a specific facility or capability, please let us know.
Gallery
The Lunar Environment Structural Test Rig simulates the intense cold of the lunar night on Friday, June 6, 2025.NASA/Steven Logan The Lunar Environment Structural Test Rig uses a cryocooler to reject heat and bring the test section as low as 40 Kelvin in a vacuum environment on Thursday, May 22, 2025.NASA/Jef Janis Keep Exploring Discover More Topics From NASA
Aeronautics Research
NASA Glenn Virtual Tours
Hubble Space Telescope (A)
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Gemini
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.